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A STRENGTHENING OF THE
RESCHER–MANOR CONSEQUENCE RELATIONS∗

DIDERIK BATENS

Abstract
The flat Rescher–Manor consequence relations — the Free, Strong,
Weak, C-Based, and Argued consequence relation — are defined
in terms of the classical consequences of the maximal consistent
subsets of (possibly) inconsistent sets of premises. If the premises
are inconsistent, the Free, Strong and C-Based consequence sets are
consistent and the Argued consequence set avoids explicit inconsis-
tencies (such as A and ∼A).

The five consequence relations may be applied to discussive situa-
tions as intended by Jaśkowski — the comparison with Jaśkowski’s
D2 is instructive. The method followed in [12] to extend D2 to
an adaptive logic, may also be applied to the Rescher–Manor con-
sequence relations. It leads to an extension of the Free, Strong,
Weak, and C-Based consequence relations. The extended conse-
quence sets are consistent and closed under Classical Logic. Ap-
plying the method to the Argued consequence relation leads to a
different consequence relation, not an extension. Neither the Ar-
gued consequence relation nor its extension appear very interesting
in the present application context.

1. Praeludium

Jaśkowski connected inconsistency to discussions. This leads to a very spe-
cific approach to paraconsistency, suitable to some application contexts only.
Nevertheless, it is a landmark in the history of logic.

∗The research for this paper was financed by the Fund for Scientific Research – Flanders,
and indirectly by the Flemish Minister responsible for Science and Technology (contracts
BIL98/37 and BIL01/80). I am indebted to Timothy Vermeir and to Liza Verhoeven for
comments on a former draft of this paper. I am especially indebted to Joke Meheus for help
with the research; some of her comments and counterexamples saved me several days of
work.
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290 DIDERIK BATENS

Actually, I think it is more sensible to read Jaśkowski as about meetings
in which decisions are taken — departmental or faculty meetings provide a
case in point that Jaśkowski certainly was acquainted with.

In [12], Joke Meheus extends Jaśkowski’s approach. By building an adap-
tive logic AJ from Jaśkowski’s D2, she obtains a richer consequence set that
has an appealing interpretation with respect to discussions. In view of ear-
lier work it became clear to me that Meheus’ result may be applied to extend
the Rescher–Manor consequence relations — see Section 2 — and that these
consequence relations as well as their extensions may sensibly sophisticate
Jaśkowski’s analysis of discussions.

In good order, the upshot is this. First, the Rescher–Manor consequence
relations may be characterized as adaptive logics extending D2. This en-
lightens our understanding of discussions. Here is a simple example: if
someone who does not contradict you in the discussion, makes a statement
that you agree to, there is no need for you to repeat that statement. This
is easily understood in terms of Rescher–Manor consequence relations, but
goes beyond Jaśkowski’s analysis. In other words, a discussion cannot be
understood in terms of the statements made by the separate participants. It
has to be described in terms of the interactions between the participants, most
importantly in terms of the consequences of the statements made by groups
of participants that do not contradict each other. Next, Jaśkowski’s D2 as
well as the Rescher–Manor consequence relations may be further extended
in terms of Meheus’ ‘consistent core’. Even if two participants contradict
each other at some point, they need not contradict each other at all points.
Think about a departmental or faculty meeting. Notwithstanding fights about
many points on the agenda, everyone may agree about other points and even
about aspects of (or arguments relevant to) issues on which there is disagree-
ment.

Even combining the approaches of Jaśkowski, Rescher–Manor, and Me-
heus, one does not obtain an adequate analysis of discussions. This is why
the present paper ends with some open problems. At least one of these prob-
lems seems to be adequately resolved by Liza Verhoeven’s [19]. This con-
cerns the point that participants in a discussion may change their position.
On that analysis, the position of some participant cannot always be reduced
to the conjunction of statements made by him or her, but needs to be cal-
culated again whenever the participant’s stand is changed. Again, a realistic
analysis requires that inconsistency is taken to indicate a change in position.1

Some participants do not like the Canossa road, others simply fail to realize

1 Unfortunately, Liza Verhoeven’s approach is restricted to consistent interventions. This
may be repaired, but a complication is involved. Any participant may be confused, but di-
aletheists may be serious in affirming an inconsistent position.
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they changed their minds. That the latter are not very smart will not pre-
vent other participants to rely on their support — meetings are fights about
interests and (sometimes) about justice, not courses in logic.

2. Aim of this Paper

There are many approaches to handling inconsistency. Among the oldest
ones are the Rescher–Manor consequence relations. The underlying idea is
that inconsistent sets of sentences are divided into maximal consistent sub-
sets — henceforth MCS — and that what ‘follows’ from the inconsistent set
is defined in terms of the classical consequences of (a selection of) the MCS.
Some consequence relations were implicitly present already in [14], and
were articulated in [17]. Extensions and applications appeared in [15], [16],
and elsewhere. Later, further consequence relations were defined within the
same approach. Some of these are called “prioritized” because they depend
on non-logical preferences. The others are called “flat”. A survey and com-
parative study is presented in [8] and [9]. The present paper concentrates on
the flat consequence relations: the Free, Strong, Argued, C-Based, and Weak
consequence relation. The prioritized cases are studied in [20]; a generaliza-
tion of them is presented in [18].

Unlike the usual (monotonic) paraconsistent logics — see for example
[13] and [6] — and like inconsistency-adaptive logics — see for example [2]
or [4] — the Rescher–Manor consequence relations do not invalidate rules
of inference of classical logic (CL), but restrict their applications. They
interpret a set of premises ‘as consistently as possible.’ This phrase is not
unambiguous — the different Rescher–Manor consequence relations lead to
different consequence sets (see Section 3) and most inconsistency-adaptive
logics lead to still other consequence sets (see Section 8).

Even if the premise set Γ is inconsistent, its Free, Strong, and C-based
consequence sets are consistent and closed under CL, and its Weak conse-
quence set is in general inconsistent but never trivial. C-Based and Argued
consequence relations (that are of more recent vintage than the others) are
the outcome of attempts to extend the Strong consequence set in an intu-
itively justified way. The C-based consequence set of an inconsistent Γ is
consistent and closed under CL, but intuitively justified applications seem to
require multisets — see Section 3. The Argued consequence set of an incon-
sistent Γ avoids explicit inconsistencies (such as A and ∼A), but does not
warrant consistency and is not closed under CL.

This raises the question whether the Strong consequence relation may be
further extended in a sensible way, which warrants that the result is consis-
tent and closed under CL. I shall show that it can be so extended. A further
question is whether the other consequence relations may be extended along
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292 DIDERIK BATENS

similar lines and with a sensible outcome as a result. I shall show that the an-
swer to this question is positive as well, except for the Argued consequence
relation.

