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BF , CBF AND LEWIS SEMANTICS

GIOVANNA CORSI

1. Introduction

The Barcan Formula (BF ) ∀x2A → 2∀xA and its Converse (CBF ) 2∀xA
→ ∀x2A have been a central topic of discussion since the very beginning
of quantified modal logic, which goes back to Ruth Barcan Marcus’s paper
of 1946, [1]. The problem we shall address in this paper is that of select-
ing the ‘right’ semantics so as to fully understand their meanings. BF and
CBF are often considered as dual principles: BF corresponds in Kripke
semantics, K-semantics, to the condition that inner domains never increase,
CBF to the condition that inner domains never decrease. We shall show that
this duality is not intrinsic to the meaning of CBF and BF but rather de-
pends on general features of Kripke semantics. A major step forward to the
clarification of the meaning of BF was achieved by counterpart semantics,
C-semantics. Counterpart semantics was introduced as early as 1988 in [7] in
the context of the semantics of relational universes. It has many advantages
including the fact that it provides the conceptual tools for a foundational
study of quantified modal logics. A detailed description of it together with
several completeness theorems can be found in [2]. As we shall see, in coun-
terpart semantics the meaning of BF is well captured, whereas the meaning
of CBF still remains opaque. We will introduce a generalization of coun-
terpart semantics that we call Lewis semantics1 , L-semantics, to address this
problem. We will limit ourselves to modal languages without individual con-
stants or the identity relation because, notwithstanding their central role in
counterpart semantics, these are not relevant to the present discussion. In
Lewis semantics, as distinct from counterpart semantics (though exactly as
in Kripke semantics2 ), any world w is endowed with an inner domain Dw

and an outer domain Uw, Dw ⊆ Uw, where Dw represents the set of ‘ex-
isting’ individuals at w, whereas Uw is a subset of the pool of entities that
either existed or will exist or will remain forever fictional entities. Other

1 From David Lewis.

2 See[3] .
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104 GIOVANNA CORSI

features of Lewis semantics are analogous to those of counterpart semantics,
and, in particular, individuals are worldbound, so, in general, no individual
exists in different worlds. Individuals have similia in different worlds and
the task of retracing these is left to the counterpart relation C. An individual
of a world w can have none, one, many similia or counterparts in any acces-
sible world. This notion of counterpart is crucial to determining the value of
modalized formulas: John has the property of being necessarily A if all of
his counterparts in all accessible worlds have the property A. In more detail,
given a formula 2A(x1, . . . , xn) with exactly the free variables x1, . . . xn,
an n-tuple of individuals satisfies the property 2A iff all the n-tuples of their
respective counterparts satisfy A.

〈a1, . . . , an〉 |=w 2A(x1, . . . , xn)
iff for every v such that wRv and for every counterpart a∗

1, . . . , a
∗
n of

a1, . . . , an in Uv, 〈a∗1, . . . , a
∗
n〉 |=v A(x1, . . . , xn).

Analogously,
〈a1, . . . , an〉 |=w 3A(x1, . . . , xn)

iff there is a v such that wRv and there are counterparts a∗
1, . . . , a

∗
n of

a1, . . . , an in Uv, such that 〈a∗1, . . . , a
∗
n〉 |=v A(x1, . . . , xn).

2. Lewis semantics

A Lewis-frame, L-frame, is a quintuple F = 〈W, R, D, U, C〉, where W 6=
∅, R ⊆ W 2, D and U are functions such that Dw is a set for every w ∈ W ,
Uw is a set for every w ∈ W and Dw ⊆ Uw. C is the counterpart relation:
C =

⊎

w,v∈W {C〈w,v〉 : wRv}, where for any w, v ∈ W , C〈w,v〉 ⊆ (Dw ×

Dv).3
A Lewis-model M based on an L-frame F is given by an interpretation
function I such that: for any predicate symbol P n, Iw(Pn) ⊆ (Uw)n.
Dw is the inner domain, the domain of variation of the quantifiers whereas
Uw is the outer domain, the domain of interpretation of the predicate sym-
bols, of the individual constants (if any) and the domain of variation of the
variables.

Here are the four classes of frames we will refer to in the sequel.

