"03nasieniewski" → 2005/1/24 page 315 → ⊕

Logique & Analyse 183-184 (2003), 315-324

THE AXIOM OF MCKINSEY-SOBOCIŃSKI K1 IN THE FRAMEWORK OF DISCUSSIVE LOGICS

MAREK NASIENIEWSKI*

Abstract

In this paper we use Jaśkowski's method of defining a propositional logic with the help of the M-fragment of a given modal logic to express classical logic. We use as weak tools as possible to do this. A strengthening of some results by Scott and Lemmon concerning the McKinsey-Sobociński axiom is presented. This paper is a part of the investigation of building the adaptive logic on the basis of the logic D₂.

Introduction

In [11] a comparison of adaptive and discussive approaches to paraconsistency was presented. As most of inconsistency adaptive logics use classical logic as a so called upper limit logic¹, the question of expressing classical logic with the help of M-fragment² of a certain modal logic arises. It appears (see Lemma 3) that in the discussive framework Duns Scotus' law is equivalent to the famous McKinsey-Sobociński axiom³:

$$\Box \Diamond A \to \Diamond \Box A. \tag{K1}$$

*The research for this paper was indirectly financed by the Flemish Minister responsible for Science and Technology (contract BIL98/37).

¹ For explanation see for example [3].

² The *M*-fragment of a given modal logic P is the set { $\Diamond A : A$ is any formula and $\Diamond A \in \mathsf{P}$ }.

³ In the literature it is also denoted by (M).

MAREK NASIENIEWSKI

In 1966, Lemmon made a conjecture that each consistent normal logic P is complete with respect to some class of P-frames (the paper was finally published as [10]). In [13] the conjecture was disproved. But Lemmon had already himself sensed the limitation of his conjecture. The McKinsey-Sobociński axiom was given by him as a possible counterexample.

We have the following Lemmon and Scott results concerning the McKinsey-Sobociński axiom ([10], pp. 74–76)⁴:

Theorem 1: A formula is valid in all frames satisfying the condition m^{∞} : $\forall_w \exists_{\overline{w}} \Big(w R \overline{w} \land \forall_{w_1} \forall_{w_2} (\overline{w} R w_1 \land \overline{w} R w_2 \rightarrow w_1 = w_2) \Big)$ and the condition of transitivity iff it is a theorem of the logic K4 with the additional axiom (K1) (notation: K4M).

Theorem 2: A formula is valid in all frames satisfying the condition m^{∞} , the condition of reflexivity, and the condition of transitivity iff it is a theorem of the logic S4 with the additional axiom (K1) (notation: S4M).

In the class of transitive frames the validity of the axiom K1 is equivalent to the satisfaction of the condition (‡): $\forall_w \exists_{\overline{w}} \left(wR\overline{w} \land \forall_{w'}(\overline{w}Rw' \rightarrow \overline{w} = w') \right)^5$. In [12] it was proved that *M*-counterpart⁶ of McKinsey' logic S4.1 = S4[K1]⁷ is the trivial logic. Of course S5[K1] = Triv.

In the paper [14] it was shown that the class of frames for which the completeness result for KM⁸ might hold is not definable by the first order condition. The same result was stated in [7] since the likely class of frames for which KM would be complete is not closed on ultraproducts. Finally, in [5] the completeness theorem for KM with respect to some class of finite frames was proved by the normal form method.

Let us add, that logic KM is neither canonical [8], nor compact [15].

In the paper we will use standard notions and results from the field of the modal logic. A short summary can be found in [11]. We will use the notation introduced there.

⁴ See also [9] pp. 131–134.

⁵ See for example [4], p. 82.

⁶ The *M*-counterpart of a given modal logic P is the set $\{A : \Diamond A \in \mathsf{P}\}$.

⁷ It is by the definition the smallest normal logic containing S4 and axiom K1.

⁸ It is by the definition the smallest normal logic containing axiom K1.