The Rescher–Manor consequence relations are presented in Section 3. I
concentrate on one specific application context: the statements made by par-
ticipants in a discussion. Relying on ideas of Jaśkowski, as presented in [11]
and earlier publications in Polish, the application context is approached in
modal terms. This leads to a characterization of the Rescher–Manor con-
sequence relations as adaptive logics based on S5 — see Section 4. The
Rescher–Manor approach leads to stronger consequence sets than Jaśkow-
ski’s approach. However, in [12] an adaptive logic is studied that extends
Jaśkowski’s D2 in an intuitively attractive way. The same method, and a
similar intuitive justification, extends all but one of the Rescher–Manor con-
sequence relations; the results are presented in Section 5. The outcome for
the Argued consequence relation is studied in Section 6. Dynamic proof
theories for the extended consequence relations are presented in Section 7.
Section 8 contains some comments and open problems.

The results of the present paper are the outcome of research on adaptive
logics (see [2]) and on the characterization of the flat Rescher–Manor con-
sequence relations in terms of adaptive logics (see [3], [7], and [5]). The
present paper is self-contained in that it does not presuppose any knowledge
of adaptive logics. Still, it is useful for the reader to know that, semantically,
adaptive logics select a subset of models in terms of the abnormalities ver-
ified by them — several examples follow.2 The most fascinating aspect of
adaptive logics is their dynamic proof theory. These too proceed in terms of
abnormalities, as we shall see.

3. Definitions of the Consequence Relations

As expected, Γ1 is a MCS of the set of formulas Γ iff (i) Γ1 ⊆ Γ, (ii) Γ1 6`CL
⊥, and (iii) for all A ∈ Γ − Γ1, Γ1 ∪ {A} `CL ⊥. If each member of Γ is
self-inconsistent (for all A ∈ Γ, A `CL ⊥), the set of MCS of Γ is empty. If
Γ is consistent, the set of MCS of Γ is the singleton {Γ}. In all other cases,
Γ has more than one MCS. Members of Γ that belong to all MCS of Γ are
called free members of Γ. The largest MCS of Γ are those the cardinality of
which is not smaller than the cardinality of any other MCS of Γ.

The flat Rescher–Manor consequence relations are easily defined:

Definition 1 : Γ `Free A iff A is a CL-consequence of the free members of Γ.

2 The semantic selection mechanism was first introduced in [1].
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Definition 2 : Γ `Strong A iff A is a CL-consequence of all MCS of Γ.

Definition 3 : Γ `Weak A iff A is a CL-consequence of some MCS of Γ.

Definition 4 : Γ `C -Based A iff A is a CL-consequence of all largest MCS
of Γ.

Definition 5 : Γ `Argued A iff A is a CL-consequence of some MCS of Γ and
∼A is not a CL-consequence of any MCS of Γ.

The set {p ∧ q,∼q, (p ∨ ∼q) ⊃ s} has two MCS, (p ∨ ∼q) ⊃ s is a free
member of it, and s is a Strong consequence of it. The set {p ∧ q,∼q ∧
(p ∨ ∼q) ⊃ s} has also two MCS, but has no free members, and s is not
a Strong consequence of it. This illustrates that the consequence relations
are very dependent on the formulation of the premises. In general, their
suitable application contexts are those in which each premise has a different
source — an MCS then represents a set of jointly consistent sources. An
example of a suitable application is where each premise is the conjunction
of the statements made by one participant in a discussion. I shall concentrate
on this application in the sequel of this paper.

Where each member of Γ represents a participant, a consistent subset of Γ
represents a consistent subgroup (a group of participants whose statements
form a consistent set). An MCS represents a maximal consistent subgroup.
Inconsistent members of Γ represent participants that contradict themselves,
and free members of Γ represent ‘safe’ participants: those that do not contra-
dict any consistent subgroup. There is nothing wrong with the fact that some
participants belong to several (or even all) maximal consistent subgroups. In
discussions (or meetings) where the participants are rather autonomous, it is
customary that some participants do not contradict any of several parties that
contradict each other. Maybe the participant does not hold any view on the
subject of dispute, or considers it unimportant.

Given this setting, it seems sensible to say that something is stated by a
consistent subgroup: the statement is made by a participant that belongs to
the consistent subgroup, and hence is not contradicted by any other member
of that subgroup. In this sense, a MCS is stated by a maximal consistent
subgroup.

Let us now turn to the consequence relations. The Free consequences
follow from statements made by the safe participants, and hence from state-
ments made by all maximal consistent subgroups. Anybody may be taken
to agree about these. There is also agreement on the Strong consequences:
each maximal consistent subgroup makes statements from which they fol-
low. Two different forms of agreement surface here. The Free consequences
follow from statements made by any maximal consistent subgroup and hence
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not contradicted by any consistent subgroup. The Strong consequences are
agreed upon by all consistent subgroups, but each consistent subgroup may
have a different argument for them.

The C-based consequences are agreed upon by the maximal consistent
subgroups that are not outnumbered by any other maximal consistent sub-
group. A few remarks are in place here. First, the agreement is at the level
of the consequences, not at the level of the arguments — compare the two
forms of agreement mentioned in the previous paragraph. Next, the C-based
consequence relation is more naturally applied to multisets than to sets. Mul-
tisets are like sets except in that it matters how many times a member belongs
to the multiset. Thus the multisets {p,∼p}, {p, p,∼p} and {p,∼p,∼p} are
all different and have different C-based consequences. For the other conse-
quence relations, it does not matter whether one considers sets or multisets.
Finally, even in terms of multisets, C-based consequences do not necessar-
ily represent a basis for democratic decision. If ninety-eight participants are
isolated, a two-member consistent subgroup determines the C-based con-
sequences. In the sequel, I shall disregard multisets, leaving their rather
obvious incorporation to the reader.

The Weak consequences follow from the statements made by some consis-
tent subgroup. They represent viewpoints that are defended in the discussion.
These viewpoints are maintained by a consistent subgroup, but are possibly
contradicted by another consistent subgroup.

Argued consequences seem the least interesting with respect to the present
application context — and apparently with respect to all application con-
texts. They represent viewpoints upheld by a consistent subgroup and not
contradicted by any other consistent subgroup. To see that this does not cor-
respond to anything much fascinating, consider a ‘discussion’ between two
participants, one claiming p and the other claiming ∼p. In this case, all of
p ∨ A, p ∨ ∼A, ∼p ∨ A, and ∼p ∨ ∼A are Argued consequences for any
logically contingent A. So, the Argued consequence relation seems to be a
half-hearted halfway house between Strong and Weak consequences. The
concept behind the Argued consequence relation is obviously clear. Yet, the
reasons for considering it as attractive seem to apply even more strongly
to the extension of the Strong consequence relation presented in Section 5.
Moreover, the latter provides a consequence set that is consistent and closed
under CL, and has a straightforward intuitive interpretation.

