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PARACONSISTENT COMPATIBILITY∗

JOKE MEHEUS†

Abstract
In this paper, I present two adaptive logics for paraconsistent com-
patibility. The consequence relation defined by these logics leads
from a (possibly inconsistent) set of premises to all the sentences
that are compatible with them. Their proof theory is dynamic, but is
proven sound and complete with respect to a static semantics. For
the consistent case, both logics lead to exactly the same results as
the logics for classical compatibility that were presented in [11].

It is shown that paraconsistent compatibility cannot be defined
with respect to a monotonic paraconsistent logic, but only with re-
spect to an inconsistency-adaptive logic. The paper contains modal
versions of two well-studied inconsistency-adaptive logics. These
modal versions form the basis for the logics for paraconsistent com-
patibility, but are also interesting with respect to other applications.

1. Introduction

Over the last two decades, philosophers of science as well as logicians and
computer scientists showed an ever growing interest in the dynamics of rea-
soning. Obvious examples include the literature on belief change and that
on non-monotonic logics. Other examples are related to the fact that, in a
multitude of domains, attention shifted from the statical properties of the
products of reasoning processes to the dynamical properties of the reasoning
processes themselves. In erotetic logic, for instance, the focus is no longer
on the abstract relations between questions and answers, but on the way in
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which questions are generated (and suppressed) by sets of declarative sen-
tences and/or other questions. Analogously, in the literature on explanation
and on induction, considerable attention is now paid to hypothesis formation
and hypothesis withdrawal.

What all these studies have in common is that (explicitly or implicitly)
the concept of compatibility plays a key role in it. For instance, the ques-
tion whether or not A is compatible with one’s beliefs makes the difference
between belief expansion and belief revision. Also, a minimal requirement
for a question to be generated from a set of declarative sentences is that its
presuppositions are not incompatible with them, and an important constraint
for inductive hypotheses is that they are compatible with the available data
as well as with each other.

In [11], two logics are presented, called COM and COM*, that capture
the concept of classical compatibility. Thus, where CL stands for Classical
Logic, both logics lead from a set of sentences Γ to the set of sentences
that are CL-compatible with Γ. A sentence A is said to be CL-compatible
with a set of premises Γ iff Γ 6`CL ∼A. What this comes to, semantically,
is that A is true in some CL-model of Γ. The only difference between the
logics concerns the way in which they handle inconsistent sets of premises.
According to COM, everything is compatible with an inconsistent set of
premises, according to COM* nothing is compatible with it.

The importance of COM and COM* is that they offer a proof theory for
compatibility. They thus allow one to reason from a set of premises to the
sentences that are compatible with them. What is special about the proof
theory is that it is dynamic. This is related to the fact that compatibility
is non-monotonic (q is compatible with {p}, but not with {p, ∼q}), and
that, moreover, at the predicative level, there is no positive test for it. As is
shown in [11], the dynamic proof theory warrants that, even for undecidable
fragments, one obtains a sensible and rational estimate of which sentences
are compatible with the Γ under consideration.

To make matters as transparent as possible, both logics are formulated in
a modal way. Where Γ� stands for {�A | A ∈ Γ}, Γ� `COM* ♦A is
taken to express that A is compatible with Γ, and Γ� `COM* ∼♦A that A is
incompatible with Γ. This is motivated by the fact that A is CL-compatible
with Γ iff A is true in some CL-model of Γ, and hence, iff A is possible
in view of Γ. As the members of Γ are true in all CL-models of Γ, it is
easily observed that A is true in some CL-model of Γ iff ♦A is true in some
S5-model of Γ�.

The results presented in [11] are formulated within the adaptive logics
programme. The first adaptive logic was designed by Diderik Batens around
1980 (see [1]) and was meant to interpret inconsistent sets of premises ‘as
consistently as possible’. As we shall see below, one of the main strengths of
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adaptive logics is that they provide a unified framework for the formal study
of consequence relations that are non-monotonic and/or dynamic1 —see [7]
and [8] for recent introductions to the topic.

The plot behind both logics is to assume that any formula A is compatible
with Γ unless Γ explicitly prevents so—that is, unless A is incompatible with
Γ or, what comes to the same, unless Γ� �S5 ∼♦A.

Semantically, this is realized by making a selection of the S5-models of
Γ�. Intuitively, those S5-models of Γ� are selected that verify a formula of
the form ∼♦A iff it is ‘unavoidable’ in view of Γ� (that is, iff it is true in all
S5-models of Γ�). For example, some S5-models of {�p} verify ∼♦q and
others verify ∼♦∼q—this is the reason why neither ♦q nor ♦∼q is an S5-
consequence of {�p}. However, as neither ∼♦q nor ∼♦∼q are unavoidable
in view of Γ�, the COM(*)-models of {�p} falsify both, and hence, verify
♦q as well as ♦∼q.

Given some set of premises Γ�, COM and COM* select the same subset
of S5-models. The only difference between the two logics concerns the
way in which the semantic consequence relation is defined: A is a COM-
consequence of Γ� iff all COM-models of Γ� verify A and a COM*-conse-
quence of Γ� iff Γ� has COM*-models and all of them verify A.

For consistent sets of premises, both logics lead to adequate results. For
instance, it is shown in [11] that the following equivalences hold:

if Γ is consistent, then

Γ� `COM ♦A iff Γ� `COM* ♦A iff Γ� 6`S5 ∼♦A iff Γ 6`CL ∼A

which is exactly what we expect for classical compatibility. However, nei-
ther of them leads to adequate results for the inconsistent case: that every-
thing is compatible with an inconsistent set of premises is just as unsatisfac-
tory as that nothing is compatible with it.

Some readers may not be convinced here. To some, the question which
sentences are compatible with an inconsistent set of premises may even seem
nonsensical. After all, the natural response to an inconsistent theory seems
to be that one looks for a consistent replacement before one starts wondering
about its possible extensions. The important thing to remember, however, is
that, both in the sciences and in everyday life, resolving some inconsistency
may be far from evident. And, in lack of a consistent replacement, it is
a better strategy to continue working with the inconsistent theory than to

1 I say that a consequence relation is dynamic if the mere analysis of the premises may
lead to the withdrawal of previously derived conclusions. Not all dynamic consequence re-
lations are non-monotonic. In [6] it is shown, for instance, that the pure logic of relevant
implication can be characterized by a dynamic proof theory.
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prematurely revise it—see [24], [12], [20], [21], [14], and [19] for examples
from the history of the sciences that illustrate this.

Both COM and COM* are inadequate to handle cases like this. For in-
stance, even if one’s beliefs turn out to be inconsistent in some respects,
one will neither completely refrain from changing these beliefs nor adding
anything what so ever to them. Analogously, when confronted with an in-
consistent theory, one will neither stop asking questions nor start generat-
ing arbitrary ones—apart from the fact that an inconsistent theory may still
lead to important open problems, asking the right kind of questions may be
helpful in devising a consistent alternative for it. The upshot is that, even
if one is convinced that (everything else being equal) a consistent theory is
preferable to an inconsistent one, it may be important that one is able to dis-
tinguish between what is and what is not compatible with an inconsistent set
of premises.

The aim of this paper is to generalize the results from [11] to the incon-
sistent case. The resulting logics will be called COMPr and COMPm. The
difference between the two systems concerns the way in which they inter-
pret inconsistent sets of premises—see below. I shall present the semantics
as well as the (dynamic) proof theory for both logics, and prove soundness
and completeness. As many of the properties and proofs are analogous for
both systems, I shall use COMPa as a generic name.

Like for the consistent case, the logics COMPr and COMPm will be for-
mulated in modal terms, and Γ� `COMPa ♦A will be used to express that A
is compatible with the (possibly inconsistent) set Γ.

An important constraint for the generalization is that a contradiction A ∧
∼A should only be considered as compatible with an inconsistent set of
premises if A behaves inconsistently with respect to it. For instance, if Γ =
{p, ∼p, q}, there is no reason to assume that, in addition to p, also q or, for
instance, r behaves inconsistently. Hence, neither q ∧∼q nor r ∧∼r should
be regarded as compatible with Γ (even if both r and ∼r are).

Another important constraint is that, for the consistent case, both logics
should lead to the same results as COM(*). For reasons that will be explained
in the next section, meeting this constraint requires that paraconsistent com-
patibility is defined, not with respect to the original theory, but with respect
to an interpretation of it that is ‘as consistent as possible’. Technically, this
will be realized by making a combination of two adaptive logics: one that in-
terprets possibly inconsistent theories as consistently as possible (that is, an
inconsistency-adaptive logic) and one that defines the compatibility relation.

As we shall see below, there are different ways to interpret inconsistent
sets of premises ‘as consistently as possible’ (even with respect to one and
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the same paraconsistent logic) and hence, different accounts of paraconsis-
tent compatibility. COMPr and COMPm are meant to capture the accounts
offered by the inconsistency-adaptive logics Pr and Pm.2

As COMPr and COMPm are defined with respect to sets of premises of
the form Γ�, their design requires the formulation of modal versions of Pr

and Pm. In view of the similarity with ideas underlying S5, these modal
versions will be called S5Pr and S5Pm.

So, one of the logics incorporated in COMPr (respectively, COMPm) is
S5Pr (respectively, S5Pm). The other is a modal adaptive logic that defines
the compatibility relation. This logic will be called COMP and is shared by
both COMPr and COMPm.

I shall proceed as follows. After discussing the reasons why paraconsistent
compatibility cannot be defined with respect to a (monotonic) paraconsistent
logic, but only with respect to an inconsistency-adaptive logic (Section 2),
I shall present a brief introduction to adaptive logics (Section 3). Next, I
shall discuss the inconsistency-adaptive logics Pr and Pm (Sections 4 and 5)
and elaborate their modal versions (Sections 6 and 7). The logics COMPr

and COMPm will be presented in Sections 8 and 9. In Section 10, I shall
compare the present account of paraconsistent compatibility with some al-
ternatives. I shall end with some conclusions and open problems (Section
11).

2. The Problem

In order to generalize the results from [11] to the inconsistent case, we first
need a clear idea of what it means that A is compatible with an inconsistent
set of premises. In view of the present-day literature on paraconsistent logic,
obtaining such an idea seems entirely straightforward.

Consider, for instance, Γ = {p, ∼p, q}. In that case, it seems natural that
∼q is considered as incompatible with Γ, but that p is considered as com-
patible with it (despite the fact that, according to most paraconsistent logics,
also ∼p follows from Γ). What this seems to come to is that, on the one
hand, the definition of compatibility should refer to a paraconsistent logic
rather than to classical logic and, on the other hand, that it should be ade-
quate to handle cases in which both A and ∼A follow from the premises. So,
where PL stands for some (standard) paraconsistent logic,3 it seems that A

2 The most complete presentation of Pr and Pm can be found in [3]. In many other
papers on the subject, the logics are called ACLuN1 and ACLuN2.