3 We take the disjoint union because the same individual may happen to belong to two
different domains Uv and Uz and the one in Uv may be a counterpart of some a, whereas the
one in Uz is not.
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Lewis frames Counterpart frames

Dw ⊆ Uw Dw = Uw

no proviso on C no proviso on C

Kripke frames Tarski-Kripke frames

Dw ⊆ Uw 6= ∅ Dw = Uw 6= ∅
wRv implies Uw ⊆ Uv wRv implies Uw ⊆ Uv

C is a totally defined function C is a totally defined function
typically C is the subset relation typically C is the subset relation

A difficulty with Lewis semantics, as well as with counterpart semantics,
is that a language appropriate to talk about L-frames and L-models has to
be a language with types. Let us see why. In the truth clause given above,
x1, . . . , xn are exactly4 the variables occurring free in A, but x1, . . . , xn can
be “too few" or “too many" when we consider subformulas of A(x1, . . . , xn),
here is an example: ∃x3Q(x1, x2, x3) ∧ P (x1) contains two free variables,
Q(x1, x2, x3) three and P (x1) just one free variable. Types are needed
to solve the problem. Terms have types and consequently formulas have
types. From a semantical point of view a type tells us the length of the
n-tuple of elements of the domain with respect to which it makes sense ei-
ther to evaluate a term or to establish if a formula is satisfied or not. Let
x1, x2, x3, . . . be all the variables of the language. In order to see in a sim-
ple way how and why types are associated to terms, let us interpret the vari-
ables as projection functions. Let πn

i , n ≥ i, be the projection function such
that πn

i (a1, . . . , an) = ai. Quite naturally the formulas P (π2
1(x, y)) and

P (π1
1(x)) are synonymous, but the first contains two free variables, whereas

the second contains just one free variable. So P (π2
1(x, y)) is satisfied or not

satisfied by pairs of individuals, whereas P (π1
1(x)) by single individuals.

Now, according to the given truth clause of modalized formulas, it is not the
case that

〈a1, a2〉 |=w 2P (π2
1(x, y)) iff 〈a1〉 |=w 2P (π1

1(x))

because the worlds where there are counterparts of both a1 and a2 are, in
general, fewer than the worlds where there are counterparts of a1.5

4 As we will see in a moment, this proviso cannot be weakened.

5 This explains also why infinitary assignments will not do.
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106 GIOVANNA CORSI

So we have to distinguish between π2
1(x, y) and π1

1(x). Terms with types
do the job. For each variable xi,

xn
i ,

n ≥ i, is a term of type n. Intuitively speaking, xn
i is a term “containing"

the free variables x1, . . . , xn.
For any n, and m-tuple of variables of type n, xn

1 , . . . , xn
m,

〈xn
1 , . . . , xn

m〉

is a complex term of type n → m or ‘from type n to type m’. In the follow-
ing we will use the simpler notation 〈n : x1, ..., xm〉 and we will call such
complex terms projections. For every n, the empty list of variables of type
n, 〈n : 〉, is a projection of type n → 0. Now the notion of well formed
formula.

1. If P n is an n-ary predicate symbol then P n is a pure atomic formula
of type n,

2. If A is a wff of type n and 〈m : x1, ..., xn〉 is a projection of type
m → n, then 〈m : x1, ..., xn〉A is a wff of type m,

3. If A and B are wffs of type n, then ¬A, 2A, A ∨ B are wffs of
type n.

4. If A is a wff of type n + 1, then ∃xn+1A is a wff of type n,
Pure atomic formulas are written also as P n(n : x1, ..., xn). Given a pure

atomic formula P n and a complex term 〈m : xi1 , ..., xin〉 of type m → n,
then 〈m : xi1 , ..., xin〉P

n is an atomic formula of type m and, as usual,
can be written as P n(m : xi1 , ..., xin). Q2(3 : x1, x3) and Q2(5 : x1, x3)
are different, for they have different types, whereas Q2(2 : x1, x3) is not
well formed because the type is less than the maximum index of the free
variables. 〈m : xi1 , ..., xin〉A is a substituted formula. It is expedient to
take the operation of substitution as a primitive logical operation. Given a
formula A containing the variables x1, . . . , xn, substitution applies to all the
variables x1, . . . , xn although vacuously to some (none or all) of them (i.e.
xi will be substituted for xi itself), hence n-tuples of terms (of the same
type) have to be considered. Moreover if each of the terms t1, . . . , tn is of
type m, the resulting formula will contain the free variables x1, . . . , xm and
so it will be of type m.
Quantifying reduces the type by one, so from Q2(3 : x1, x3) we get ∀x3Q

2

(3 : x1, x3) of type 2, from Q2(3 : x1, x2) we get ∀x3Q
2(3 : x1, x2) of

type 2 (vacuous quantification). ∀x1Q
2(2 : x1, x2) is not well formed. No

collision between free and bound variables can occur: all bound variables
have indices greater than the indices of the free variables.