4. Enters Modal Logic

Long before Nicholas Rescher started working on this problem, Jaśkowski
had devised an approach to discussions. He interprets the set of premises
Γ in modal terms, viz. as Γ♦ = {♦A | A ∈ Γ}. Today one would say
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that a possible world represents a viewpoint, the view of a participant in the
discussion. Jaśkowski defines his D2 as follows:

Γ `D2 A =df Γ♦ `S5 ♦A.
As ♦(p ∧ ∼p) `S5 ♦q, we have p ∧ ∼p `D2 q. Nevertheless, D2 is a
paraconsistent logic (p,∼p 6`D2 q) because it is non-adjunctive (p,∼p 6`D2
p ∧ ∼p).

As I need to choose a S5-semantics, let us settle on a usual worlds seman-
tics: a model M is a quadruple 〈W, D, Q, V 〉 in which W is a set of ‘worlds’,
the domain D is a set, the function Q selects for each world w ∈ W a subset
of D as its domain, and the assignment V interprets the non-logical con-
stants as usually (see [10, Ch. 10] for details). Such a model verifies A iff
V (A, w) = 1 for all w ∈ W .

All Rescher-Manor consequence relations avoid A ∧ ∼A ` B because
self-inconsistent premises are simply disregarded: they do not belong to any
MCS of the premises. The S5-models that verify all consistent members of
Γ♦ will be called C-models of Γ♦. These may themselves be characterized
as minimally abnormal models:3

Definition 6 : Ab
c
Γ
(M) = {A | A ∈ Γ; M 6|= ♦A}

Definition 7 : A S5-model M is a C-model of Γ♦ iff there is no S5-model
M ′ such that Ab

c
Γ
(M ′) ⊂ Ab

c
Γ
(M).

Obviously, each Γ♦ has C-models: there are S5-models such that, for
every consistent A ∈ Γ, V (A, w) = 1 for some world w.

A central difference between Rescher’s approach and Jaśkowski’s approach
is that Jaśkowski invalidates certain CL-rules (for example Adjunction and
Disjunctive Syllogism), whereas Rescher restricts their applications.4 For
example, Rescher–Manor consequence relations allow for applications of
Adjunction, Disjunctive Syllogism, etc., provided the rule is applied to for-
mulas that follow from a specific set of MCS of the premises. To express this
in terms of the S5-semantics, we need to make a selection of the C-models
of Γ♦.

Where W is the set of closed formulas (wffs) of the non-modal language,
a world w of a model will be said to verify ∆ ⊆ W iff V (A, w) = 1 for

3 I shall need several kinds of abnormal parts of models and sets of premises. They will
be distinguished by subscripts and superscripts. The adaptive logics presented here are not in
the standard from of [4]; I return to this in Section 8.

4 Rescher never presented a proof theory. The claim in the text is obvious for simple and
perspicuous examples, but also holds for the dynamic proof theories presented in [3] and [7].
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all A ∈ ∆. The minimally abnormal worlds with respect to Γ are defined as
follows:

Definition 8 : Ab
Γ
(w) = {A ∈ Γ | w does not verify A} .

Definition 9 : A world w of a S5-model M is minimally abnormal with re-
spect to Γ iff no world w′ of any S5-model M ′ is such that Ab

Γ
(w′) ⊂

Ab
Γ
(w).

Definition 10 : A C-model M of Γ♦ is a MA-model of Γ♦ iff all worlds of M
are minimally abnormal with respect to Γ.

Lemma 1 : M is a MA-model of Γ♦ iff each world of M verifies a MCS of
Γ.

Proof. For the left–right direction, consider a world w of a S5-model M
for which ∆ ⊃ {A | A ∈ Γ; w verifies A} is a MCS of Γ. There obvi-
ously is a S5-model M ′ of Γ in which some world w′ verifies ∆. Hence,
Ab

Γ
(w′) ⊂ Ab

Γ
(w), and M is not a MA-model of Γ♦. The right–left direc-

tion is obvious. �

As any MCS of Γ is consistent, any Γ♦ has MA-models.
From the MA-models of Γ♦ we define the RM-models of Γ♦ in terms

of their abnormal parts with respect to the possibility of conjunctions of
premises:

Definition 11 : Ab
∧

Γ
(M) = {{A1, . . . , An} | n > 1; A1, . . . , An ∈ Γ; M 6|=

♦(A1 ∧ . . . ∧ An)} .

Definition 12 : M is a RM-model of Γ♦ iff it is a MA-model of Γ♦ and there
is no MA-model M ′ of Γ♦ such that Ab

∧

Γ
(M ′) ⊂ Ab

∧

Γ
(M) .

In other words, a S5-model M is a RM-model of Γ♦ iff all its worlds
are minimally abnormal with respect to Γ and the model itself is minimally
abnormal with respect to the possibility of conjunctions of members of Γ.

Theorem 1 : M is a RM-model of Γ♦ iff each world of M verifies a MCS of
Γ and each MCS of Γ is verified by some world of M .

Proof. Let M and M ′ be MA-models of Γ♦, whence by Lemma 1 every
world of both M and M ′ verifies some MCS of Γ. Moreover, let every
MCS of Γ be verified by some world of M whereas some MCS of Γ are not
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verified by any world of M ′. It is easily seen that Ab
∧

Γ
(M) is the set of

all inconsistent {A1, . . . , An} ⊂ Γ, whereas Ab
∧

Γ
(M ′) comprises the same

subsets of Γ as well as the MCS of Γ that are not verified by any world of
M ′. The right–left direction is again obvious. �

It is obvious in view of the theorem that each Γ♦ has RM-models. More-
over, as each world that verifies a MCS of Γ, verifies all its consequences,
Theorem 1 together with Definitions 2, 3 and 5 give us:

Theorem 2 : Γ `Weak A iff Γ♦ |=RM ♦A.5

Theorem 3 : Γ `Argued A iff Γ♦ |=RM ♦A and Γ♦ 6|=RM ♦∼A.

Theorem 4 : Γ `Strong A iff Γ♦ |=RM �A.

As all Strong consequences of Γ are verified by all worlds that verify a
MCS of Γ, the proof of the following theorem is obvious:

Theorem 5 : Γ `Strong A iff Γ♦ |=MA �A.

The two other consequence relations require special treatment. The C-
based consequence relation is most easily incorporated by introducing a spe-
cial (but simple) modality �Γ (where Γ ⊂ W). Let #(w, Γ) be the cardinal-
ity of the set of members of Γ verified by w, and let w ∈ m(Γ) iff there is
no w′ ∈ W such that #(w′, Γ) > #(w, Γ). Extend the S5-semantics with
the clause:

V (�ΓA, w) = 1 iff V (A, w′) = 1 for all w′ ∈ m(Γ)

Theorem 6 : Γ `C -based A iff Γ♦ |=RM �ΓA .

For the Free consequence relation, we need a different selection of the
models. First we define the abnormal part of Γ — it obviously is the set of
non-free members of Γ:

Definition 13 : AbF (Γ) = {A | A ∈ Γ; for some B1, . . . , Bn ∈ Γ : B1, . . . ,
Bn 6`CL ⊥ and A, B1, . . . , Bn `CL ⊥}

Next, we define the abnormal part of the models with respect to the neces-
sity of members of Γ:

5
Γ

♦ |=RM ♦A is obviously short for: all RM-models of Γ
♦ verify ♦A.