Ð

1. Duns Scotus' law in the discussive framework

Let us start with:

Lemma 3: On the basis of the logic K the McKinsey-Sobociński formula

$$\Box \Diamond A \to \Diamond \Box A \tag{K1}$$

is equivalent the discussive version of Duns Scotus' law

$$\Diamond \Big(\Diamond A \to (\Diamond \sim A \to B) \Big) \tag{JDS}$$

Proof. We prove the axiom K1 on the basis of K[JDS] ⁹:

1. $\Box \Diamond A \rightarrow (\Box \Diamond \sim A \rightarrow \Diamond \bot)$ the law t5 of distributivity of " \Diamond " with respect to " \rightarrow " and JDS: B/\bot 2. $\Diamond \bot \leftrightarrow \bot$ 3. $\Box \Diamond A \land \Box \Diamond \sim A \rightarrow \bot$ 4. $\sim (\Box \Diamond A \land \Box \Diamond \sim A)$ 5. $\Box \Diamond A \rightarrow \Diamond \Box A$ 4. and the law of negation of implication and inter-definability of " \Diamond " and " \Box "

On the other hand we prove JDS in KM:

1. $\Box \sim B \rightarrow (\Box \Diamond A \rightarrow \Diamond \Box A)$ 2. $\Box \Diamond A \rightarrow (\Box \sim B \rightarrow \Diamond \Box A)$ 3. $(\Box \sim B \rightarrow \Diamond \Box A) \rightarrow (\sim \Diamond \Box A \rightarrow \sim \Box \sim B)$ the law of contraposition 4. $(\Box \sim B \rightarrow \Diamond \Box A) \rightarrow (\Box \Diamond \sim A \rightarrow \Diamond B)$ 5. $\Box \Diamond A \rightarrow (\Box \Diamond \sim A \rightarrow \Diamond B)$ 6. $\Diamond (\Diamond A \rightarrow (\Diamond \sim A \rightarrow B))$ 7. $\Box \land A \rightarrow (\Box \Diamond \sim A \rightarrow \Diamond B)$ 8. and the inter-definability between \Box and \Diamond 5. $\Box \Diamond A \rightarrow (\Box \Diamond \sim A \rightarrow \Diamond B)$ 6. $\Diamond (\Diamond A \rightarrow (\Diamond \sim A \rightarrow B))$ 7. $\Box \land A \rightarrow (\Box \land A \rightarrow A)$ 8. $\Box \land A \rightarrow (\Box \land A \rightarrow A)$ 9. $\Box \land A \rightarrow (\Box \land A \rightarrow A)$ 1. $\Box \land A \rightarrow (\Box$

⁹We use auxiliary facts, definitions and notations as presented in [11].

MAREK NASIENIEWSKI

Corollary 4: The logic $\mathsf{KD^*T^*[K1]}^{10}$ is the minimal normal logic containing axioms $\Diamond (Ax1)^d - \Diamond (Ax13)^{d \ 11}$ and Duns Scotus' law with the discussive interpretation of ", \rightarrow ", and closed under the rule: $\Diamond A, \Diamond (\Diamond A \rightarrow B) \vdash \Diamond B$.

Proof. Follows directly from the theorem 7 from [11] and Lemma 3.

The theorem states that the logic KD*T* extended with JDS is the minimal normal logic determining discussive classical logic.

2. Semantics of the logic $S5_M[K1]$

Now we give conditions for frames which establish the completeness result for the logic under consideration. We'll use theorem 12 of [11] and the following observations semantically characterizing logic KD*T*[K1].