3 I say that a paraconsistent logic is standard if it defines a derivability relation that is
monotonic, reflexive and transitive.
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is (paraconsistently) compatible with a possibly inconsistent set of premises
Γ iff A ‘behaves inconsistently’4 with respect to Γ or Γ 6`PL ∼A.

There are, however, at least three problems with this approach. The first
is that, unlike for the consistent case, the definition cannot be matched by
an intuitive semantic account. Whatever system one chooses for PL, it will
not hold true that A is true in some PL-model of Γ iff A ‘behaves inconsis-
tently’ with respect to Γ or Γ 6`PL ∼A. The reason is that, for any Γ that
has PL-models, any sentence (that is non-contradictory and free of classical
negation) is bound to be true in some of them.5 For many paraconsistent
logics, it even holds true that, for an arbitrary Γ, any sentence is true in some
model of Γ. This is the case, for instance, for the logic P◦ (the full positive
fragment of CL plus A ∨ ∼A): some P◦-models of {p} verify both p and
∼p, others verify q as well as ∼q, and some even verify all sentences.

The second problem is that, for consistent sets of premises, the resulting
concept of paraconsistent compatibility does not coincide with the concept of
classical compatibility—which is the least one expects from a generalization.
The reason is that all standard paraconsistent logics necessarily invalidate
Ex Falso Quodlibet by invalidating some other inference rules of CL (for
instance, either Disjunctive Syllogism or Addition).6 Thus, if Γ = {p, ∼p∨
∼q} and PL invalidates Disjunctive Syllogism, Γ 6`PL ∼q, and hence, q
would be PL-compatible (but not CL-compatible) with Γ; if PL invalidates
Addition, Γ 6`PL p∨ r, and hence, ∼(p∨ r) would be PL-compatible with it.

The third problem is that, even for inconsistent sets of premises, the result-
ing concept of paraconsistent compatibility classifies too many sentences as
compatible with them. Also this is related to the fact that standard paracon-
sistent logics necessarily invalidate some inference rules of CL. Suppose,
for instance, that Γ = {p, ∼p, p∨∼q, r ∨∼s, ∼r} and that PL invalidates
Disjunctive Syllogism. In that case, Γ 6`PL ∼q and Γ 6`PL ∼s, and hence,

4 The precise meaning of this phrase varies from one paraconsistent logic to another. At
this point, however, it is sufficient to grasp the intuitive idea. An exact definition of “behaving
inconsistently” will be presented below.

5 The language of many paraconsistent logics includes only a (weak) paraconsistent nega-
tion. In some cases, however, the language contains both a paraconsistent negation and the
classical negation. This is the case, for instance, for the paraconsistent logic P that forms
the basis for Pr and Pm and that is presented in Section 4. I use the name P◦ to refer to the
fragment of P that is free of classical negation.

6 This does not necessarily hold true for non-standard paraconsistent systems. In [9], it
is shown, for instance, that it is possible to design a proof procedure that only invalidates Ex
Falso Quodlibet (while validating all other inference rules of CL, including both Addition
and Disjunctive Syllogism). The price to be paid, however, is that the resulting derivability
relation is not transitive.
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both q and s would be considered as PL-compatible with Γ. This, however,
does not seem to be justified. If both p and ∼p are true and “∨” is inter-
preted classically, then p ∨ ∼q does not warrant that ∼q is true, and hence,
it seems reasonable that q is considered to be compatible with Γ. This, how-
ever, does not hold true for s. As there is no reason to suspect that r behaves
inconsistently, there is no reason to suspect that ∼s may be false. Or, put dif-
ferently, in any interpretation of Γ that is ‘as consistent as possible’, r will
behave consistently and ∼s will be true. Hence, s should not be considered
as compatible with Γ.

The observation in the last paragraph provides us at once with an intu-
itively attractive solution to each of the three problems: paraconsistent com-
patibility should be defined, not with respect to the original set of premises,
but with respect to an interpretation of it that is as consistent as possible.

This is the line that will be pursued here: where APL is the inconsistency-
adaptive logic based on some standard paraconsistent logic PL, A will be
said to be compatible with a possibly inconsistent set of premises Γ iff A
behaves inconsistently with respect to Γ or Γ 6`APL ∼A. As we shall see
below, this nicely matches a semantic characterization: A is true in some
APL-model of Γ iff A behaves inconsistently with respect to Γ or Γ 6`APL
∼A. It also warrants that, for the consistent case, the notion of paraconsistent
compatibility coincides with that of classical compatibility.

As mentioned in the introduction, I shall define paraconsistent compatibil-
ity with respect to the inconsistency-adaptive logics Pr and Pm. These are
not the only inconsistency-adaptive logics currently available (alternatives
can be found in, for instance, [15] and [22]). They are chosen because they
constitute paradigmatic cases, not only to understand the functioning of an
inconsistency-adaptive logic, but also with respect to the meta-theory.

For some sets of premises, Pm leads to a richer consequence set than Pr

(see below for an explanation). Consequently, the latter sometimes clas-
sifies more sentences as compatible with a set of premises Γ than the for-
mer. For instance, where Γ = {p, q, ∼p ∨ ∼q, ∼p ∨ r, ∼q ∨ r, }, r is a
Pm-consequence of Γ, but not a Pr-consequence of it. Hence, ∼r is Pr-
compatible with Γ, but not Pm-compatible with it. Which account of com-
patibility is best suited depends on the application context (see also Section
10).

3. Some Basics of Adaptive Logics

What all adaptive logics have in common is that they interpret sets of prem-
ises ‘as normally as possible’. They differ from each other in the way that
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this phrase is specified. Inconsistency-adaptive logics, for instance, inter-
pret sets of premises ‘as consistently as possible’; ambiguity-adaptive logics
interpret them ‘as non-ambiguously as possible’.

Note that ‘normality’ is used here as a technical term. It does not refer to
some standard of ‘good reasoning’ (CL, for instance), but to a set of presup-
positions that are, in some application context, considered as desirable but
defeasible. When engaging in a conversation, for instance, one of the pre-
suppositions may be that the utterances of one’s interlocutor are informative
and relevant to the topic of the conversation. This presupposition is consti-
tutive for the context at issue: it helps to define the conditions under which
a conversation is considered as rational. It is, however, not an absolute rule
of conduct: when proven false in a particular instance (for instance, some
of the utterances cannot possibly be interpreted in a way that makes them
relevant to the discussion), it will be abandoned.

So, relative to their application context, adaptive logics define some set of
defeasible presuppositions and interpret sets of premises as much as possi-
ble in accordance with these. As an immediate consequence of this, adaptive
logics share another important characteristic: the validity of some of their in-
ference rules is context-dependent. For instance, the inconsistency-adaptive
logics Pr and Pm allow that A is derived from A ∨ B and ∼B, but only
if B behaves consistently with respect to the (background) premises. Thus,
where Γ = {p, ∼p, p∨ q, ∼r, r ∨ s}, both Pr and Pm validate the applica-
tion of Disjunctive Syllogism to ∼r and r ∨ s, but invalidate the application
of that same rule to ∼p and p ∨ q. The reason is that, if disjunction is in-
terpreted classically, the justification of Disjunctive Syllogism is dependent
on the consistency presupposition (if both B and ∼B are true, then A ∨ B
is true, even if A is false), and precisely this presupposition is defeasible in
an inconsistency-adaptive logic. So, if the justification of an inference rule
relies on a defeasible presupposition, it is dependent on the context (that is,
the formulas to which one wants to apply the rule) whether its application is
validated or not.7

Another way to put all this is that, in an adaptive logic, a specified set
of formulas is assumed to be false, unless and until proven otherwise. Re-
turning to the example from the previous paragraph, Pr and Pm validate the
application of Disjunctive Syllogism to ∼r and r ∨ s because they assume
that r ∧ ∼r is false; they invalidate the application of Disjunctive Syllogism
to ∼p and p∨ q because the assumption that p∧∼p is false cannot be main-
tained in view of Γ.

7 Because of the context-dependency of some of their inference rules, adaptive logics
tend to be non-monotonic. There are, however, some exceptions. One of the examples is the
adaptive logic presented in [5] to reconstruct the so-called “weak consequence relation” of
Rescher and Manor (see [23]).
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Formally, adaptive logics are characterized in terms of four elements: an
upper limit logic, a lower limit logic, a set of abnormalities (usually denoted
by Ω) and an adaptive strategy.

The upper limit logic and the lower limit logic are monotonic systems,
and the former is always an extension of the latter. For instance, all currently
available inconsistency-adaptive logics have CL as their upper limit logic
and some paraconsistent fragment of CL (possibly extended with classical
negation) as their lower limit logic. The upper limit logic thus incorporates
not only the presuppositions of the lower limit logic, but also some additional
ones. These are the defeasible presuppositions: they define the ‘normal’
situation, and are only abandoned in ‘abnormal contexts’.

The set of abnormalities Ω consists of the formulas that are supposed to
be false, unless and until proven otherwise. In all currently available adap-
tive logics, the abnormalities are delineated by a certain logical form. For
instance, the set of abnormalities of an inconsistency-adaptive logic is char-
acterized by the form ∃(A ∧ ∼A), in which ∃A abbreviates the existential
closure of A.8 Which members of Ω behave abnormally with respect to some
set of premises Γ is determined by the lower limit logic. Thus, the phrase
“unless and until proven otherwise” refers to the lower limit logic.

From what is said in the previous paragraphs, it may seem that abnormal-
ities are assumed to be false, unless they are derivable (by the lower limit
logic) from the set of premises. Although this holds true for some adaptive
logics, the situation is usually a bit more complicated. This is related to the
fact that, for most lower limit logics, a set of premises may entail a disjunc-
tion of abnormalities, without entailing any of its disjuncts. For instance,
according to the paraconsistent logic P, (p ∧ ∼p) ∨ (q ∧ ∼q) is entailed by
{p ∨ q, ∼p, ∼q}, but p ∧ ∼p and q ∧ ∼q are not.