Interpretation of terms and satisfaction in L-models
Projections of type n → m are interpreted with respect to n-tuples of ele-
ments of the domain:
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BF , CBF AND LEWIS SEMANTICS 107

〈a1, ..., an〉[n : xi1 , ..., xim ] = 〈ai1 , ..., aim〉.
Let M = 〈W, R, D, U, C, I〉 be an L-model. For any w ∈ W , n-tuple
〈a1, ..., an〉 of elements of Uw and formula A of type n, we define when
〈a1, ..., an〉 satisfies A at w in
M, 〈a1, ..., an〉 |=w A. By induction on A.

〈a1, ..., an〉 |=w Pn iff 〈a1, ..., an〉 ∈ Iw(Pn)
〈a1, ..., an〉 |=w 〈n : xi1 , ..., xik〉B iff 〈a1, ..., an〉[n : xi1 , ..., xik ] |=w B
〈a1, ..., an〉 |=w ¬C iff 〈a1, ..., an〉 6|=w C
〈a1, ..., an〉 |=w C ∨ D iff 〈a1, ..., an〉 |=w C or 〈a1, ..., an〉 |=w D
〈a1, ..., an〉 |=w ∃xn+1C iff for some b ∈ Dw, 〈a1, ..., an, b〉 |=w C
〈a1, ..., an〉 |=w 2C iff for all v such that wRv and for all

a∗1, . . . , a
∗
n in Uv such that aiCa∗i , 1 ≤

i ≤ n, 〈a∗1, ..., a
∗
n〉 |=v C.

A formula A of type n is true at w in M, M |=n
w A, iff for any n-

tuple a1, . . . , an of elements of Uw, 〈a1, ..., an〉 |=w A. A is valid on M,
M |=n A, iff M |=n

w A for all w ∈ W . A is valid on a L-frame F ,
F |=n A, iff M |=n A for every model M based on F .

Note that, in general, 〈n : xi1 , . . . , xik〉2A and 2〈n : xi1 , . . . , xik〉A have
different meanings. Take the formula 〈1 : x1, x1〉2P (x1, x2). Then

〈a〉 |=w 〈1 : x1, x1〉2P (x1, x2) iff 〈a, a〉 |=w 2P (x1, x2),
iff for all v such that wRv,

〈a∗, a∗
∗

〉 |=v P (x1, x2), where a∗

and a∗
∗

are counterparts of a in v.
〈a〉 |=w 2〈1 : x1, x1〉2P (x1, x2) iff for all v such that wRv, 〈a∗〉 |=v

〈1 : x1, x1〉P (x1, x2), where a∗ is
a counterpart of a in v,

iff 〈a∗, a∗〉 |=v P (x1, x2).

〈1 : x1, x1〉2P (x1, x2) is a de re modality, whereas 2〈1 : x1, x1〉P (x1, x2)
(that is just 2P (x1, x1)) is a de dicto modality.

Here is a list of well known modal formulas

GF ∃xn+12A → 2∃xn+1A

D 2〈n + 1 : x1, . . . , xn〉A → 〈n + 1 : x1, . . . , xn〉2A

BF ∀xn+12A → 2∀xn+1A
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M 2〈n + 1 : x1, x1, x2, . . . , xn+2〉A
→ 〈n + 1 : x1, x1, x2, . . . , xn+2〉2A

CBF 2∀xn+1A → ∀xn+12A

Models and countermodels

We present with a few simple pictures some countermodels to the formulas
listed above based on L-frames. The pictures with the comments alongside
are self-explanatory. In the pictures the counterpart relation is symmetric.

Model I F 6|= GF

�
 �	w
bq qa

�
 �	vb
∗q b∗ /∈ P̂

〈a〉 |=w 2P (x1), 6|=w ∃x12 P (x1) → 2∃x1P (x1)

Model II F 6|= D

�
 �	 w
bq qa

�
 �	 vb
∗q b∗ /∈ P̂

〈b, a〉 |=w 2〈2 : x1〉P (x1) 〈b, a〉 6|=w 〈2 : x1〉2P (x1)

6|=w 2〈2 : x1〉P (x1) → 〈2 : x1〉2P (x1)

Model III F 6|= BF

�
 �	 wqa

�
 �	 vqb∗a
∗q b∗ /∈ P̂ , a∗ ∈ P̂

|=w ∀x12P (x1) 6|=v ∀x1P (x1)

6|=w ∀x12P (x1) → 2∀x1P (x1)