Lemma 5: The set of all frames satisfying the McKinsey condition:

 $\begin{array}{l} (\ddagger) \qquad \forall_w \exists_{\overline{w}} \Big(wR\overline{w} \land \forall_{w'}(\overline{w}Rw' \to \overline{w} = w') \Big) \\ \text{is contained in the intersection of the set of all frames satisfying the condition} \\ (\ast) \forall_w \exists_{w'} \Big(wRw' \land \forall_{w''}(w'Rw'' \to wRw'') \Big) \text{ and the set of all frames satisfying the condition} \\ \text{fying the condition } (\circledast) \forall_w \exists_{\overline{w}} \Big(wR\overline{w} \land \forall_{w'} \forall_{w''}(\overline{w}Rw' \land w'Rw'' \to wRw'') \Big). \end{array}$

Proof. Let us consider the frame $\langle W, R \rangle$ fulfilling the condition (‡). Let us take any $w \in W$. Let \overline{w} , be a world such that $wR\overline{w}$, the existence of which is stated in the condition (‡). We prove that $\forall_{w''}(\overline{w}Rw'' \to wRw'')$. Let w'' be any world such that $\overline{w}Rw''$. By (‡): $\overline{w} = w''$, since $wR\overline{w}$, so also wRw''. Because w is any world, we have shown that given frame satisfies the condition (*).

Now we show that for the chosen above world \overline{w} the following is satisfied $\forall_{w'}\forall_{w''}(\overline{w}Rw' \wedge w'Rw'' \rightarrow wRw'')$. Let us consider any worlds w' and w'', such that $\overline{w}Rw'$ and w'Rw''. We have to prove that wRw''. Once more by (\ddagger) we have: $\overline{w} = w'$; since w'Rw'', therefore also $\overline{w}Rw''$. Using (\ddagger) once

¹⁰KD*T* is the minimal normal logic containing axioms: (D*) $\Box \Diamond A \rightarrow \Diamond A$ and (T*) $\Box \Diamond \Diamond A \rightarrow \Diamond A$. It was proved by Dziobiak that KD*T* is equal to Perzanowski's system S5_M.

¹¹For a propositional variable A, $A^{d} = A$, and for any formulas B, C: $(B \vee C)^{d} = B^{d} \vee C^{d}$, $(B \wedge C)^{d} = B^{d} \wedge \Diamond C^{d}$, $(B \to C)^{d} = \Diamond B^{d} \to C^{d}$, $(\sim B)^{d} = \sim (B^{d})$, and $(B \leftrightarrow C)^{d} = (\Diamond B^{d} \to C^{d}) \wedge \Diamond (\Diamond C^{d} \to B^{d})$, while Ax1 - Ax13 are axioms of the propositional part of logic CLuN i.e. the full positive classical logic plus Clavius' law. For details see [2] and [11].

again, we get $\overline{w} = w''$, but $wR\overline{w}$, i.e. wRw'', which shows that the condition (\circledast) is fulfilled.

The proof of the next theorem is based on the analogous proof the completeness theorem 1 for the logic K4M. We strengthen the theorem 1 using, as we'll see, the weaker logic. The result shows the importance of the Mfragment of a given logic.

Theorem 6: A formula is valid in all frames fulfilling the condition

$$(\ddagger):\forall_w \exists_{\overline{w}} \Big(wR\overline{w} \land \forall_{w'}(\overline{w}Rw' \to \overline{w} = w') \Big)$$

iff it is provable in the logic $S5_M$ with the additional axiom (K1) (notation: $S5_M$ [K1]).

Proof. (\Leftarrow) We show that the axioms D^{*}, T^{*} and K1 are valid in all frames fulfilling the condition (\ddagger) . By the theorems stating the completeness results for logics D^* and T^* (see [11]), axioms D^* and T^* are valid in all frames satisfying conditions (*) and (\circledast) respectively. However, by lemma 5 we know that each frame satisfying the condition (\ddagger) also satisfies the conjunction of conditions (*) and (*). So it is enough to show that the axiom K1 is valid in each frame satisfying the condition (\ddagger) . Let us assume otherwise, i.e. that there is a Kripke frame for which the condition is fulfilled while the formula K1 is not valid. So there is a world w and a valuation v, such that $w \not\models_v K1$, therefore $w \models_v \Box \Diamond p$ and $w \not\models_v \Diamond \Box p$. By the definition of truth in a model we have $\forall_{\overline{w}}(wR\overline{w} \Rightarrow \overline{w} \not\models_v \Box p)$, in particular, for a world w' such that wRw', existence of which is mentioned in (\ddagger) , we have $w' \not\models_v \Box p$. Using the definition of truth in a model for " \Box ", we have that there is w'', that w'Rw'' and $w'' \not\models_v p$. By the condition (‡) we see that w' = w'', i.e. $w' \not\models_v p$ (notation •). Because $w \models_v \Box \Diamond p$, so for any world which is accessible from the world w, in particular for w' holds $w' \models_v \Diamond p$. By the definition of truth there is a world \breve{w} , for which $w'R\breve{w}$ and $\breve{w} \models_v p$. But by $(\ddagger) \ \breve{w} = w$, so $w' \models_v p$, which contradicts (\bullet) . (\Rightarrow) . Firstly we show that for any formulas A_1, \ldots, A_n the following