In line with the conventions from [7], disjunctions of abnormalities will
be called Dab-formulas and an expression of the form Dab(∆) will refer to∨

(∆), in which ∆ is a (finite) subset of the set of abnormalities. The Dab-
formulas that are derivable by the lower limit logic from the set of premises
Γ are called the Dab-consequences of Γ. Dab(∆) is called a minimal Dab-
consequence of Γ iff there is no ∆′ ⊂ ∆ such that Dab(∆′) is a Dab-
consequence of Γ. If Dab(∆) is a minimal Dab-consequence of Γ, it can be
inferred from Γ that some member of ∆ behaves abnormally, but it cannot
be inferred which one. Hence, except for the case where ∆ is a singleton for
every minimal Dab-consequence of Γ, there are different ways to interpret
abnormal theories ‘as normally as possible’.

8 For some adaptive logics, the set of abnormalities does not comprise all formulas of
the form at issue, but only those that satisfy some restriction. This will not hold true for the
adaptive logics discussed in this paper.
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It is in view of this fact that an adaptive strategy is needed. Intuitively,
the adaptive strategy specifies what it means that the presuppositions of the
upper limit logic are followed as much as possible or, what comes the same,
that the members of the set of abnormalities are supposed to be false un-
less and until proven otherwise. The two basic strategies are the Reliability
strategy and the Minimal Abnormality strategy.

According to the Reliability strategy, a formula is considered to behave
abnormally with respect to a set of premises Γ iff it is a disjunct of some
minimal Dab-consequence of Γ. The Minimal Abnormality strategy leads
to a somewhat richer consequence set. This derives from the fact that it con-
siders only the minimal sets of abnormally behaving formulas. For instance,
where the minimal Dab-consequences of Γ are Dab{A, B} and Dab{B, C},
the Minimal Abnormality strategy only considers situations in which the set
of abnormally behaving formulas is either {B} or {A, C}. The Reliability
strategy also considers the situation in which the set of abnormally behaving
formulas is {A, B, C}.

Whenever the lower limit logic warrants that, for any set of premises, ev-
ery minimal Dab-consequence consists of a single abnormality, the Minimal
Abnormality strategy and the Reliability strategy coincide. As we shall see
below, this holds true for the logic COMP.

An important constraint in the design of an adaptive logic is that extend-
ing the lower limit logic with the requirement that the abnormalities are not
logically possible should result in the upper limit logic (see [8] for a moti-
vation). In view of this constraint, all currently available adaptive logics can
be defined by specifying their lower limit logic, their adaptive strategy and
their set of abnormalities.

Semantically, an adaptive logic is obtained by selecting, for each set of
premises Γ, a subset of the models of the lower logic. Intuitively, those
models are selected that are ‘as normally as possible’ in view of Γ. So,
depending on the strategy, one may obtain a different set of models for Γ.
(The Minimal Abnormality strategy selects in general a smaller set of models
than the Reliability strategy.)

The proof theory of adaptive logics is dynamic in a strong sense: formulas
that, at some stage of a proof, are considered as derived may at a later stage
no longer be considered as such. This is related to the fact that it is allowed
that inferences are made on the basis of one’s best insights in the premises at
a certain stage. For instance, if at a certain stage in a Pr-proof from Γ, both
p and ∼p ∨ q are derived in it, it is allowed that q is added to it. If it turns
out, however, that p behaves inconsistently with respect to Γ (for instance,
because p∧∼p has explicitly been derived in the proof), then q will no longer
be considered as derived. The precise mechanism by which this is realized
will become clear in the subsequent sections.
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One of the advantages of the dynamic proof theory is related to the fact
that, in general, non-monotonic consequence relations are not only undecid-
able, but even lack a positive test. Where such absolute criteria are missing,
the best one can hope for is a rational estimate of which sentences are deriv-
able and which are not. As is shown in [2], the proof theory of adaptive
logics not only provides such an estimate, but moreover warrants that, with
each new step in the proof, this estimate becomes better (in a clear and mea-
surable sense). The adequacy of the dynamic proof theory may also be seen
from the fact that it can be proven sound and complete with respect to a
(static) semantics.

4. The Paraconsistent logic P

In this section, I briefly discuss the logic P which constitutes the basis of the
inconsistency-adaptive systems Pr and Pm.

The language L of P is as the standard predicative language for CL, except
that it contains two symbols for negation: “∼” and “¬”. The former stands
for a paraconsistent negation, the latter is the standard negation of CL. The
language also includes “⊥”. In most applications that involve P, it is as-
sumed that, in the proofs and the premises, negation is formalized by “∼”.
In those cases, the main function of “¬” is to simplify the meta-theoretic
proofs. Below, we shall see, however, that the classical negation is useful
in characterizing the logics COMPr and COMPm and that it leads to an
elegant definition of paraconsistent compatibility.

The relation between the two negations is straightforward. Where negA
is used to refer to a formula of the form ¬A or ∼A, “¬” is semantically
characterized by

(i) vM (negA) = 1 if vM (A) = 0 (negation-completeness), and
(ii) vM (negA) = 0 if vM (A) = 1 (consistency).

The meaning of the paraconsistent “∼” is obtained by dropping (ii). Hence,
¬A entails ∼A, but not vice versa.

Let S , C, Pr, F and W stand for, respectively, the sets of sentential letters,
individual constants, predicate letters of rank r, (open and closed) formulas,
and wffs (closed formulas) of L.

To simplify the semantic handling of quantifiers, the language L is ex-
tended to the pseudo-language L+ by introducing a set of pseudo-constants
O that has at least the cardinality of the largest model one wants to consider.
Let W+ denote the set of wffs of L+ (in which C ∪ O plays the role played
by C in L) and let ∼W+ = {∼A | ∼A ∈ W+}.

A P-model M is a couple 〈D, v〉, in which D is a set and v an assignment
function. Every such model is an interpretation of W+, and hence of W ,
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which is what we are interested in. The assignment function v is defined
by:

C1.1 v : S −→ {0, 1}
C1.2 v : C ∪ O −→ D (where D = {v(α) | α ∈ C ∪ O})
C1.3 v : Pr −→ ℘(Dr) (the power set of the r-th Cartesian product of D)
C1.4 v : ∼W+ −→ {0, 1}

The valuation function, vM : W+ −→ {0, 1}, determined by M is defined
by:

C2.1 where A ∈ S , vM (A) = v(A)
C2.2 vM (⊥) = 0
C2.3 vM (πrα1 . . . αr) = 1 iff 〈v(α1), . . . , v(αr)〉 ∈ v(πr)
C2.4 vM (α = β) = 1 iff v(α) = v(β)
C2.5 vM (∼A) = 1 iff vM (A) = 0 or v(∼A) = 1
C2.6 vM (¬A) = 1 iff vM (A) = 0
C2.7 vM (A ⊃ B) = 1 iff vM (A) = 0 or vM (B) = 1
C2.8 vM ((∀α)A(α)) = 1 iff vM (A(β)) = 1 for all β ∈ C ∪ O.

The other logical constants are defined as usual. A is true in a P-model
M (M verifies A) iff vM (A) = 1; Γ �P A iff all P-models that verify
all members of Γ also verify A; �P A (A is valid) iff it is verified by all
P-models.

An axiomatization for P is obtained by extending the full positive fragment
of CL by the following two axiom schemas and definition:

A1 A ∨ ∼A
A2 ⊥ ⊃ A
D¬ ¬A =df A ⊃ ⊥.

I refer to [3] for the Soundness and Completeness proofs:

Theorem 1 : Γ `P A iff Γ �P A.

5. The Inconsistency-Adaptive Logics Pr and Pm

The lower limit logic of Pr and Pm is P and their upper limit logic is CL.
The set of abnormalities Ω is the same for both logics: Ω = {∃(A ∧ ∼A) |
A ∈ F}. Given the set Ω, Pr and Pm are obtained from P by, respectively,
the Reliability strategy and the Minimal Abnormality strategy.

For properties and definitions that are common to both logics, I shall use
Pa as a generic name. Henceforth, Dab(∆) will refer to the disjunction∨

(∆), where ∆ ⊂ Ω; Dab-formulas and (minimal) Dab-consequences are
defined as in Section 3 (with respect to P).
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To characterize the semantics of Pr and Pm, I first define the abnormal
part of a P-model:

Definition 1 : For any P-model M , Ab(M) = {A ∈ Ω | vM (A) = 1}.

The set of formulas that are unreliable with respect to Γ is defined by:

Definition 2 : U(Γ) =
⋃
{∆ | Dab(∆) is a minimal Dab-consequence of

Γ}.

For any set of premises Γ, two different kinds of P-models are distin-
guished:

Definition 3 : A P-model M of Γ is reliable iff Ab(M) ⊆ U(Γ).

Definition 4 : A P-model M of Γ is minimally abnormal iff there is no P-
model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

Note that it does not make sense to say that a P-model is reliable (mini-
mally abnormal), but only that it is a reliable (minimally abnormal) model of
some set of premises Γ. Below, I shall sometimes use the term “Pr-model
of Γ” (respectively, “Pm-model of Γ”) to refer to a reliable (respectively,
minimally abnormal) model of Γ.

The semantic consequence relations are defined with respect to the se-
lected models:

Definition 5 : Γ �Pr A iff A is true in all reliable models of Γ.

Definition 6 : Γ �Pm A iff A is true in all minimally abnormal models of Γ.

As the language of P contains “¬”, not all sets of premises have P-models.
It has been shown, however, that every set of premises that has P-models,
also has Pa-models. It has also been shown that whenever a P-model M
is not selected as a Pa-model of Γ, there is some other P-model M ′ that is
selected and that is (in the set-theoretical sense) less abnormal.9 I refer to
[4] for the proofs:

Theorem 2 : If M is a P-model of Γ but not a Pa-model of Γ, then there is a
Pa-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M). (Strong Reassurance)

9 As is shown in [4], adaptive logics that lack this property lead to counterintuitive results.
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Corollary 1 : If Γ has P-models, it also has Pa-models. (Reassurance)

In view of the subsequent sections, I also list two properties that relate
the different types of adaptive models to one another as well as to the set of
unreliable formulas. Their proofs can be found in [8]:

Theorem 3 : For every A ∈ U(Γ), there is a minimally abnormal model of Γ
that verifies A.

Theorem 4 : Every minimally abnormal model of Γ is a reliable model of Γ.

Before we turn to the proof theory, it is important to note that Pr and Pm,
like all adaptive logics, cannot be characterized by a set of theorems. This is
related to the fact that their models cannot be defined independently of a set
of premises, and hence, that they do not have valid formulas of their own:
CnPa(∅) = CnP(∅) and the intersection of CnPa(Γ) for all Γ is CnCL(∅).