“02batens”
2005/1/24
page 298

i

i

i

i

i

i

i

i

298 DIDERIK BATENS

Definition 14 : Ab
�
Γ
(M) = {A | A ∈ Γ; M 6|= �A}

Definition 15 : M is a F-model of Γ♦ iff M is a C-model of Γ♦ and Ab
�
Γ
(M)

= AbF (Γ).

The F-models of Γ♦ are all S5-models that verify ♦A for all A ∈ Γ and
�A for all A that are free members of Γ. So, it is obvious that any Γ♦ has
F-models, and that:6

Theorem 7 : Γ `Free A iff Γ♦ |=F �A.

Having defined all Rescher–Manor consequence relations in terms of S5,
I now move on to the promised extensions. I shall start with the motivation
that leads to the extensions.

5. The Extensions

In this section I disregard Argued consequences altogether, postponing the
discussion of their ‘extension’ to Section 6.

Suppose that a participant in a discussion states p∧q, that p is contradicted
by another participant stating, for example, ∼p ∧ r, but that q is not contra-
dicted by any participant. As some consistent participant stated p∧q, and no
participant contradicted q, it seems sensible to conclude that all participants
implicitly agree on q.

The underlying idea is that, in a discussion, one should contradict state-
ments one does not agree about. The fact that one contradicts another partic-
ipant at one point, does obviously not entail that one disagrees at all points.
Of course, some participants may consider a statement as unimportant, and
for this reason not contradict it. But this situation is similar to a case where
some participants defend a viewpoint they do not subscribe to. The aim of
the present paper does not (and cannot) relate to the convictions of the par-
ticipants, but to the statements they make (or implicitly support) during the
discussion.

Handling implicit agreement is somewhat touchy. As any premise is a
conjunction of the statements made by a single participant, the participant
who stated p ∧ q may have stated p and q separately, but may also have
stated their conjunction. In the latter case, the participant can only be said to
have stated q implicitly: q is derivable from the statement made. But then,

6 A world of a F-model of Γ
♦ need not verify a MCS of Γ. Hence, if Γ has no free

members, only S5-valid formulas are necessary in some F-models of Γ
♦.
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the participant also implicitly stated p∨ r. I supposed that some participants
contradicted p. If every participant implicitly agrees to p ∨ r (because no
participant contradicted it), then the participants that contradict p implicitly
agree to r. But by the same reasoning they implicitly agree to ∼r.

There is an obvious solution to this problem (and it is well known from
adaptive logics). The point is (i) that one should not concentrate on implicit
agreements, but on explicit disagreements, (ii) that disagreements may be
‘connected’, and (iii) that one should express these connections in terms of
the simplest formulas that cause the disagreements. Let me explain.

There is disagreement about p if both ♦p and ♦∼p are derivable from the
consistent members of Γ♦. Suppose, however, that some participant states
p, another q, and a third ∼p∨∼q. From ♦p, ♦q, ♦(∼p∨∼q) follows (♦p∧
♦∼p)∨ (♦q ∧♦∼q), whereas neither disjunct follows. This is what I meant
by a connected disagreement.

Consider the connected disagreement (♦(p ∧ q) ∧ ♦∼(p ∧ q)) ∨ (♦(r ∨
s) ∧ ♦∼(r ∨ s)). It is easily seen that this entails a connected disagree-
ment in terms of simpler formulas: (♦p ∧ ♦∼p) ∨ (♦q ∧ ♦∼q) ∨ (♦r ∧
♦∼r) ∨ (♦s ∧ ♦∼s). This disjunction will be called a disjunction of abnor-
malities, and will be abbreviated by Dab(p, q, r, s). To be more precise, a
Dab-formula (disjunction of abnormalities) is a disjunction of formulas of
the form ∃(♦A ∧ ♦∼A) in which A is a primitive formula (a formula con-
taining no logical symbol except for identity) and ∃ abbreviates an existential
quantifier over every formula free in A. In the expression Dab(A1, . . . , An),
the Ai are called the factors of the Dab-formula.

For people not acquainted with adaptive logics, the following example will
clarify the complication required by the predicative case.

Example 1. Let Γ = {(∀x)(Px ∨ Qx), (∃x)(∼Px ∧ ∼Qx)}. The MCS are
{(∀x)(Px∨Qx)} and {(∃x)(∼Px∧∼Qx)}. There are no closed formulas
A1, . . . , An such that Γ♦ `S5 Dab{A1, . . . , An}. However, there are open
such formulas. Indeed Γ♦ `S5 Dab{Px, Qx}, that is Γ♦ `S5 (∃x)(♦Px ∧
♦∼Px) ∨ (∃x)(♦Qx ∧ ♦∼Qx).

As Dab(∆) `S5 Dab(∆ ∪ Θ) (where ∆ and Θ are finite sets), the deriv-
ability of a Dab-formula from the consistent members of Γ♦ does not war-
rant a connected disagreement about all factors of the Dab-formula. This is
why one needs to concentrate on the minimal Dab-consequences of Γ♦.

Definition 16 : Dab(∆) is a minimal Dab-consequence of Γ♦ iff Γ♦ `S5
Dab(∆) and there is no Θ ⊂ ∆ such that Γ♦ `S5 Dab(Θ) .

The factors of the minimal Dab-consequences of Γ♦ are all suspect: there
is disagreement about at least one factor of every minimal Dab-consequence
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of Γ♦, and it is not determined which one. In line with previous work, all
these factors will be called unreliable (rather than suspect).

Definition 17 : U(Γ), the set of formulas that are unreliable with respect to
Γ, is the set of factors of the minimal Dab-consequences of Γ♦.

Remark that U(Γ) ⊆ Fp, where Fp is the set of primitive formulas. The
same idea gives us the abnormal part of a model with respect to primitive
formulas:

Definition 18 : Abp(M) = {A ∈ Fp | M |= ∃(♦A ∧ ♦∼A)} .

We now select the models in which only unreliable primitive formulas
behave abnormally:

Definition 19 : M is a RM*-model of Γ♦ iff it is a RM-model of Γ♦ and
Abp(M) ⊆ U(Γ) .

Definition 20 : M is a F*-model of Γ♦ iff it is a F-model of Γ♦ and Abp(M) ⊆
U(Γ) .

These definitions enable us to define the extended Rescher–Manor conse-
quence relations:

Definition 21 : Γ `Weak? A iff Γ♦ |=RM* ♦A .

Definition 22 : Γ `Strong? A iff Γ♦ |=RM* �A .

Definition 23 : Γ `C-based? A iff Γ♦ |=RM* �ΓA .

Definition 24 : Γ `Free? A iff Γ♦ |=F* �A .