Model IV F 6|= M

�
 �	wbq

qa
�
 �	vb

∗q 〈b∗, b∗〉 ∈ R̂, 〈a, a〉 ∈ R̂, 〈b∗, a〉 6∈ R̂

�
�
�
��

〈b〉 |=w 2〈1 : x1, x1〉R(x1, x2) 〈b, b〉 6|=w 2R(x1, x2)

〈b〉 6|=w 2〈1 : x1, x1〉R(x1, x2)

→ 〈1 : x1, x1〉2R(x1, x2)
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BF , CBF AND LEWIS SEMANTICS 109

Model V F 6|= CBF

�
 �	 wbq

qa�
 �	 vb
∗q b∗ ∈ P̂ a /∈ P̂

�
�

�
�

〈〉 |=v ∀x1P (x1) 〈b〉 6|=w 2P (x1)

〈〉 6|=w 2∀x1P (x1) → ∀x12P (x1)

Properties of C corresponding to modal formulas6

C is totally defined iff if wRv and a ∈ Dw

then there is a b ∈ Dv

such that aCb

iff F |= GF

C is u-totally defined iff if wRv and a ∈ Uw

then there is a b ∈ Uv

such that aCb

iff F |= D

C is surjective iff if wRv and b ∈ Dv

then there is an a ∈
Dw such that aCb

iff F |= BF

C is a part. function iff if wRv, a ∈ Uw, b, c ∈
Uv, aCb and aCc then
b = c

iff F |= M

C is preservative iff if wRv, a ∈ Dw, b ∈
Uv and aCb then b ∈
Dv

iff F |= CBF

Let us prove the ‘if’ arrows; the ‘only if’ arrows are trivial. Consider a
modal language with a unary predicate letter P and let an L-frame F be
given.

Assume that GF is valid on F . Take an L-model M based on F , let
w ∈ W , a ∈ Dw and define Iv(P ) = {b ∈ Dv : aCb}, for all v such
that wRv. It obtains that 〈〉 |=w ∃x12P . (If Iv(P ) = ∅, then trivially
〈a〉 |=w 2P (x1).) By hypothesis GF is L-valid, whence 〈〉 |=w 2∃x1P . It
follows that 〈〉 |=v ∃x1P for all v such that wRv, whence for some b ∈ Dv,
〈b〉 |=v P , consequently Iv(P ) 6= ∅, so {b ∈ Dv : aCb} 6= ∅, whence C is
totally defined.

6 See [7].
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Assume that D is valid on F . Take an L-model M based on F , let w ∈ W
and a ∈ Uw. For any v, wRv, define Iv(P ) = Dv if there is an a∗ ∈ Uv such
that aCa∗; Iv(P ) = ∅, otherwise. Then 〈a〉 |=w 2〈1 :〉∀x1P (x1). Therefore
via D, 〈a〉 |=w 〈1 :〉2∀x1P (x1), so 〈 〉 |=w 2∀x1P (x1), hence for any v,
wRv, 〈 〉 |=v ∀x1P (x1) and so for any v, wRv, Iv(P ) = Dv. Consequently,
by definition of Iv(P ), there is an a∗ ∈ Uv such that aCa∗, so C is u-totally
defined.

Assume that BF is valid on F . Take an L-model M based on F , a world
w ∈ W and for all v ∈ W such that wRv, define Iv(P ) = {b ∈ Dv : aCb
for some a ∈ Dw}. Then 〈〉 |=w ∀x12P (x1). Therefore, via BF , 〈〉 |=w

2∀x1P (x1). Whence for all v.wRv. and for all b ∈ Dv, 〈b〉 |=v P (x1).
So for all b ∈ Dv there is an a ∈ Dw such that aCb. Consequently C is
surjective.

Assume that M is valid on F . Let w ∈ W . Take an L-model M based on
F , where Iv(P

2) = {〈a, a〉 : a ∈ Dv}, for all v such that wRv. It obtains
that 〈a〉 |=w 2〈1 : x1, x1〉P

2(x1, x2). Whence by M it follows that 〈a〉 |=w

〈1 : x1, x1〉2P 2(x1, x2). Therefore 〈a, a〉 |=w 2P 2(x1, x2). So for all
v, wRv, all a∗, a◦ ∈ Dv such that aCa∗ and aCa◦, 〈a∗, a◦〉 |=w P 2(x1, x2).
Therefore a∗ = a◦ by definition of Iv(P

2). Consequently {a∗ ∈ Uv : aCa∗}
either is equal to the empty set or is equal to {a∗}, so C is a partial function.