However, as is shown in [8], their proof theory can be characterized by
a simple format that is the same for all adaptive logics. The motor for the
proof theory is provided by the following theorem—its proof can be found
in [3]:

Theorem 5 : B1, . . . , Bn `CL A if and only if there is a finite ∆ ⊆ Ω such
that B1, . . . , Bn `P A ∨ Dab(∆). (Derivability Adjustment Theorem)

Theorem 5 warrants that whenever A is CL-derivable from B1, . . . , Bn, A
is P-derivable from B1, . . . , Bn or certain formulas behave abnormally with
respect to B1, . . . , Bn. This naturally suggests that, in the dynamic proofs,
we derive A from B1, . . . , Bn, on the condition that no member of ∆ be-
haves abnormally.

In line with this, the proof theory of both Pr and Pm is characterized by
three rules (a premise rule PREM, an unconditional rule RU, and a condi-
tional rule RC) and one marking definition. The rules are the same for both
logics, the marking definition (which is determined by the adaptive strategy)
is different.

The proofs themselves look like those of any other logic, except that every
line has a condition attached to it. Thus, lines in a dynamic proof have five
elements: (i) a line number, (ii) the formula A that is derived, (iii) the line
numbers of the formulas from which A is derived, (iv) the rule by which A
is derived, and (v) the condition. (An example of a dynamic proof can be
found in Section 9.)

Here are the rules that govern Pa-proofs from Γ:
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PREM If A ∈ Γ, then one may add to the proof a line consisting of

(i) the appropriate line number,
(ii) A,

(iii) “−”,
(iv) “PREM”, and
(v) ∅.

RU If B1, . . . , Bn `P A (n ≥ 0), and B1, . . . , Bn occur in the proof
on the conditions ∆1, . . . , ∆n respectively, then one may add to the
proof a line consisting of:

(i) the appropriate line number,
(ii) A,

(iii) the line numbers of the Bi,
(iv) “RU”, and
(v) ∆1 ∪ . . . ∪ ∆n.

RC If B1, . . . , Bn `P A ∨ Dab(∆) (n ≥ 0), and B1, . . . , Bn occur in
the proof on the conditions ∆1, . . . , ∆n respectively, then one may
add to the proof a line consisting of:

(i) the appropriate line number,
(ii) A,

(iii) the line number of the Bi,
(iv) “RC”, and
(v) ∆ ∪ ∆1 ∪ . . . ∪ ∆n.

Let us now turn to the marking definitions. A Dab-formula Dab(∆) will
be said to be a minimal Dab-formula at stage s of a proof iff, at that stage,
Dab(∆) occurs in the proof on the empty condition and, for any ∆′ ⊂ ∆,
Dab(∆′) does not occur in the proof on the empty condition.

The marking for Pr requires that we define, for any stage s of a Pr-proof
from Γ, the set Us(Γ) of formulas that are unreliable at that stage:

Definition 7 : Us(Γ) =
⋃
{∆ | Dab(∆) is a minimal Dab-formula at stage

s of the proof}.

Definition 8 : Marking for Pr: Line i is marked at stage s of a proof from Γ
iff, where ∆ is its condition, ∆ ∩ Us(Γ) 6= ∅.
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The marking definition for Pm is a bit more complicated.10 Given a Pm-
proof from Γ, we first define, for each stage s of the proof, the sets Φ◦

s(Γ)
and Φ?

s(Γ):

Definition 9 : Φ◦
s(Γ) = {φ ⊂ Ω | φ contains one disjunct of each minimal

Dab-formula at stage s of the proof}.

Definition 10 : Φ?
s(Γ) = {CnP(φ) ∩ Ω | φ ∈ Φ◦

s}.

Next, we define the set Φs(Γ):

Definition 11 : Φs(Γ) = {φ ∈ Φ?
s | there is no φ′ ∈ Φ?

s such that φ ⊃ φ′}.

Finally, marking is defined with respect to the set Φs(Γ):

Definition 12 : Marking for Pm: Line i is marked at stage s of a proof from Γ
iff, where A is derived on the condition ∆ at line i, (i) there is no φ ∈ Φs(Γ)
such that φ∩∆ = ∅, or (ii) for some φ ∈ Φs(Γ), there is no line at which A
is derived on a condition Θ for which φ ∩ Θ = ∅.

A formula is said to be derived at stage s in a Pa-proof from Γ iff A is
the second element of a line that is not marked in the proof at that stage. In
addition to this, a notion of final derivability is defined:

Definition 13 : A is finally derived on line i of a Pa-proof from Γ iff (i) A is
the second element of line i, (ii) line i is not marked in the proof, and (iii)
any extension of the proof in which line i is marked may be further extended
in such a way that line i is unmarked.

It has been shown that, if A is finally derivable from Γ, then any Pa-proof
from Γ may be extended in such a way that A is finally derived in it (see
[3]). This warrants that the dynamics of the proofs is sensible: ‘in the end’,
different dynamic proofs lead to the same set of finally derived conclusions.

Definition 14 : Γ `Pa A (A is finally Pa-derivable from Γ) iff A is finally
derived on some line of a Pa-proof from Γ.

I refer to [3] for the Soundness and Completeness proofs:

10 I refer to [7] for an intuitive account of this definition and for some more explanation.
The marking for minimal abnormality will also be illustrated in Section 9.
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Theorem 6 : Γ `Pa A iff Γ �Pa A.

6. The Lower and Upper Limit of S5Pr and S5Pm

As explained in Section 1, the logics COMPr and COMPm are defined in
modal terms. This is why we need modal versions of the inconsistency-
adaptive logics Pr and Pm. These modal versions are presented in the next
section. In this section, I discuss their lower and upper limit logic.

The lower limit logic of both systems is S5P which is a modal version
of the paraconsistent logic P. The relation between S5P and P is as that
between S5 and CL. The semantics for S5P is obtained in a straightforward
way from the one for P.11

Let LM be the standard modal language (including ⊥) and let LM+ be
obtained from LM in the same way as L+ is obtained from L. Let Wp+

be the set of primitive wffs of L+ (those wffs of L+ that contain no other
logical constants than identity). Unless explicitly stated otherwise, the letter
Γ will refer to sets of wffs of the non-modal language L.

An S5P-model is a couple M = 〈Σ, M0〉 in which Σ is a set of P-models
and M0 ∈ Σ. The valuation determined by an S5P-model M is defined by
the following clauses:

MC1 where A ∈ Wp+ or A ∈ ∼W+, vM(A, Mi) = vMi
(A)

MC2 vM(¬A, Mi) = 1 iff vM(A, Mi) = 0
MC3 vM(∼�A, Mi) = 1 iff vM(¬�A, Mi) = 1
MC4 vM(∼♦A, Mi) = 1 iff vM(¬♦A, Mi) = 1
MC5 vM(A ∧ B, Mi) = 1 iff vM(A, Mi) = vM(B, Mi) = 1
MC6 vM((∀α)A(α), Mi) = 1 iff vM(A(β), Mi) = 1 for all β ∈ C ∪ O
MC7 vM(�A, Mi) = 1 iff vM(A, Mj) = 1 for all Mj ∈ Σ.

The other logical constants are defined as usual. Semantic consequence
and validity are as usual (in terms of truth in M0).

In view of the above semantics, the following theorem is easily proved:

Theorem 7 : Where A ∈ W , Γ� �S5P �A iff Γ �P A.

Proof. For the left-right direction, suppose that Γ 2P A. In that case, there
is a P-model M of Γ that falsifies A. Let M = 〈{M}, M〉. It is easily seen
that M is an S5P-model of Γ� that falsifies �A. But then, Γ�

2S5P �A.

11 The underlying idea is similar to the one used in [11] to design a new semantics for
S5—see also below.
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For the right-left direction, suppose that Γ�
2S5P �A. In that case, there

is an S5P-model M = 〈Σ, M0〉 such that, for some M ∈ Σ, M is a P-
model of Γ and M falsifies A. Hence, Γ 2P A. �

An axiomatization for S5P is obtained by adding the following to P:

MA1 �A ⊃ A
MA2 �(A ⊃ B) ⊃ (�A ⊃ �B)
MA3 ♦A ⊃ �♦A
MA4 ∼�A ⊃ ¬�A
MA5 ∼♦A ⊃ ¬♦A
NEC If `P A then `S5P �A
D♦ ♦A =df ¬�¬A.

The easy Soundness proof is left to the reader:

Theorem 8 : If Γ `S5P A, then Γ �S5P A.

The Completeness proof proceeds as the one presented in [11] for S5:

Theorem 9 : If Γ �S5P A, then Γ `S5P A.

Proof. Suppose that Γ 0S5P A (where Γ is a set of wffs of LM ). Consider
a denumerable O′ ⊂ O and let LM ′

be obtained from LM by extending C
to C ∪ O′. Let B1, B2, . . . be a list of all wffs of LM ′

such that, if Bi =
(∃α)C(α) then Bi+1 = C(β) for some β ∈ O′ that does not occur in
B1, . . . , Bi. Define:

∆0 = CnS5P(Γ)

∆i+1 = CnS5P(∆i ∪ {Bi+1}) if A 6∈ CnS5P(∆i ∪ {Bi+1}), and

∆i+1 = ∆i otherwise
∆ = ∆0 ∪ ∆1 ∪ . . .

Consider a function f : C ∪ O −→ C ∪ O′ such that f(α) = α for all
α ∈ C ∪O′, and extend it to wffs by defining f(A) as the result of replacing
in A any α ∈ C ∪ O by f(α). Finally, define ∆? = {A | f(A) ∈ ∆}. It is
easily seen that ∆ ⊂ ∆? and that ∆? is closed under S5P-derivability.

Define Θ = {A | A is a wff of L+; �A ∈ ∆?}, and Λ = {A | A is a wff
of L+; A ∈ ∆?}. It is easily observed that Θ ⊆ Λ (if �C ∈ ∆?, then
C ∈ ∆?), and that Λ defines a unique P-model (for any wffs A and B of
L+, if A 6∈ Λ, then ∼A ∈ Λ; ¬A ∈ Λ iff A 6∈ Λ; A ∧ B ∈ Λ iff A, B ∈ Λ;
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. . .; (∃α)A(α) ∈ Λ iff A(β) ∈ Λ for some β ∈ C ∪ O). Let M0 be the
P-model defined by Λ, Σ the set of all P-models of Θ, and M = 〈Σ, M0〉.

Each of the following is easily proved:

(i) M is an S5P-model (as Θ ⊆ Λ, M0 ∈ Σ),
(ii) M is an S5P-model of ∆? and hence of ∆,

(iii) M verifies Γ,
(iv) M falsifies A,

Hence, Γ 2S5P A as desired. �

Corollary 2 : Γ `S5P A iff Γ �S5P A.