Example 2. Let Γ = {p∧ q,∼p∧ (∼q ∨ r), s}. The MCS of Γ are {p∧ q, s}
and {∼p∧ (∼q∨ r), s} and U(Γ) = {p}. There are five kinds of worlds that
verify one of the MCS. They may be characterized as follows with respect to
the letters p, q, r, and s:

(1) p, q, r, s
(2) p, q,∼r, s
(3) ∼p, q, r, s
(4) ∼p,∼q, r, s
(5) ∼p,∼q,∼r, s
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Of each kind of worlds, some verify t and others ∼t, and similarly for all
other (predicative) primitive formulas (that are independent of previously
considered ones).

All RM-models of Γ♦ have worlds of kinds 1 and/or 2 as well as worlds of
kinds 3 and/or 4 and/or 5. It is easily seen that RM*-models have only worlds
of kinds 1 and 3. Indeed, these are the only models in which Abp(Γ) ⊆
U(Γ) = {p}. For any other primitive formula A, the RM*-models of Γ
verify either �A or �∼A, and hence A 6∈ Abp(Γ). As some of them verify
�A and others �∼A, neither of these formulas is verified by all RM*-models
of Γ.

Let CnFree(Γ) = {A | Γ `Free A}, and similarly for the other conse-
quence relations.

Theorem 8 : For all Γ, CnFree?(Γ), CnStrong?(Γ), as well as CnC -based?(Γ)
are consistent sets.

Proof. The consequence sets comprise the formulas verified by all worlds of
a set of S5-models. Hence they are consistent. �

Theorem 9 : For all Γ, CnFree?(Γ), CnStrong?(Γ), as well as CnC -based?(Γ)
are closed under CL.

Proof. As for the previous theorem. �

Theorem 10 : CnFree(Γ) ⊆ CnFree?(Γ) for all Γ, and CnFree(Γ) ⊂
CnFree?(Γ) for some Γ. Similarly for the other extended consequence re-
lations.

Proof. That CnFree(Γ) ⊆ CnFree?(Γ) for all Γ is obvious in view of the fact
that the F*-models of Γ♦ are a subset of the F-models of Γ♦. By the same
reasoning, CnStrong(Γ) ⊆ CnStrong?(Γ), CnWeak (Γ) ⊆ CnWeak?(Γ), and
CnC -based (Γ) ⊆ CnC -based?(Γ).

Example 2 shows that the inclusions are strict for some Γ: q and r are ele-
ments of CnFree?(Γ)−CnFree(Γ), CnStrong?(Γ)−CnStrong(Γ), CnWeak?(Γ)
− CnWeak (Γ), and CnC -based?(Γ) − CnC -based (Γ). �

In Example 2, the RM*-models of Γ are those for which Abp(Γ) = {p}.
This derives from the fact that the only minimal Dab-consequence of Γ is
♦p∧♦∼p. It is instructive to consider an example in which there is a depen-
dence between the abnormalities.
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Example 3. Let Γ = {∼p ∧ s,∼q, p ∨ q, r}. The MCS are {∼p ∧ s,∼q, r},
{∼p ∧ s, p ∨ q, r} and {∼q, p ∨ q, r}. The only minimal Dab-consequence
of Γ is Dab{p, q} and U(Γ) = {p, q}. There are three kinds of worlds that
verify one of the MCS:

(1) p,∼q, r, s
(2) p,∼q, r,∼s
(3) ∼p, q, r, s
(4) ∼p,∼q, r, s

The RM-models of Γ♦ have worlds of kinds 1 and/or 2, worlds of kind 3,
as well as worlds of kind 4. RM*-models have only worlds of kinds 1, 3,
and 4. Indeed, these are the only models in which Abp(Γ) ⊆ U(Γ) =
{p, q}. Remark that s is a Weak consequence, but not a Free, Strong, or
C-based consequence of Γ. However, s is a Free?,7 Strong?, and C-based?

consequence of Γ.

As appears from Examples 2 and 3, the restriction to RM*-models war-
rants that all primitive formulas that do not belong to U(Γ) are either all true
in all worlds of the model or all false in all worlds of the model. If, for some
primitive formula A 6∈ U(Γ), Γ♦ does not have RM-models that verify �A
(respectively �∼A), then all RM*-models verify �∼A (respectively �A),
and hence ∼A (respectively A) is a Free?, Strong?, and C-based? conse-
quence of Γ. It is interesting to see that this leads to a stepwise restriction on
the models. In Example 2, U(Γ) = {p}. Some RM-models of the premises
verify �q, and none verify �∼q. The effect is that all RM*-models of the
premises verify �q. Among RM-models of the premises that verify �q,
some verify �r and none verify �∼r. As a result, all RM*-models of the
premises verify �r. So, notwithstanding the fact that some RM-models of
the premises verify �∼r, all RM*-models of the premises verify �r.

I now return to the considered application context, and spell out the precise
interpretation of the extension. What is clear by now is this: if A is derivable
from a participant’s claims, and all primitive subformulas in A are reliable
(not suspect), then A is implicitly agreed upon by all participants. The re-
liability of the primitive subformulas functions here as an explication of the
vague phrase “is contradicted.” Example 3 nicely illustrates why we need to
proceed in terms of Dab-formulas — disjunctions of abnormalities — rather
than in terms of abnormalities. In that example, there is disagreement about
either p or q, but we do not have sufficient information to decide about which
one, and hence both p and q are unreliable.

7 That s is a Free?-consequence of Γ is mentioned here for the sake of completeness, but
cannot be seen from the listed kinds of worlds. The F-models of Γ need not verify a MCS of
Γ, but all verify �r — this leaves us with eight kinds of worlds of the sort mentioned in the
list. The F*-models of Γ moreover all verify �s — this leaves us with four kinds of worlds.
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The claims implicitly agreed upon by all participants should obviously be
closed under CL and they are, as appears from Theorem 9. This is illus-
trated by Example 2: the participants implicitly agree on r because it is a
CL-consequence of two formulas, q and ∼q ∨ r, that are asserted by dif-
ferent participants, but that all participants implicitly agree upon. However,
implicit agreement cannot be expressed in terms of the participants’ claims
only. Consider the following example.

Example 4. Let Γ = {p∧q,∼p, s∧(p∨r)}. The MCS are {p∧q, s∧(p∨r)}
and {∼p, s ∧ (p ∨ r)}, and U(Γ) = {p}. The kinds of worlds:

(1) p, q, r, s
(2) p, q,∼r, s
(3) ∼p, q, r, s
(4) ∼p,∼q, r, s

The RM-models of Γ♦ have worlds of kinds 1 and/or 2 as well as worlds of
types 3 and/or 4. RM*-models have only worlds of types 1 and 3. Remark
that q and r are not Free, Strong, or C-based consequences of Γ, but they are
Free?, Strong?, and C-based? consequences of Γ.