(⇒). Firstly we show that for any formulas A_1, \ldots, A_n the following ⊢_{S5_M[K1]} $\Diamond ((A_1 \rightarrow \Box A_1) \land \cdots \land (A_n \rightarrow \Box A_n))$ holds. To get this result we infer in S5_M[K1] a theorem:

$$\Box(\Box\Diamond A \land \Box\Diamond B) \to \Diamond(A \land B). \tag{(*)}$$

1. $\Box \Diamond A \land \Box \Diamond B \to \Diamond \Box A \land \Box \Diamond B$

addition of a new right conjunct $(\Box \Diamond B)$ to arguments of implication K1 2. $\Box(\neg A \lor \neg B) \rightarrow (\Box \neg A \lor \Diamond \neg B)$ the substitution into the theorem

"03nasieniewski" → 2005/1/24 page 320 → ⊕

 \oplus

MAREK NASIENIEWSKI

 $\Box(A \lor B) \to (\Box A \lor \Diamond B)$ of logic K: $A/\neg A, B/\neg B$ 3. $\neg(\Box \neg A \lor \Diamond \neg B) \rightarrow \neg\Box(\neg A \lor \neg B)$ the contraposition of 2. 4. $\Diamond A \land \Box B \to \Diamond (A \land B)$ de Morgan's law and the inter-definability between \Box and \Diamond 5. $\Diamond (A \land B) \rightarrow \Diamond (B \land A)$ commutativity of \wedge and monotonicity rule 6. $\Diamond A \land \Box B \to \Diamond (B \land A)$ the law of syllogism, 4., and 5. 7. $\Diamond \Box A \land \Box \Diamond B \rightarrow \Diamond (\Diamond B \land \Box A)$ a substitution into 6.: $A / \Box A$ and $B / \Diamond B$ 8. $\Diamond B \land \Box A \to \Diamond (A \land B)$ a substitution into 6.:A/B, B/A9. $\Diamond(\Diamond B \land \Box A) \to \Diamond \Diamond(A \land B)$ 8. and monotonicity rule 10. $\Box \Diamond A \land \Box \Diamond B \to \Diamond \Diamond (A \land B)$ the law of syllogism, 1., 7. and 9. 11. $\Box(\Box \Diamond A \land \Box \Diamond B) \to \Box \Diamond \Diamond (A \land B)$ 10. and monotonicity rule 12. $\Box \Diamond \Diamond (A \land B) \rightarrow \Diamond (A \land B)$ the axiom T^{*}: $A/(A \wedge B)$ 13. $\Box(\Box \Diamond A \land \Box \Diamond B) \rightarrow \Diamond (A \land B)$ and the law of syllogism, 11. and 12.

Now we are ready to prove that in $S5_M[K1]$ the following formula is a theorem:

$$\Diamond \Big((A_1 \to \Box A_1) \land \dots \land (A_n \to \Box A_n) \Big). \tag{**}$$

Proof by the induction on n. For n = 1 the required theorem *via* the law of distribution of " \Diamond " with respect to " \rightarrow " is equivalent to the axiom D*.