Let us now turn to S5 which is the upper limit logic of S5Pr and S5Pm.
The semantics of S5 can be obtained by selecting a subset of the S5P-
models:

Definition 15 : An S5P-model M = 〈Σ, M0〉 is an S5-model iff, for every
M = 〈D, v〉 ∈ Σ, v(∼A) = 1 iff vM (A) = 0.

It is easily observed that, for every thus defined S5-model, Σ consists of a
set of CL-models (the language contains two negations, but Definition 15
warrants that they have the same meaning). Henceforth, “S5-model” will
always refer to a model as defined here.

The proof of the following theorem is analogous to that of Theorem 7:

Theorem 10 : Where A ∈ W , Γ� �S5 �A iff Γ �CL A.

The above S5-semantics is somewhat peculiar. Nevertheless, it is shown
in [11] that the semantics is sound and complete with respect to the predica-
tive version of S5 with the Barcan formula:

Theorem 11 : Γ `S5 A iff Γ �S5 A.

7. The Modal Adaptive Logics S5Pr and S5Pm

In view of their intended application, S5Pr and S5Pm will only be defined
for sets of premises of the form Γ�. I shall use S5Pa as a generic name.

The semantics of both logics is obtained by making a selection of the S5P-
models of Γ� and by defining their semantic consequence relation with re-
spect to the selected models. In view of the format of the S5P-models, the
selection criterion can be defined in a very simple and intuitive way:



“01meheus”
2005/1/24
page 270

i

i

i

i

i

i

i

i

270 JOKE MEHEUS

Definition 16 : An S5P-model M = 〈Σ, M0〉 is an S5Pa-model of Γ� iff,
for every M ∈ Σ, M is a Pa-model of Γ.

Definition 17 : Γ� �S5Pa A iff A is true in all S5Pa-models of Γ�.

As for Pr and Pm, the dynamic proof theory of S5Pr and S5Pm is based
on a specific relation between derivability by the upper limit logic S5, and
derivability by the lower limit logic S5P. The proof is immediate in view of
Theorems 10, 5 and 7:

Theorem 12 : Γ� `S5 �A iff there is some ∆ ⊂ Ω such that Γ� `S5P
�(A ∨ Dab(∆)).

The proof format is as that for Pa and the inference rules are analogous:

PREM If A ∈ Γ�, then one may add to the proof a line consisting of

(i) the appropriate line number,
(ii) A,

(iii) “−”,
(iv) “PREM”, and
(v) ∅.

NRU If �B1, . . . , �Bn `S5P A (n ≥ 0), and �B1, . . . , �Bn occur in
the proof on the conditions ∆1, . . . , ∆n respectively, then one may
add to the proof a line consisting of:

(i) the appropriate line number,
(ii) A,

(iii) the line numbers of the �Bi,
(iv) “NRU”, and
(v) ∆1 ∪ . . . ∪ ∆n.

NRC If �B1, . . . , �Bn `S5P �(A ∨ Dab(∆)) (n ≥ 0), and �B1, . . . ,
�Bn occur in the proof on the conditions ∆1, . . . , ∆n respectively,
then one may add to the proof a line consisting of:

(i) the appropriate line number,
(ii) �A,

(iii) the line number of the �Bi,
(iv) “NRC”, and
(v) ∆ ∪ ∆1 ∪ . . . ∪ ∆n.

A formula of the form �(Dab(∆)) will be called an NDab-formula. An
NDab-formula �(Dab(∆)) will be said to be a minimal NDab-formula at
stage s of a proof iff, at that stage, �(Dab(∆)) occurs in the proof on the
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empty condition and, for any ∆′ ⊂ ∆, �(Dab(∆′)) does not occur in the
proof on the empty condition. Let U(Γ�) be the union of all ∆ such that
�(Dab(∆)) is a minimal NDab-consequence of Γ�.

In view of the marking for S5Pr, I define the set Us(Γ
�):

Definition 18 : Us(Γ
�) =

⋃
{∆ | �(Dab(∆)) is a minimal NDab-formula

at stage s of the proof}.

Definition 19 : Marking for S5Pr: Line i is r-marked at stage s of a proof
from Γ� iff, where ∆ is its condition, ∆ ∩ Us(Γ

�) 6= ∅.

The definition of the set Φs(Γ
�) is analogous to that of Φs(Γ) and pro-

ceeds in terms of the NDab-consequences and the logic S5P:

Definition 20 : Φ◦
s(Γ

�) = {φ ⊂ Ω | φ contains one disjunct of each minimal
NDab-formula at stage s of the proof}.

Definition 21 : Φ?
s(Γ

�) = {CnS5P(φ) ∩ Ω | φ ∈ Φ◦
s}.

Definition 22 : Φs(Γ
�) = {φ ∈ Φ?

s | there is no φ′ ∈ Φ?
s such that φ ⊃ φ′}.

Definition 23 : Marking for S5Pm: Line i is m-marked at stage s of a proof
from Γ� iff, where A is derived on the condition ∆ at line i, (i) there is no
φ ∈ Φs(Γ

�) such that φ ∩ ∆ = ∅, or (ii) for some φ ∈ Φs(Γ
�), there is no

line at which A is derived on a condition Θ for which φ ∩ Θ = ∅.

As for Pa, a formula is said to be derived at a stage s of an S5Pa-proof
from Γ� iff A is the second element of a line that is not marked in the proof
at that stage. Also the definition of final derivability is analogous:

Definition 24 : A is finally derived on line i of an S5Pa-proof from Γ� iff
(i) A is the second element of line i, (ii) line i is not marked in the proof,
and (iii) any extension of the proof in which line i is marked may be further
extended in such a way that line i is unmarked.

Definition 25 : Γ� `S5Pa A (A is finally S5Pa-derivable from Γ�) iff A is
finally derived on some line of an S5Pa-proof from Γ�.

The following theorems relate the consequence relation and the derivabil-
ity relation of S5Pa to those of Pa. They will be used to prove (in an indirect
way) Soundness and Completeness for S5Pa.
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Theorem 13 : Where A ∈ W , Γ� �S5Pa �A iff Γ �Pa A.

Proof. In view of Definition 16, the proof is completely analogous to that
of Theorem 7 (any occurrences of S5P and P can be replaced by S5Pa and
Pa, respectively). �

Theorem 14 : Where A ∈ W , Γ� `S5Pa �A iff Γ `Pa A.

Proof. For the first direction, suppose that the antecedent holds true. It fol-
lows, in view of Definition 25 and the form of the members of Γ� ∪ {�A},
that there is an S5Pa-proof from Γ� in which (i) �A is finally derived on
some line i, and (ii) the second element of each line contains a formula of
the form �B (for B ∈ W). Transform this proof by deleting every modal
operator that occurs in it. In view of Theorem 7 and the Completeness of
S5Pa and Pa, each of the following is easily proved:

(i) every line in the transformed proof is obtained by the application of
an inference rule of Pa (by an obvious induction on the length of the
proof),

(ii) for any j, ∆ is the condition of line j in the original proof iff ∆ is the
condition of line j in the transformed proof,

(iii) for any s, B ∈ Us(Γ
�) iff B ∈ Us(Γ),

(iv) for any s, B ∈ Φs(Γ
�) iff B ∈ Φs(Γ),

(v) the transformed proof is a Pa-proof from Γ,
(vi) A occurs on line i of the transformed proof,

(vii) line i is not marked in the transformed proof,
(viii) any extension of the transformed proof in which line i is marked may

be further extended such that i is unmarked.

It follows that there is a Pa-proof from Γ in which A is finally derived, and
hence, that Γ `Pa A.

The proof for the other direction proceeds by an analogous procedure. �

Given the Soundness and Completeness of Pa (see Theorem 6), the last
two theorems immediately entail a restricted form of Soundness and Com-
pleteness for S5Pa:

Theorem 15 : Where A ∈ W , Γ� �S5Pa �A iff Γ� `S5Pa �A.

In view of the design of COMPa, I also prove a stronger form of Sound-
ness and Completeness (for conclusions of any logical form). Let Γ? stand
for the set {�A | A ∈ W; Γ� `S5Pa �A}.
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The proof for the first lemma is immediate in view of Theorem 15 and
Corollary 2:

Lemma 1 : Γ? �S5P A iff Γ? `S5P A.

Lemma 2 : Γ� �S5Pa A iff Γ? �S5P A.

Proof. For the first direction, suppose that Γ� �S5Pa A. It follows that A is
verified in all S5Pa-models of Γ�, and hence, in all Pa-models of Γ. But
then, A is verified in all S5P-models that verify �B for every B ∈ {A |
Γ �Pa A} or, what comes to the same (in view of Theorem 13), for every
�B ∈ Γ?. Hence, Γ? �S5P A.

For the other direction, suppose that Γ�
2S5Pa A. It follows that there is

an S5Pa-model M of Γ� such that M verifies every member of Γ? but
falsifies A. As all S5Pa-models of Γ� are S5P-models, it follows that
Γ?

2S5P A. �

Lemma 3 : Γ� `S5Pa A iff Γ? `S5P A.

Proof. If A is of the form �B, the left-right direction obviously obtains.
So, suppose that A is of some other form and that Γ� `S5Pa A. It follows
that A is finally derived on some line i in an S5Pa-proof from Γ�. By
an inspection of the inference rules, it also follows that i is written down
by the application of NRU. But then, there are �B1, . . . , �Bn such that
�B1, . . . , �Bn `S5P A, and �B1, . . . , �Bn are finally derived in the proof.
Hence, in view of the monotonicity of S5P, Γ? `S5P A.

For the right-left direction, suppose that Γ? `S5P A. In view of the Com-
pactness of S5P, it follows that there are �B1, . . . , �Bn such that every
�Bi is S5Pa-derivable from Γ� and �B1, . . . , �Bn `S5P A. Hence, there
is an S5Pa-proof from Γ� in which �B1, . . . , �Bn are finally derived and
in which A is added by the rule NRU. It follows that A is finally derived in
the proof, and hence, that Γ� `S5Pa A. �

Theorem 16 : Γ� �S5Pa A iff Γ� `S5Pa A.

Proof. Immediate in view of Lemmas 1, 2 and 3. �

8. The Semantics of COMPa

As explained in Section 2, the logics COMPr and COMPm are meant to
capture the idea that A is compatible with a possibly inconsistent set of
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premises Γ iff A is true in some interpretation of Γ that is as consistent
as possible. So, given the inconsistency-adaptive logics that were chosen to
interpret this phrase, ♦A should be a COMPa-consequence of Γ� iff A is
true in some Pa-model of Γ. This may be realized by making the following
selection:

Definition 26 : An S5P-model M = 〈Σ, M0〉 is a COMPa-model of Γ� iff
Σ is the set of all Pa-models of Γ.