The interesting formula is r. No participant states r. The only participant
that even mentions r is the one stating s ∧ (p ∨ r).8 But that formula and
its conjunct p ∨ r contain the unreliable primitive subformula p. It follows
that there is no implicit agreement on p ∨ r. So, where does the implicit
agreement on r derive from? The answer is simple: the consistent subgroup
represented by the MCS {∼p, s ∧ (p ∨ r)} states r.

So, in line with the Rescher–Manor approach, the extensions proceed in
terms of MCS. The set of formulas implicitly agreed upon by all participants
is the CL-deductive closure of the unsuspect formulas (those that contain no
unreliable primitive subformulas) that are (implicitly or explicitly) stated by
a consistent subgroup.

Incidentally, this is a major difference with the adaptive logic AJ that Joke
Meheus defines from D2 in [12].9 There, the ‘consistent core’ is the CL-
deductive closure of the unsuspect formulas stated by some participant —
this does not include r in the last example. In the present paper, the consis-
tent core is the CL-deductive closure of the unsuspect formulas stated by a
consistent subgroup.

8 There might be several participants stating precisely the same things. Whether this is
so would only show in a multiset.

9 There are some minor differences, for example that AJ, in line with D2, delivers trivi-
ality if there is a self-inconsistent premise.
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6. The Argued Consequence Relation

We have already seen that the Argued consequence relation warrants neither
consistency nor closure under CL. Of course, it is simple enough to define
an ‘extension’ of it:

Definition 25 : Γ `Argued? A iff Γ♦ |=RM* ♦A and Γ♦ 6|=RM* ♦∼A .

However, the Argued? consequence relation does not always extend the
Argued consequence relation as appears from:

Example 5. Let Γ = {p ∧ q,∼p ∧ (r ∨ ∼q)}. The MCS are {p ∧ q} and
{∼p∧ (r∨∼q)}, and U(Γ) = {p}. The types of worlds if we consider only
the letters p, q, and r:

(1) p, q, r
(2) p, q,∼r
(3) ∼p, q, r
(4) ∼p,∼q, r
(5) ∼p,∼q,∼r

The RM-models of Γ♦ have worlds of types 1 and/or 2 as well as worlds of
types 3 and/or 4 and/or 5. RM*-models have only worlds of types 1 and 3.

The selection leads to a gain: r is not an Argued consequence, but is an
Argued?-consequence of Γ. The selection also leads to a loss: ∼p ∨ ∼r is
an Argued consequence, but is not an Argued?-consequence of Γ.

In other words, we do not have CnArgued (Γ) ⊆ CnArgued?(Γ). Something
very simple is going on here. A is an Argued consequence of Γ iff A is and
∼A is not a Weak consequence of Γ; A is an Argued? consequence of Γ iff
A is and ∼A is not a Weak? consequence of Γ. As the Weak? consequence
in general extends the Weak consequence set, the transition from Argued-
consequences to Argued?-consequences involves a gain as well as a loss.

All this is not very important for the present application context. I did not
find any sensible interpretation for the Argued consequence relation anyway,
and the same holds for the Argued? consequence relation. Moreover, the
gain obtained by the transition from the Strong consequence relation to the
Strong? consequence relation, seems to offer everything one might hope to
obtain from the Argued consequence relation. Another aspect that makes
Strong? consequence sets interesting is that, unlike Argued and Argued?

consequence sets, they are, for any set of premises, consistent and closed
under CL.

In the following section, where I list the dynamic proof theories for the
original and extended Rescher–Manor consequence relations, I include the
proof theory for the Argued and Argued? consequence relations.
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7. Dynamic Proof Theory

For those not familiar with dynamic proofs, I briefly mention some basics.
A line in a proof consists of five elements: (i) a line number, (ii) the wff
derived, (iii) the numbers of the lines from which the wff is derived, (iv) the
rule applied, and (v) the condition of the line (usually a set of formulas).
A line is called unconditional iff its condition is ∅; otherwise it is called
conditional.

Apart from the rules for adding lines to a proof, there is a definition of
the lines that are marked at a stage of the proof. Whether a line is marked
depends on its condition and on the formulas derived in the proof at the stage.

A formula A is finally derived at a stage iff it occurs in an unmarked line i
at the stage and, whenever i is marked in an extension of the proof, it is non-
marked in a further extension. Γ `L A denotes that A is finally derivable
from Γ by the adaptive logic L. That Γ `L A iff Γ |=L A indicates that
the proof theory is sound and complete with respect to the semantics. To
save some space, I skip the soundness and completeness proofs. They are
straightforward in view of previous results on adaptive logics.

Let
∧

(Γ) denote the conjunction of the members of the finite set Γ.
Let us first consider the original Rescher–Manor consequence relations.

The condition of a line is always a set of premises. The common rules are
the premise rule and the unconditional rule (which does not introduce a new
condition):
PREM Any ♦A ∈ Γ♦ may be added to the proof with the justification

PREM and {A} as its condition.
RU If B1, . . . , Bn `S5 A (n ≥ 0), and B1, . . . , Bn occur in the proof

with, respectively, the conditions ∆1, . . . , ∆n, then one may add A
to the proof with the condition ∆1 ∪ . . . ∪ ∆n.

That even premise lines are conditional is the result of the fact that A ∈ Γ
is not even a Weak consequence of Γ unless A is self-consistent. If n = 0 in
RU, A is a S5-theorem and hence is derivable on an unconditional line.

For the Weak consequence relation, we need the following conditional
rule:
RCW From ♦A on the condition ∆ and ♦B on the condition Θ, to derive

♦(A ∧ B) on the condition ∆ ∪ Θ.
A line with ∆ as fifth element is marked iff ∼♦

∧
(∆) has been derived on

an unconditional line — in other words, iff ∼♦
∧

(∆) is a S5-theorem.
In view of Theorem 2, we are only interested in derived formulas of the

form ♦A. It is easily seen (i) that such a formula is derivable iff it is deriv-
able on a condition {B1, . . . , Bn} ⊆ Γ, and (ii) that this is the case iff
B1, . . . , Bn `CL A. The line will not be marked in any extension of the proof
iff {B1, . . . , Bn} is consistent, in other words iff A is a CL-consequence of
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a MCS of Γ. I leave it to the reader to apply the same form of analysis to the
subsequent proof theories.10

For the Strong consequence relation, the proofs are governed by RCW
together with11

RCS From ♦A on the condition ∆, to derive �A on the condition ∆.
It is useful to apply the following derivable thickening rule:

Th From ♦A on the condition ∆, to derive ♦A on the condition ∆∪Θ.
Marking is most easily introduced in two steps. A line is W-marked iff it

is marked for the Weak consequence relation. A W-unmarked line at which
�A has been derived by RCS on a condition ∆ is S-marked iff, for some
condition Θ of a W-unmarked line, there is no W-unmarked line at which
�A has been derived on condition Θ ∪ Θ′ (for some Θ′ ⊇ ∅).12 Any line
that is derived from a S-marked line is itself S-marked. A line is marked iff
it is either W-marked or S-marked.

For the Free consequence relation, the proofs are governed by RCW to-
gether with
RCF From ♦A on the condition ∆, to derive �A on the condition ∆.