We also consider the case n = 2, since the induction step will go through similarly. By substitution into the schema $(\star) A/(A_1 \to \Box A_1)$ and $B/(A_2 \to \Box A_2)$ $\Box A_2)$ we have: $\vdash_{\mathsf{S5}_{\mathsf{M}}[\mathsf{K1}]} \Box (\Box \Diamond (A_1 \to \Box A_1) \land \Box \Diamond (A_2 \to \Box A_2)) \to \Diamond ((A_1 \to \Box A_1) \land (A_2 \to \Box A_2))$. Using the distributivity law, the axiom D^* is equivalent to $\Diamond (A_1 \to \Box A_1)$, by Gödel's rule we get $\Box \Diamond (A_1 \to \Box A_1)$, and by the law of adjunction and once more by RG we have: $\vdash_{\mathsf{S5}_{\mathsf{M}}[\mathsf{K1}]}$ $\Box (\Box \Diamond (A_1 \to \Box A_1) \land \Box \Diamond (A_2 \to \Box A_2))$, which is the antecedent of our substitution into the theorem (\star) , so by MP also the consequent $\Diamond ((A_1 \to \Box A_1) \land (A_2 \to \Box A_2)))$ is a theorem. INDUCTIVE STEP. By the induction hypothesis we have that for any

INDUCTIVE STEP. By the induction hypothesis we have that for any formulae $A_1 \dots A_{n-1}$: $\vdash_{\mathsf{S5}_{\mathsf{M}}[\mathsf{K1}]} \Box \Diamond [(A_1 \to \Box A_1) \land \dots \land (A_{n-1} \to \Box A_{n-1})]$. We will show that the required theorem holds also for n. 1. $\Diamond [(A_1 \to \Box A_1) \land \dots \land (A_{n-1} \to \Box A_{n-1})]$ the induction hypothesis 2. $\Box \Diamond [(A_1 \to \Box A_1) \land \dots \land (A_{n-1} \to \Box A_{n-1})]$ the induction hypothesis 3. $\Diamond (A_n \to \Box A_n)$ the distributivity of the functor " \Diamond "

"03nasieniewski" → 2005/1/24 page 321 → →

with respect to ,,
$$\rightarrow$$
" and D^*
 RG and 3.
5. $\Box \diamond [(A_1 \rightarrow \Box A_1) \land \cdots \land (A_{n-1} \rightarrow \Box A_{n-1})] \land \Box \diamond [A_n \rightarrow \Box A_n]$
2., 4. and the law of adjunction
6. $\Box \{\Box \diamond [(A_1 \rightarrow \Box A_1) \land \cdots \land (A_{n-1} \rightarrow \Box A_{n-1})]$
 $\land \Box \diamond [A_n \rightarrow \Box A_n]\}$
7. $\Box \{\Box \diamond [(A_1 \rightarrow \Box A_1) \land \cdots \land (A_{n-1} \rightarrow \Box A_{n-1})]$
 $\land \Box \diamond [A_n \rightarrow \Box A_n]\} \rightarrow$
 $\rightarrow \diamond \{[(A_1 \rightarrow \Box A_1) \land \cdots \land (A_{n-1} \rightarrow \Box A_{n-1})] \land [A_n \rightarrow \Box A_n]\}$
a substitution into (\star): $A/[(A_1 \rightarrow \Box A_1) \land \cdots \land (A_{n-1} \rightarrow \Box A_{n-1})]$
 $A \Box \diamond [(A_1 \rightarrow \Box A_1) \land \cdots \land (A_{n-1} \rightarrow \Box A_{n-1})] \land [A_n \rightarrow \Box A_n]\}$
 $A \Box \diamond \{[(A_1 \rightarrow \Box A_1) \land \cdots \land (A_{n-1} \rightarrow \Box A_{n-1})] \land [A_n \rightarrow \Box A_n]\}$
 $A \Box \diamond \{[(A_1 \rightarrow \Box A_1) \land \cdots \land (A_{n-1} \rightarrow \Box A_{n-1})] \land [A_n \rightarrow \Box A_n]\}$
 $A \Box \diamond \{[(A_1 \rightarrow \Box A_1) \land \cdots \land (A_{n-1} \rightarrow \Box A_{n-1})] \land [A_n \rightarrow \Box A_n]\}$
 $A \Box \diamond \{[(A_1 \rightarrow \Box A_1) \land \cdots \land (A_{n-1} \rightarrow \Box A_{n-1})] \land [A_n \rightarrow \Box A_n]\}$
 $A \Box \diamond \{[(A_1 \rightarrow \Box A_1) \land \cdots \land (A_{n-1} \rightarrow \Box A_{n-1})] \land [A_n \rightarrow \Box A_n]\}$
 $A \Box \diamond \{[(A_1 \rightarrow \Box A_1) \land \cdots \land (A_{n-1} \rightarrow \Box A_{n-1})] \land [A_n \rightarrow \Box A_n]\}$
 $A \Box \diamond \{[(A_1 \rightarrow \Box A_1) \land \cdots \land (A_{n-1} \rightarrow \Box A_{n-1})] \land [A_n \rightarrow \Box A_n]\}$
 $A \Box \diamond \{[(A_1 \rightarrow \Box A_1) \land \cdots \land (A_{n-1} \rightarrow \Box A_{n-1})] \land [A_n \rightarrow \Box A_n]\}$
 $A \Box \diamond \{[(A_1 \rightarrow \Box A_1) \land \cdots \land (A_{n-1} \rightarrow \Box A_{n-1})] \land [A_n \rightarrow \Box A_n]\}$
 $A \Box \diamond [A_n \rightarrow \Box A_n] \land \Box \land [A_n \rightarrow \Box A_n]\}$