If Γ has several Pa-models, then Γ� has several COMPa-models (they
differ from each other in the Pa-model that is chosen as M0). It is easily
observed, however, that the following property obtains for all fully modal
wffs of LM (all wffs of the form �A and ♦A and all wffs obtained from
these by the formation rules of L):

Theorem 17 : If A is a fully modal wff of LM , then A is verified by some
COMPa-model of Γ� iff A is verified by all COMPa-models of Γ�.

The semantic consequence relation is defined in the usual way:

Definition 27 : Γ� �COMPa A iff all COMPa-models of Γ� verify A.

Given the semantics of S5P, Definition 26 warrants that ♦A is verified by
a COMPa-model of Γ� iff A is verified by some Pa-model of Γ. Hence, in
view of Definition 27, we have:

Theorem 18 : Where A ∈ W , Γ� �COMPa ♦A iff A is verified by some
Pa-model of Γ.

which is exactly what we want.
The proof of the following theorem proceeds by an obvious inspection of

the different semantics:

Theorem 19 : Γ� �COMPa �A1 ∨ . . .∨�An iff Γ� �S5Pa �A1 ∨ . . .∨�An

(for n ≥ 1).

The following two theorems lead to definitions of paraconsistent compat-
ibility (in terms of the classical negation and the paraconsistent negation,
respectively):

Theorem 20 : For every Γ that has P-models and every A ∈ W , Γ� �COMPa

♦A iff Γ�
2S5Pa �¬A iff Γ 2Pa ¬A.
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Proof. The first equivalence is immediate in view of Theorem 19 and the
fact that, whenever Γ has P-models, Γ� �COMPa ♦A iff Γ�

2COMPa �¬A.
The second follows from Theorem 13. �

Theorem 21 : For every Γ that has P-models and every A ∈ W , Γ� �COMPa

♦A iff [A ∧ ∼A ∈ U(Γ�) or Γ�
2S5Pa �∼A)] iff [A ∧ ∼A ∈ U(Γ) or

Γ 2Pa ∼A].

Proof. In view of Theorem 13 and the definitions of U(Γ) and U(Γ�), it
suffices to show that Γ� �COMPa ♦A iff A ∧ ∼A ∈ U(Γ) or Γ 2Pa ∼A.

Suppose first that Γ� �COMPa ♦A (for A ∈ W). It follows (by Theorem
18) that A is true in some Pa-model M of Γ. Hence, in view of the Pa-
semantics, Dab(∆ ∪ {A ∧ ∼A}) is a minimal Dab-consequence of Γ (for
some ∆ ⊂ Ω) or M falsifies ∼A. In the former case, A ∧ ∼A ∈ U(Γ); in
the latter, Γ 2Pa ∼A.

Suppose next that A ∧ ∼A ∈ U(Γ). In view of Theorems 3 and 4, A is
true in some Pm-model of Γ, and hence, in some Pr-model of Γ. But then,
Γ� �COMPa ♦A.

Suppose finally that Γ 2Pa ∼A. It again follows that A is true in some Pa-
model of Γ (in view of the fact that every P-model verifies A or ∼A). �

In Section 2, I explained that A should be considered as compatible with
a possibly inconsistent Γ iff A ‘behaves inconsistently’ with respect to Γ or
Γ 6` ∼A. The last theorem leads to an exact definition of this idea: A is
compatible with Γ iff A ∧ ∼A ∈ U(Γ) or Γ 0Pa ∼A.

To see that this definition leads to adequate results for both Pr and Pm,
consider, for instance, Γ = {p, q, ∼p ∨ ∼q}. In that case, p ∧ ∼p as well
as q ∧ ∼q are members of U(Γ), and hence, are classified as compatible
with Γ (both according to Pr and Pm). This is as it should be: p ∧ ∼p is
true in some Pr-model of Γ as well as in some Pm-model of Γ (analogously
for q ∧ ∼q). The difference between the two systems shows in the fact that
Γ 0Pr ∼((p ∧ ∼p) ∧ (q ∧ ∼q)), but Γ `Pm ∼((p ∧ ∼p) ∧ (q ∧ ∼q)). As
(p ∧ ∼p) ∧ (q ∧ ∼q) ∧ ∼((p ∧ ∼p) ∧ (q ∧ ∼q)) 6∈ U(Γ), it follows that
(p∧∼p)∧ (q∧∼q) is compatible with Γ according to Pr, but not according
to Pm. However, also this is as it should be: (p ∧ ∼p) ∧ (q ∧ ∼q) is true in
some Pr-models of Γ, but is false in all of its Pm-models.

Where Ω� = {�A | A ∈ W}, the following theorem relates the conse-
quence relation of COMPa to that of S5Pa:

Theorem 22 : If Γ has P-models, then Γ� �COMPa ♦A iff, for some finite
∆ ⊂ Ω�, Γ� �S5Pa

∨
({♦A} ∪ ∆) and Γ�

2S5Pa

∨
(∆).
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Proof. Suppose first that Γ� �COMPa ♦A. It follows that Γ� �S5Pa ♦A ∨
�¬A (in view of the fact that ♦A∨�¬A is valid in S5P) and that Γ�

2S5Pa

�¬A (by Theorem 20).
Suppose next that, for some finite ∆ ⊂ Ω�, Γ� �S5Pa

∨
({♦A} ∪∆) and

Γ�
2S5Pa

∨
(∆). As the COMPa-models of Γ� are a subset of its S5Pa-

models, it follows that Γ� �COMPa

∨
({♦A}∪∆). In view of Theorem 19, it

also follows that Γ�
2COMPa

∨
(∆). But then, as all COMPa-models of Γ�

verify
∨

({♦A}∪∆) and some of them falsify
∨

(∆), some COMPa-models
of Γ� verify ♦A. Hence, in view of Theorem 17, Γ� �COMPa ♦A. �

In view of the Soundness and Completeness of S5Pa, Theorem 22 seems
to provide an obvious basis for the proof theory of COMPa. The (condi-
tional) rule it suggests is this: if �B1, . . . , �Bn `S5Pa

∨
({♦A} ∪ ∆) (for

∆ ⊂ Ω�) and �B1, . . . , �Bn are derived in a proof from Γ�, then ♦A may
be derived in the proof on the condition that

∨
(∆) is not S5Pa-derivable

from Γ�. However, as there is no positive test for S5Pa-derivability, the ap-
plicability of this rule would be undecidable. This is why I shall now present
an alternative semantics for COMPa that proceeds entirely in terms of the
S5P-models of Γ�.

The alternative semantics will reveal that COMPr and COMPm are com-
posed of two adaptive logics. On the one hand, there is S5Pr (respectively
S5Pm). On the other hand, there is the logic COMP which is obtained
from S5P in a similar way as COM is obtained from S5. Where Γ? is
defined as before, the relation between the different systems is given by
♦A ∈ CnCOMPa(Γ�) iff ♦A ∈ CnCOMP(Γ?).

Like S5Pr and S5Pm, COMP is only defined with respect to sets of
premises of the form Γ� (where all members of Γ are non-modal). The
idea behind COMP is to assume that ♦A is true, unless Γ� explicitly pre-
vents so, that is, unless �¬A is S5P-derivable from Γ�. In line with this,
the set of abnormalities of COMP consists of all formulas of the form �¬A,
where A is a member of W .12 I shall use the term “�-abnormalities” to refer

12 Note that in view of the semantics of S5P, �¬A is S5P-derivable from Γ
� iff ∼♦A is.

Hence, like for COM, the set of abnormalities could be characterized by the form ∼♦A (see
[11]). The present format is chosen because it leads to a more transparent approach for the
paraconsistent case. Note also that in order to satisfy the usual relations between the lower
limit logic, the set of abnormalities and the upper limit logic (see Section 3), valid formulas
should be excluded from the set of abnormalities (if not, extending S5P with the require-
ment that all abnormalities are logically false results in a trivial—that is, Post-inconsistent—
system). However, as is explained in [11], the present approach not only leads to a simpler
semantics, but also facilitates the design of the proof theory. The upper limit logic of COMP
is obtained by extending S5P with the requirement that all logically contingent members of
Ω

� are logically false.
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to formulas of this form and denote their set by Ω�.
The lower limit logic of COMP is S5P. The �-abnormal part of an S5P-

model M is defined by:

Definition 28 : For any S5P-model M, Ab�(M) = {A ∈ Ω� | vM(A) =
1}.

and the set of �-abnormalities that are unavoidable in view of Γ� by:

Definition 29 : Ab�(Γ�) = {A ∈ Ω� | Γ� �S5P A}.

The COMP-models of Γ� are obtained by selecting its S5P-models that
verify �¬A iff �¬A is unavoidable in view of Γ�:

Definition 30 : An S5P-model M is a COMP-model of Γ� iff Ab�(M) =
Ab�(Γ�).

and the semantic consequence relation is defined accordingly:

Definition 31 : Γ� �COMP A iff all COMP-models of Γ� verify A.

When applied to sets of premises that are free of classical negation, COMP
suffers from all three problems discussed in Section 2. However, when
applied to Γ?, it leads to adequate results. The reason is that Γ? includes
�¬A, whenever A is false in all interpretations of Γ that are as consistent
as possible. Consider, for instance, Γ� = {�p, �q, �(∼p ∨ ∼q), �(∼p ∨
r), �(∼q ∨ r), �s}. If S5Pr is chosen to define Γ?, the latter includes
�¬(r ∧ ∼r) as well as �¬(s ∧ ∼s), and hence, ♦(r ∧ ∼r), ♦(s ∧ ∼s) and
♦∼s are false in all S5P-models of Γ?. If S5Pm is chosen, Γ? moreover
includes �¬((p ∧ ∼p) ∧ (q ∧ ∼q)). In that case, also ♦∼r is false in all
S5P-models of Γ?. I leave it to the reader to check that ♦(r ∧ ∼r) as well
as ♦(s ∧ ∼s) are COMP-consequences of Γ� (but not of Γ?).

I now show that the proper combination of S5Pa and COMP leads to
a semantics that, for all conclusions of the form ♦A, where A ∈ W , is
equivalent to the semantics of COMPa. Whether the two semantics are in
general equivalent is immaterial for the purposes of this paper (we are only
interested in the question whether some A is compatible with some Γ, and
hence, whether some ♦A is a semantic consequence of Γ�).