A line is W-marked iff it is marked for the Weak consequence relation. A
line at which �A has been derived on the condition ∆ is F-marked iff there
is a Θ ⊆ Γ such that ∼♦

∧
(Θ ∪ ∆) occurs in the proof in an unconditional

line, and ∼♦
∧

(Θ) does not occur in the proof in an unconditional line. Any
line that is derived from a F-marked line is itself F-marked. A line is marked
iff it is either W-marked or F-marked.

For the C-based consequence relation, the proofs are governed by RCW
and RCC, which actually is just like RCS unless that the modality is differ-
ent:
RCC From ♦A on the condition ∆, to derive �ΓA on the condition ∆.

10 A central difference is that, although there is no positive test for the Weak consequence
relation, it is monotonic. The other consequence relations are non-monotonic.

11 Although the rule RCS does not explicitly introduce a new condition, it may be consid-
ered as a conditional rule. Indeed, lines at which formulas of the form �A are derived are
subject to stricter marking conditions — see below in the text — than lines at which formulas
of the form ♦A are derived. Similarly for other rules below.

12 Hence, the line will not be S-marked in some extension of the proof iff A is a CL-
consequence of each MCS of Γ. Most lines with �A as second element are S-marked when
they are introduced; they are unmarked if the condition is fulfilled at a later stage. If a further
premise is introduced in the proof by PREM, all lines in which �A was derived will be S-
marked. The marks may be removed after an application of rule Th, but some of the lines
may be W-marked at a later stage of the proof.
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Here too, the derivable thickening rule Th is useful. Where B is a wff, let
#Γ(∆) = 0 iff ∆ * Γ; otherwise let #Γ(∆) be the cardinality of ∆ .

A line is W-marked iff it is marked for the Weak consequence relation. A
W-unmarked line at which �ΓA has been derived by RCC on some condition
∆, is C-marked iff, for some condition Θ of a non-W-marked line in the
proof, (i) #Γ(∆) < #Γ(Θ) or (ii) #Γ(∆) = #Γ(Θ) and �A has not been
derived on the condition Θ. Any line that is derived from a C-marked line is
itself C-marked. A line is marked iff it is either W-marked or C-marked.

For the Argued consequence relation, the proofs are governed by RCW.
A line is W-marked iff it is marked for the Weak consequence relation.

If two lines that are not W-marked, contain ♦A and ♦∼A as their second
elements respectively, then both lines are A-marked. A line is marked iff it
is either W-marked or A-marked.

We now come to the extended consequence relations. In these proofs,
the condition is a couple of sets: the first set contains premises, the second
primitive formulas.

The common rules are
PREM? Any ♦A ∈ Γ♦ may be added to the proof with the justification

PREM and {〈A, ∅〉} as its fifth element.
RU? If B1, . . . , Bn `S5 A (n ≥ 0), and B1, . . . , Bn occur in the proof

with, respectively, the conditions 〈∆1, Θ1〉, . . . , 〈∆n, Θn〉, then one
may add A to the proof with the condition 〈∆1 ∪ . . . ∪ ∆n, Θ1 ∪
. . . ∪ Θn〉.

Let p(A) be the set of all primitive formulas that occur in A. For the Weak?

consequence relation, we need the following conditional rules:
RCW? From ♦A on the condition 〈∆, Θ〉 and ♦B on the condition 〈∆′, Θ′〉,

to derive ♦(A ∧ B) on the condition 〈∆ ∪ ∆′, Θ ∪ Θ′〉.
RCA From ♦A on the condition 〈∆, Θ〉 to derive �A on the condition

〈∆, Θ ∪ {p(A)}〉.
At any stage of the proof, zero or more Dab-formulas are derived in an

unmarked line on a condition that has an empty second element. Some of
these are minimal at the stage. Let Us(Γ

♦) be the set of the factors of the
minimal Dab-formulas at stage s.

A line with condition 〈∆, Θ〉 is marked iff (i) ∼♦
∧

(∆) has been derived
on an unconditional line, or (ii) Θ ∩ Us(Γ

♦) 6= ∅.
Obviously (i) corresponds to W-marking. The effect of (ii) is that lines

at which RCA is applied and lines derived from such lines are marked be-
cause they presuppose that the members of Θ are reliable with respect to Γ♦

whereas they actually are not. If �A is derived in an unmarked line by RCA,
then, for any derived ♦B, ♦(A ∧ B) is derivable. RCA and the connected
marking rule warrant that, if someone affirmed A and no one denied it, then
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A belongs to the consistent core (is implicitly accepted by all parties in the
discussion).

For the Strong? consequence relation, the specific rules are RCW? and
RCA together with
RCS? From ♦A on the condition 〈∆, Θ〉, to derive �A on the condition

〈∆, Θ〉.
The rule Th? is derivable and useful:

Th? From ♦A on the condition 〈∆, Θ〉, to derive ♦A on the condition
〈∆ ∪ ∆′, Θ〉.

A line is W?-marked iff it is marked for the Weak? consequence relation.
A W?-unmarked line at which �A has been derived on a condition 〈∆, Θ〉,
is S?-marked iff, for some condition 〈∆′, Θ′〉 of a W?-unmarked line, there
is no W?-unmarked line at which �A has been derived on a condition 〈∆′ ∪
∆′′, Θ′′〉 (for some ∆′′ ⊇ ∅ and Θ′′ ⊇ ∅). Any line that is derived from a S?-
marked line is itself S?-marked. A line is marked if it is either W?-marked
or S?-marked.

For the Free? consequence relation, the proofs are governed by RCW? and
RCA together with
RCF? From ♦A on the condition 〈∆, Θ〉, to derive �A on the condition

〈∆, Θ〉.
A line is W?-marked iff it is marked for the Weak? consequence relation.

A W?-unmarked line at which �A has been derived on the condition 〈∆, Θ〉
is F?-marked iff there is a ∆′ ⊆ Γ such that ∼♦

∧
(∆′ ∪ ∆) occurs in the

proof on the condition 〈∅, ∅〉, and ∼♦
∧

(∆′) does not occur in the proof on
the condition 〈∅, ∅〉. Any line that is derived from a F?-marked line is itself
F?-marked. A line is marked if it is either W?-marked or F?-marked.

For the C-based? consequence relation, the proofs are governed by RCW?,
RCA, and RCC?, which again is just like RCS? except for the modality:
RCC? From ♦A on the condition 〈∆, Θ〉, to derive �ΓA on the condition

〈∆, Θ〉.
A line is W?-marked iff it is marked for the Weak? consequence relation.

A W-unmarked line in which �ΓA has been derived by RCC? on a condition
〈∆, Θ〉 is C?-marked iff, for some condition 〈∆′, Θ′〉 of a W?-unmarked line
in the proof, (i) #Γ(∆) < #Γ(∆′) or (ii) #Γ(∆) = #Γ(∆′) and �A has
not been derived on some condition 〈∆′, Θ′′〉 (that is: for that ∆′ and for
an arbitrary Θ′′). Any line that is derived from a C?-marked line is itself
C?-marked. A line is marked if it is either W?-marked or C?-marked.