Now we consider the canonical model of the logic $S5_M[K1]$. We show the canonical frame satisfies the condition (\ddagger).

MAREK NASIENIEWSKI

Thus by Lindenbaum's lemma, for each world w there is a world \overline{w} that $\mathcal{W}_w \subseteq \overline{w}$. We show that $wR\overline{w}$. Let A be any formula that $\Box A \in w$. By the definition of the set \mathcal{W}_w , we have $A \in \mathcal{W}_w$, i.e. $A \in \overline{w}$. So by the definition of the accessibility relation in the canonical frame we get: $wR\overline{w}$.

Now we prove that for any possible world w and for indicated above \overline{w} the following holds: $\forall_{w'}(\overline{w}Rw' \to \overline{w} = w')$. Let us assume that there is w', such that $\overline{w}Rw'$ and $\overline{w} \neq w'$, i.e. that there is a formula A that either $(A \in w' \text{ and } A \notin \overline{w})$ or $(A \in \overline{w} \text{ and } A \notin w')$. In the first case by the maximality of the set \overline{w} we have $\neg A \in \overline{w}$, via the definition of \mathcal{W}_w we observe that $\neg A \to \Box \neg A \in \mathcal{W}_w$, thus $\neg A \to \Box \neg A \in \overline{w}$, and so by MP, since every maximally consistent set is closed under MP, also $\Box \neg A \in \overline{w}$. However, since $\overline{w}Rw'$ we have: $\neg A \in w'$, which gives us a contradiction, because w' is also consistent. In the second case by the definition of \mathcal{W}_w we have $A \to \Box A \in \overline{w}$, from where via MP we obtain $\Box A \in \overline{w}$, but again, by the definition of the accessibility relation, we get $A \in w'$ which is a contradiction. We have shown, that the canonical frame of the logic $S5_M[K1]$ fulfills the condition (\ddagger).

Assume that some formula A is valid in all frames satisfying the condition (‡). In the presence of the above observation it is also true in the canonical model of the logic $S5_M[K1]$. But any formula true in the canonical model of a given logic is a theorem. Thus a given formula A is a theorem of $S5_M[K1]$. *A fortiori*:

Corollary 7: The logic $S5_{M}$ [K1] is canonical.

Proof. Follows directly from the previous theorem. We now state:

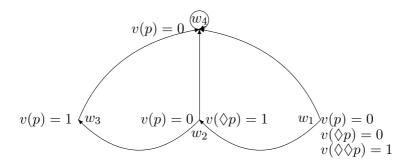
Theorem 8: *The logic* $S5_M[K1]$ *is weaker than* K4M.