Lemma 4 : Γ� �S5Pa �¬A iff Γ? �S5P �¬A.
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Proof. The first direction is obvious. For the other direction, suppose that
Γ�

2S5Pa �¬A. It follows that �¬A is false in some S5Pa-model of Γ�,
and hence, in some S5P-model of Γ?. �

Lemma 5 : If an S5P-model M is a COMPa-model of Γ�, it is a COMP-
model of Γ?.

Proof. Suppose that M is a COMPa-model of Γ�. It follows that, for every
A ∈ W , M verifies �¬A iff Γ� �S5Pa �¬A (in view of Theorems 19 and
17). Hence, Ab�(M) = {�¬A | �¬A ∈ Γ?} = Ab�(Γ?) (in view of
Lemma 4). But then, M is a COMP-model of Γ?. �

Theorem 23 : Where A ∈ W , Γ� �COMPa ♦A iff Γ? �COMP ♦A.

Proof. For the left-right direction, suppose that Γ?
2COMP ♦A. It follows

that ♦A is false, and hence �¬A is true, in some S5P-model M that verifies
�¬B iff Γ∗ �S5P �¬B, and hence, iff Γ� �S5Pa �¬B (in view of Lemma
4). But then, ¬A is true in all P-models M that verify ¬B iff Γ �Pa ¬B (in
view of Theorem 13). Hence, ¬A is true in all Pa-models of Γ. It follows
that ♦A is false in all COMPa-models of Γ� (by Definition 26).

The right-left direction immediately follows from Lemma 5. �

To end this section, I show that Strong Reassurance holds with respect to
S5Pa and that Reassurance holds with respect to the lower limit logic S5P.

Theorem 24 : If M is an S5Pa-model of Γ� but not a COMPa-model of Γ�,
then there is a COMPa-model M′ of Γ� such that Ab(M′) ⊂ Ab(M).

Proof. Suppose that M = 〈Σ, M0〉 is an S5Pa-model of Γ�, but not a
COMPa-model of Γ�. In view of the semantics of S5Pa, Σ is a set of
Pa-models. It follows that there is a M′ = 〈Σ′, M0〉 such that Σ′ is the
set of all Pa-models, and hence, that there is a COMPa-model of Γ�. As
M is an S5Pa-model of Γ�, it verifies all members of {�¬A | �¬A ∈
Γ?} = Ab�(Γ?) = Ab�(M′). Hence, Ab�(M′) ⊆ Ab�(M). As M is
not a COMPa-model of Γ�, Ab�(M′) 6= Ab�(Γ?). But then, Ab�(M′) ⊂
Ab�(M). �

Theorem 25 : If Γ� has S5P-models, it also has COMPa-models.



“01meheus”
2005/1/24
page 279

i

i

i

i

i

i

i

i

PARACONSISTENT COMPATIBILITY 279

Proof. If Γ� has S5P-models, Γ has Pa-models (in view of the semantics
of S5P and Corollary 1). But then, Γ� has COMPa-models (in view of the
semantics of S5Pa and Theorem 24). �

9. The Dynamic Proof Theory of COMPa

As both COMPr and COMPm consist of two adaptive logics (that have
a different set of abnormalities), their proof theory includes two different
conditional rules (one related to S5Pr, respectively S5Pm) and one related
to COMP. Each of the two logics also has two different marking definitions.
However, as S5P is the lower limit logic of S5Pr and S5Pm as well as of
COMP, there is only one unconditional rule.

I shall use Dab(∆) in the same way as before (to refer to a disjunction of
members of Ω), and Dab

�(∆) to refer to a disjunction of members of Ω�.
Although there are two different kinds of abnormalities involved, the proof

format of COMPa is exactly the same as that of all other adaptive logics:
as the two conditional rules are defined with respect to abnormalities of a
different logical form, there is no need to introduce two sets of conditions.

The premise rule is as for S5Pa and is therefore not repeated here. Also
the unconditional rule (NRU∗) and the first conditional rule (NRC1) are as
for S5Pa, except that some additional restriction is added (in order to sim-
plify the meta-proofs):

NRU∗ If �B1, . . . , �Bn `S5P A (n ≥ 0), �B1, . . . , �Bn occur in the
proof on the conditions ∆1, . . . , ∆n respectively, and ∆1 ∪ . . . ∪
∆n ∩ Ω� = ∅, then one may add to the proof a line consisting
of:

(i) the appropriate line number,
(ii) A,

(iii) the line number of the �Bi,
(iv) “NRU∗”, and
(v) ∆1 ∪ . . . ∪ ∆n.

NRC1 If �B1, . . . , �Bn `S5P �(A ∨ Dab(∆)) (n ≥ 0), �B1, . . . , �Bn

occur in the proof on the conditions ∆1, . . . , ∆n respectively, and
∆1 ∪ . . . ∪ ∆n ∩ Ω� = ∅, then one may add to the proof a line
consisting of:

(i) the appropriate line number,
(ii) �A,

(iii) the line number of the �Bi,
(iv) “NRC1”, and
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(v) ∆ ∪ ∆1 ∪ . . . ∪ ∆n.

The second conditional rule allows one to introduce formulas of the form
♦A to the proof. Note that also this rule refers to S5P:

NRC2 If �B1, . . . , �Bn `S5P ♦A ∨ Dab
�(∆) (n ≥ 0), and �B1, . . . ,

�Bn occur in the proof on the conditions ∆1, . . . , ∆n respectively,
then one may add to the proof a line consisting of:

(i) the appropriate line number,
(ii) ♦A,

(iii) the line number of the �Bi,
(iv) “NRC2”, and
(v) ∆ ∪ ∆1 ∪ . . . ∪ ∆n.

The following rule (which is obviously derivable) leads to proofs that are
more interesting from a heuristic point of view:

RD If B1, . . . , Bn `S5P A, and B1, . . . , Bn occur in the proof on the
conditions ∆1, . . . , ∆n respectively, then one may add to the proof
a line consisting of:

(i) the appropriate line number,
(ii) A,

(iii) the line number of the Bi,
(iv) “RD”, and
(v) ∆ ∪ ∆1 ∪ . . . ∪ ∆n.

The above rules are the same for COMPr and COMPm. The difference
between the two systems shows again only in the marking definitions.

The marking definition related to NRC1 (called r-marking and m-marking,
respectively) is exactly the same as for S5Pa. Thus, r-marking for COMPr

is given by Definition 19 and m-marking for COMPm by Definition 23.
Also, Us(Γ

�) and Φs(Γ
�) are defined in exactly the same way as for S5Pa

(both proceed in terms of the NDab-formulas that are derived on the empty
condition).

The marking definition related to NRC2 (called c-marking) is the same
for both COMPr and COMPm. What is special about c-marking is that it
proceeds in terms of formulas that are (possibly) derived on a non-empty
condition. This, however, is not surprising. As COMP is defined ‘on top of’
S5Pr and S5Pm, a formula that is introduced by means of NRC2 should
be withdrawn as soon as it turns out to be incompatible with one of the
S5Pa-consequences (or put more accurately, as soon as it turns out to be
incompatible with one of the formulas that is, at that stage of the proof,
considered as S5Pa-derived). As we shall see below, the interplay between



“01meheus”
2005/1/24
page 281

i

i

i

i

i

i

i

i

PARACONSISTENT COMPATIBILITY 281

the two different kinds of marking causes the proof theory for paraconsistent
compatibility to be much more dynamic than that for classical compatibility.

In view of the definition of c-marking, we first need to define the set
Abs(Γ

�). In the case of COMPr, respectively COMPm, Abs(Γ
�) consists

of all members of Ω� that occur, at that stage of the proof, on a line that is
not r-marked, respectively m-marked.

Definition 32 : Marking for COMP: Line i is c-marked at stage s of a proof
from Γ� iff, where ∆ is its condition, ∆ ∩ Abs(Γ

�) 6= ∅.

In the following definitions, I say that a line is marked iff it is r-marked,
m-marked or c-marked:

Definition 33 : A is derived at stage s in a COMPa-proof from Γ� iff A is
the second element of a line that is not marked in the proof at that stage.

Definition 34 : A is finally derived on line i of a COMPa-proof from Γ� iff
(i) A is the second element of line i, (ii) line i is not marked in the proof,
and (iii) any extension of the proof in which line i is marked may be further
extended in such a way that line i is unmarked.

Definition 35 : Γ� `COMPa A (A is finally COMPa-derivable from Γ�) iff
A is finally derived on some line of a COMPa-proof from Γ�.

As the definition for c-marking refers to lines that are not r/m-marked
(consider the definition for Abs(Γ)), the best way to perform the marking is
by deleting all marks (whenever a line is added to the proof), and by adding
the r/m-marks before the c-marks.

Let us look at a very simple example of a dynamic proof to understand
what the proof theory comes to. To save space, I shall illustrate the proof
theory of both COMPr and COMPm with one and the same proof. Suppose
that these are the premises:
1 �(p ∧ q) – PREM ∅
2 �(∼p ∨ ∼q) – PREM ∅
3 �(∼p ∨ ∼r) – PREM ∅
4 �(∼q ∨ ∼r) – PREM ∅
5 �s – PREM ∅

In view of line 5, the rule NRC2 allows one to add the following line:
6 ♦(r ∧ s) 5 NRC2 {�¬r}
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This expresses the hypothesis that r ∧ s is compatible with the (non-modal
forms of the) premises. However, in view of lines 1 and 3, one may infer ¬r,
on the condition that both p ∧ ∼p and r ∧ ∼r behave normally:
7 �¬r 1, 3 NRC1 {p ∧ ∼p, r ∧ ∼r}

At this stage, the condition of line 6 is no longer fulfilled: �¬r ∈ Ab7(Γ).
So, at stage 7, line 6 is c-marked, and hence, the formula that occurs on it is
no longer considered as derived (independent of whether the above proof is
a COMPr-proof or a COMPm-proof).