For the Argued? consequence relation, the proofs are governed by RCW?

and RCA.
A line is W?-marked iff it is marked for the Weak? consequence relation. If

two W?-unmarked lines contain, respectively, ♦A and ♦∼A as their second
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elements, then both lines are A?-marked. A line is marked if it is either
W?-marked or A?-marked.

The marking of lines in proofs for the extended consequence relations de-
pends in part on the second element of the conditions of lines. This is listed
in (ii) of the marking definition for the Weak? consequence relation. Apart
from this, the marking definitions for the extended consequence relations are
identical to those for the original ones, except that the formulation is more
complex because the condition now is a couple of sets. In other words, the
extensions depend fully on RCA and on W?-marking.

There is no room for mentioning derivable rules (and shortcuts for mark-
ing) in this paper. As usual, these have the advantage to make the proof
heuristics more interesting and perspicuous.

8. Some Comments and Open Problems

We have seen that the starred consequence relations extend the original ones
(except for the Argued consequence relation). From a semantic point of
view, they reduce to a further selection of the models. From a proof theoretic
point of view, they introduce a second condition and a related marking rule.
Moreover, there is a clear and intuitive justification for the extensions (in
terms of a consistent core). So, both from a technical and from a conceptual
point of view, the extensions seem to strengthen the original Rescher–Manor
consequence relations in a natural way (except for the Argued consequence
relation).

Readers familiar with adaptive logics will have noticed that the specific
selection that leads to the extended consequence relations is based on the
Reliability strategy and not on the Minimal Abnormality strategy. This leads
to easier definitions of marked lines in the proof theories, but there is also a
philosophical point to the matter. As is well known, the Minimal Abnormal-
ity strategy leads to a richer consequence set for very specific cases. Here is
an example in which the difference matters.

Example 6. Let Γ = {∼p ∧ ∼q, (p ∨ q) ∧ (p ∨ r) ∧ (q ∨ r)}. The MCS are
{∼p∧∼q} and {(p∨ q)∧ (p∨ r)∧ (q ∨ r)}, and U(Γ) = {p, q}. There are
six kinds of worlds that verify one of the MCS:

(1) ∼p,∼q, r
(2) ∼p,∼q,∼r
(3) p, q, r
(4) p, q,∼r
(5) p,∼q, r
(6) ∼p, q, r
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The RM-models of Γ♦ have worlds of types 1 and/or 2 as well as worlds of
types 3 and/or 4 and/or 5 and/or 6. RM*-models have only worlds of types 1
together with worlds of type 3 and/or 5 and/or 6 — all of these verify r — or
worlds of types 2 and 4 — these verify ∼r. I leave it to the reader to check
that r does not belong to any of the extended consequence sets.

If the RM*-models are selected by the Minimal Abnormality strategy, only
models with Abp(M) = {p} or Abp(M) = {q} will be selected. Hence
some RM*-models contain only worlds of types 1 and 5, and the others only
worlds of types 1 and 6. But then all selected models verify �r as well as
�(∼p ∨ ∼q).

It can easily be shown that, if the extended consequence sets are defined
in terms of the Minimal Abnormality strategy, then they are supersets, and
for some premises proper supersets, of the extended consequence sets as
defined above in terms of the Reliability strategy. While there is no doubt
about this, the problem is whether the further extension is justified. Consider
again Example 6. The Minimal Abnormality strategy supposes that the two
participants disagree about either p or q, but not about both. Is it justified to
suppose so? The second participant states that at least two of {p, q, r} are
true. This is the strongest way, within the present framework, in which the
second participant can express not to exclude p ∧ q.

I shall leave the matter here. I do not suggest that further reflection will
settle the question about the suitability of the Minimal Abnormality strategy.
It rather seems that the relevant arguments refer to features that cannot be
expressed within the present framework — see below.

Several open problems deserve to be mentioned. There may be simpler cri-
teria for selecting models. More specifically, there may be criteria that select
the RM*-models of Γ directly from the MA-models of Γ, or even from the
C-models of Γ, or — the nicest alternative — directly from the S5-models.
Similarly for the F*-models of Γ. Such selection criteria for models will have
their counterparts in one-shot marking definitions. A different open problem
is whether the present results constitute a maximum. Can the extended con-
sequence relations be further extended in such a way that the consequence
sets are consistent and closed under CL, and that the extension is intuitively
justified?

Rephrasing the logics presented in this paper in the standard format of
[4] would require that the paper be thoroughly rewritten. Except for the
C-Based consequence relation, the original ones are characterized by adap-
tive logics in standard format in [3], where the premise set Γ is ‘translated’
to {∼¬A | A ∈ Γ}. Except for the C?-Based consequence relation, the
extended consequence relations can be characterized by adaptive logics in
standard format under the present translation of Γ to {♦A | A ∈ Γ}. How-
ever, this requires a rather different approach from the one in the present
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paper. I found no way to present these adaptive logics as natural extensions of
those for the original Rescher–Manor consequence relations in terms of that
approach — and this was the main point I tried to make in the present paper.

An open problem of a very different sort concerns a more realistic ap-
proach to explicit and implicit agreements in discussions. This requires at
least the three following changes to the present framework. First, it should
be possible for the participants to express lack of knowledge or even lack of
agreement. In the present framework, a participant can only express (direct
or connected) disagreement with respect to a statement by another partici-
pant. In real life discussions, participants often express their lack of support
for some statement, even if they explicitly refuse to commit themselves to
any (direct or connected) disagreement about the statement. If a participant
states q and another participant states ∼q ∨ r, but refuses commitment to q,
then r does not belong to the consistent core. Next, it is required that the
statements made by a participant are separated (instead of being given as a
conjunction) and that the temporal order of all the statements made during
the discussion is taken into account. For example, if one participant states
p, and another immediately thereafter states p ∨ q, then the latter statement
apparently expresses a refusal to commit to p. If the temporal order is re-
versed, this needs not be the case: the participant who now first states p ∨ q
may consider the participant stating p as an authority on the matter, and
hence agree with p. Finally, one should take into account that participants
may change their minds. Here too the temporal order is essential. As a result,
self-inconsistent participants will not be disregarded. Self-inconsistency will
rather lead to a revision of a participant’s claims. As the present framework
(justly and importantly) involves consistent subgroups, this revision will be
more sophisticated than the usual mechanisms for belief revision.

As a final remark, let me stress that it was not my intention to defend
the Rescher–Manor consequence relations as general inconsistency handling
mechanisms. As I have stressed time and again, their application contexts
are very restricted. They are justly applied to discussions of the type consid-
ered, because in this application context the premises may be constructed as
representing clearly distinct sources.

Centre for Logic and Philosophy of Science
Universiteit Gent, Belgium
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