Proof. Firstly we show that in K4M D^* and T^* are provable. By substitution into the axiom D (which clearly belongs to both logics) we have $\Box \Diamond A \rightarrow \Diamond \Diamond A$, and by the axiom 4 and transitivity of ", \rightarrow " we get $\Box \Diamond A \rightarrow \Diamond A$ i.e. the axiom D*. To prove T^* it is enough to see that via 4 and the monotonicity rule we obtain $\Box \Diamond \Diamond A \rightarrow \Box \Diamond A$. But in the presence of already proved D^* by the transitivity of implication we have $\Box \Diamond \Diamond A \rightarrow \Diamond A$.

Using the completeness results for both logics it is enough to indicate a frame satisfying the condition (\ddagger) in which the axiom 4 is not valid.

Ð

THE AXIOM OF MCKINSEY-SOBOCIŃSKI K1 IN THE FRAMEWORK... 323



For any world w_i , w_4 is a world the existence of which is postulated in the condition \ddagger . Indeed we have $\forall_{w'}(w_4Rw' \rightarrow w_4 = w')$. One can see that in w_1 the axiom $\Diamond \Diamond p \rightarrow \Diamond p$ is false.

Department of Logic and Semiotics N. Copernicus University Toruń, Poland E-mail: mnasien@uni.torun.pl

REFERENCES

- [1] D. Batens, "Blocks the Clue to Dynamic Aspects of Logic", *Logique & Analyse* 150–151–152 (1995), 285–328.
- [2] D. Batens, "Inconsistency-adaptive logics", in: E. Orłowska (ed.), Logic at Work: Essays Dedicated to the Memory of Helena Rasiowa, Springer Verlag, 1999, pp. 445–472.
- [3] D. Batens, "A Survey of Inconsistency-Adaptive Logics", in: D. Batens, C. Mortensen, G. Priest and J. P. Van Bendegem (eds.), *Frontiers of Paraconsistent Logic*, Research Studies Press, Baldock, UK, 2000.
- [4] A. Chagrov and M. Zakharyaschev, *Modal Logic*, Oxford Science Publications, Clarendon Press, Oxford, 1997.
- [5] K. Fine, "Normal forms in modal logic", Notre Dame Journal of Formal Logic 16 (1975), 229–237.
- [6] T. Furmanowski, "Remarks on Discussive Propositional Calculus", *Studia Logica* 34 (1975), 39–43.
- [7] R. Goldblatt, "First-order definability in modal logic", *The Journal of Symbolic Logic* 40 (1975), 35–40.
- [8] R. Goldblatt, "The McKinsey Axiom is not canonical", *The Journal of Symbolic Logic* 56 (1991), 554–562.
- [9] G. E. Hughes, M. J. Cresswell, *A New Introduction to Modal Logic*, Routledge, New York, London, 1996.

"03nasieniewski" → 2005/1/24 page 324 → →

 \oplus

MAREK NASIENIEWSKI

- [10] F. J. Lemmon, "An Introduction to Modal Logic", American Philosophical Quarterly Monograph Series, vol. 11, Basil Blackwell, Oxford 1977.
- [11] M. Nasieniewski, "A Comparison of Two Approaches to Parainconsistency: Flemish and Polish", *Logic and Logical Philosophy* 9 (2002), 47–74.
- [12] J. Perzanowski, "On *M*-Fragments and *L*-Fragments of Normal Modal Propositional Logics", *Reports on Mathematical Logic* 5 (1975), 63– 72.
- [13] S. K. Thomason, "Semantic analysis of tense logics", *The Journal of Symbolic Logic* 37 (1972), 150–158.
- [14] J. F. A. K. van Benthem, "A note on modal formula and relational properties", *The Journal of Symbolic Logic* 40 (1975), 55–58.
- [15] X. Wang, "The McKinsey Axiom is not compact", *The Journal of Symbolic Logic* 57 (1992), 1230–1238.