Suppose, however, that one then adds the following line:
8 �((p ∧ ∼p) ∨ (q ∧ ∼q)) 1, 2 NRU∗ ∅

According to the best insights in the premises at this stage of the proof,
both p ∧ ∼p and q ∧ ∼q behave abnormally with respect to the premises.
In view of the fact that U8(Γ) = {p ∧ ∼p, q ∧ ∼q}, line 7 is r-marked
at this stage. Moreover, as Φ8(Γ) = {{p ∧ ∼p}, {q ∧ ∼q}}, line 7 is also
m-marked (in view of (ii) in Definition 23). As a consequence, line 6 is no
longer c-marked, and hence, is again considered as derived in the proof.13

There is, however, a second way to infer ¬r from the premises:
9 �¬r 1, 4 NRC1 {q ∧ ∼q, r ∧ ∼r}

At this stage, the marking for COMPr and for COMPm no longer pro-
ceeds in the same way. Line 9 is r-marked (in view of line 8), but is not
m-marked. Moreover, line 7 is still r-marked, but is no longer m-marked.
It follows that, if the above is a COMPr-proof from Γ�, line 6 is still not
c-marked. However, if it is a COMPm-proof, line 6 is again c-marked. So,
this is how the proof looks like at stage 9:
1 �(p ∧ q) – PREM ∅
2 �(∼p ∨ ∼q) – PREM ∅
3 �(∼p ∨ ∼r) – PREM ∅
4 �(∼q ∨ ∼r) – PREM ∅
5 �s – PREM ∅
6 ♦(r ∧ s) 5 NRC2 {�¬r} Xc (for COMPm only)
7 �¬r 1, 3 NRC1 {p ∧ ∼p, r ∧ ∼r} Xr

8 �((p ∧ ∼p) ∨ (q ∧ ∼q)) 1, 2 NRU∗ ∅
9 �¬r 1, 4 NRC1 {q ∧ ∼q, r ∧ ∼r} Xr

I leave it to the reader to check that, for COMPr, the formula on line 6 is
finally derived and that ♦(s∧∼s) is not finally derivable in the proof (neither
for COMPr nor for COMPm), but that ♦(p ∧ ∼p) is.

13 This is an important difference with the adaptive logics for classical compatibility from
[11]. The dynamics of their proofs is very limited: once a formula is marked, it remains
marked in any extension of the proof.



“01meheus”
2005/1/24
page 283

i

i

i

i

i

i

i

i

PARACONSISTENT COMPATIBILITY 283

Let us now turn to the Soundness and Completeness proofs. In view of the
intended application of COMPa, I only prove Soundness and Completeness
for conclusions of the form ♦A.

I begin with two lemmas the proof of which immediately follows by an
inspection of the proof theory:

Lemma 6 : A can be finally derived on a condition ∆ such that ∆∩Ω� = ∅
iff Γ� `S5Pa A.

Lemma 7 : Where ∆ ⊂ Ω, ∆′ ⊂ Ω�, and ∆′ 6= ∅, ♦A can be finally
derived on a condition ∆∪∆′ iff Γ� `S5Pa ♦A∨Dab

�(∆′) and Γ�
0S5Pa

Dab
�(∆′).

In the following proof, I freely rely on the Soundness and Completeness
results for S5Pa.

Theorem 26 : For every A ∈ W , if Γ� `COMPa ♦A then, Γ� �COMPa ♦A.

Proof. Suppose that Γ� `COMPa ♦A. It follows that ♦A is finally derived
on some line i of a COMPa-proof from Γ�. Where ∆ ⊂ Ω and ∆′ ⊂ Ω�,
let the condition of line i be ∆ ∪ ∆′.

If ∆′ = ∅, Γ� `S5Pa ♦A (by Lemma 6). Hence, as the COMPa-models
of Γ� are a subset of its S5Pa-models, Γ� �COMPa ♦A.

If ∆′ 6= ∅, Γ� `S5Pa ♦A ∨ Dab
�(∆′) and Γ�

0S5Pa Dab
�(∆′) (by

Lemma 7). Hence, all S5Pa-models of Γ� verify ♦A ∨ Dab
�(∆′), but

some of them falsify Dab
�(∆′). It follows that all COMPa-models of Γ�

falsify Dab
�(∆′), and hence, that all of them verify ♦A. �

Theorem 27 : For every A ∈ W , if Γ� �COMPa ♦A then, Γ� `COMPa ♦A.

Proof. If Γ does not have P-models, the theorem obviously holds (in view
of {�A, �¬A} `S5P ⊥).

So, suppose that Γ has P-models and that Γ� �COMPa ♦A. It follows, by
Theorem 20, that Γ�

0S5Pa �¬A. As `S5P ♦A ∨�¬A, RC2 allows one to
start a proof from Γ� by writing down a line (with line number 1) that has
♦A as its second element and {�¬A} as its fifth. It is easily seen that line 1
is neither r-marked nor m-marked in any extension of the proof and that any
extension of the proof in which line 1 is c-marked may be further extended
such that line 1 is not c-marked. This proves that ♦A is finally derived in
some COMPa-proof from Γ�, and hence, that Γ� `COMPa ♦A. �
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10. Some Alternatives

The inconsistency-adaptive logics Pr and Pm are based on a very weak para-
consistent logic. For instance, the De Morgan properties are not valid in P,
and Replacement of Identicals is only valid outside the scope of a negation.
P also does not spread inconsistencies. For example, some P-models verify
both p ∧ q and ∼(p ∧ q), but falsify any other inconsistency.

This has specific consequences for the accounts of paraconsistent compat-
ibility that are based on Pr and Pm. Consider, for instance, Γ = {p, ∼p}.
As ∼∼p ∧ ∼∼∼p 6∈ U(Γ) and Γ `Pa ∼∼∼p, ∼∼p is not Pa-compatible
with Γ. More generally, any formula obtained by prefixing an even number
of “∼” to p is incompatible with Γ. However, any formula obtained by pre-
fixing an odd number of “∼” to p is compatible with it. The reason is that
for any such A (p preceded by an odd number of paraconsistent negations),
Γ 0Pa ∼A.

As is shown in [10], the logic P may be enriched in several ways. Ev-
idently, every enrichment will have effects on the corresponding notion of
paraconsistent compatibility. For instance, if one chooses an inconsistency-
adaptive logic based on an enrichment of P that validates A / ∼∼A, any
formula obtained by prefixing a series of “∼” to p will be compatible with
{p, ∼p}. In general, enriching P will have the effect that more sentences
are compatible with a given set of premises. The reason is that enriching
P results in a poorer inconsistency-adaptive logic. Consider, for instance,
Γ = {∼(p ∧ q), p ∧ q, ∼p ∨ r}. All Pa-models of Γ falsify ∼p and verify
r (as P does not spread inconsistencies). Hence, r is a Pa-consequence of
Γ and ∼r is not Pa-compatible with it. However, where P+ stands for an
enrichment of P that validates all De Morgan properties, some P+-models
verify ∼p as well as ∼r, and hence, p, ∼p, r and ∼r are all P+a-compatible
with Γ.14

The situation is somewhat different if one chooses a paraconsistent sys-
tem that validates Disjunctive Syllogism as well as all other ‘analysing’
rules—an example is the logic AN from [15]. In that case, one obtains an
inconsistency-adaptive logic that is much richer than Pr and Pm. For in-
stance, where Γ = {∼(p ∧ q), p ∧ q, ∼p ∨ r}, ANA (the adaptive logic
based on AN) not only entails p and ∼p, but also r and ∼∼r. Hence, p and

14 Readers that want to experiment with different enrichments of P and the correspond-
ing inconsistency-adaptive logics are referred to the computer program LaC (designed
by Alex Klijn and free downloadable from http://logica.UGent.be/centrum/
writings/programs.php). The program not only allows one to check whether, ac-
cording to P, Pr or Pm, some sentence is a semantic consequence of some set of premises,
but also to ‘compose’ alternative systems and to check semantic consequence for these.
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∼p are ANA-compatible with Γ (because they behave inconsistently with
respect to it), but ∼r is not.

Still a different situation obtains when one chooses an inconsistency-adap-
tive logic that is based on a non-adjunctive paraconsistent system. An exam-
ple is the logic DL

r (see [18]). This logic, which is an adaptive version
of Jaśkowski’s system D2, invalidates Adjunction for all sentences that be-
have inconsistently with respect to the premises (thus preventing the deriva-
tion of contradictions), but validates it for all others. Thus, where Γ =
{p ∧ q, ∼p, r}, p ∧ ∼p is not DL

r-derivable from Γ, but q ∧ r is.
In [16], DL

r is combined with COM to reconstruct the notion of prag-
matic truth as developed in the partial structures approach of Newton da
Costa and associates (see, for instance, [13]). The resulting logic (called
APT) forms an alternative for the logic of paraconsistent compatibility pre-
sented in this paper. An important difference, however, is that APT does not
allow to distinguish between inconsistent information and incomplete infor-
mation. For instance, where Γ = {p, ∼p}, there is no way to decide from
the APT-consequence set that Γ is inconsistent with respect to p, but incom-
plete with respect to q: p, ∼p, q and ∼q are all APT-consequences of Γ, and
any complex formula derivable for p is also derivable for q. In the case of
COMPa, however, p ∧ ∼p is derivable from Γ, but q ∧ ∼q is not.

11. In Conclusion

The logics of paraconsistent compatibility presented in this paper have sev-
eral attractive properties. To begin with, they offer a characterization of
paraconsistent compatibility that is as intuitive as that for classical compat-
ibility, both from a definitorial and a semantic point of view. Moreover, for
the consistent case, they lead to exactly the same results as the logics for
classical compatibility that were presented in [11]. Finally, for the inconsis-
tent case, they only classify a sentence as compatible with a set of premises
Γ if it is true in some interpretation of Γ that is as consistent as possible.

Another important characteristic of the results presented in this paper is
that they are highly generic. The procedure by which the logics COMPr and
COMPm are obtained from the inconsistency-adaptive logics Pr and Pm is
easily adjustable for other inconsistency-adaptive logics. This is especially
important in view of the fact that, for the inconsistent case, different contexts
ask for different logics of compatibility. For instance, in some contexts, there
may be reasons to assume that the number of inconsistencies is minimal. In
other contexts, there may be reasons to be much more cautious. Still in other
contexts, there may be reasons to interpret the information in the richest
way possible (despite the inconsistencies)—see [17] for examples. Which
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sentences are considered as compatible with the available information and
which not will be different in each of these contexts.

The paper also raises some open problems. One is to formulate criteria to
decide which logic of paraconsistent compatibility is suited for which appli-
cation context. Another series of problems is related to the logics S5Pr and
S5Pm. Here, they are used as a basis for the logics COMPr and COMPm.
However, as is discussed in, for instance, [7], many non-monotonic conse-
quence relations are most easily captured by a modal adaptive logic. Because
of this, it is worthwhile to further elaborate the logics S5Pr and S5Pm.
What seems most urgent in this respect is to generalize the two logics (for
arbitrary sets of premises) and to reformulate them in the usual format of
adaptive logics. Once such a formulation is available, the results from [8]
will allow to prove, in a completely standard way, a whole series of proper-
ties.15
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