Assume that CBF is valid on F . Take an L-model M based on F , let
w ∈ W , a ∈ Dw and define Iv(P ) = Dv, for all v such that wRv. It
obtains that 〈〉 |=w 2∀x1P (x1). Whence by CBF , 〈〉 |=w ∀x12P (x1).
It follows in particular that, 〈a〉 |=w 2P (x1); consequently either a has no
counterparts in Uv or for all a∗ ∈ Uv such that aCa∗, 〈a∗〉 |=v P (x1), hence
a∗ ∈ Dv. Consequently C is preservative.

In counterpart semantics validity of BF corresponds to the condition that
C is surjective, and this condition, as we have seen above, remains the same
in Lewis semantics. The situation is different for CBF , in counterpart se-
mantics no condition parallels the property of being ‘preservative’, CBF
seems to be uncontroversial and unassuming. In C-semantics CBF corre-
sponds to the principle that R.Stalnaker calls QCBF . “But QCBF , a quali-
fied version of the converse of the Barcan formula does seem to be validated
without any assumptions about the relationships between the domains of the
different possible worlds:
(QCBF ) 2∀x̂φ → ∀x̂2(Ex → φ)

where E is the predicate of existence (defined as ∃ŷ(x = y))). Whatever the
relations between the domains, surely if in w it is necessary that everything
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must satisfy φ, then anything that exists in w must satisfy φ in every acces-
sible possible world in which that individual exists.", see [11], p.18. We can
rephrase this quotation by saying ‘ ... surely if in w it is necessary that ev-
erything must satisfy φ, then every counterpart of anything that exists in w
must satisfy φ in every accessible possible world in which that counterpart
exists.’ But this is exactly the meaning of 2∀xφ → ∀x2φ in counterpart
semantics, consequently CBF is synonymous with QCBF .

Let Q.K and τQ.K be the formal systems which axiomatize the set of
formulas valid on all Tarski-Kripke frames and the set of formulas valid on
all counterpart frames, respectively.7 CBF is a theorem of Q.K and here is
its well known proof:

∀xA → A Universal Instantiation
2∀xA → 2A Nec. + Distribution
2∀xA → ∀x2A ∀-Introduction

In τQ.K the proof of CBF is one line longer:

〈n + 1 : x1, . . . , xn〉∀xA → A Universal Instantiation
2〈n + 1 : x1, . . . , xn〉∀xA →
2A

Nec. + Distribution

〈n + 1 : x1, . . . , xn〉2∀xA →
2A

by CD

2∀xA → ∀x2A ∀-Introduction

CD 〈n + 1 : x1, . . . , xn〉2A → 2〈n + 1 : x1, . . . , xn〉A
(Converse of D)

From a semantical point of view CD says that the worlds where there are
counterparts of a given n+1-tuple of individuals a1, . . . an, an+1 are a subset
of the worlds where there are counterparts of the n-tuple a1, . . . an. What is
noticeable is that CD and CBF are mutually derivable in the presence of
the universal instantiation.

Let ~x be x1, ..., xn and A be of type n + 1.

CD implies CBF

〈n + 1 : ~x〉∀xn+1A → A Universal Instantiation
2〈n + 1 : ~x〉∀xn+1A → 2A Nec.+Distribution
〈n + 1 : ~x〉2∀xn+1A → 2A CD
2∀xn+1A → ∀xn+12A ∀-Introduction

7 See [2] and [3]. τQ.K is called Q.Kt
∗

in [2].
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Now, let ~x be x1, ..., xn and A be of type n.

CBF implies CD

〈n + 1 : ~x〉A → 〈n + 1 : ~x〉A Taut.
A → ∀xn+1〈n + 1 : ~x〉A ∀-Introduction
2A → 2∀xn+1〈n + 1 : ~x〉A Nec.+Distribution
2A → ∀xn+12〈n + 1 : ~x〉A by CBF
〈n + 1 : ~x〉2A → 〈n + 1 : ~x〉∀xn+1

2〈n + 1 : ~x〉A
Substitut. for Variables

〈n + 1 : ~x〉2A → 2〈n + 1 : ~x〉A by Universal Instantiation

CD is a theorem of τQ.K since it is an instance of axiom

S2 〈m : xi1 , . . . , xin〉2A → 2〈m : xi1 , . . . , xin〉A,

so obviously CBF is provable in τQ.K.

Let us go back to Lewis semantics. Consider the L-frame of model I. The
fact that a ∈ Dw has no counterparts in v does not prevent the validity of
CBF , therefore the equation between validity of CBF and ‘increasing do-
mains’ seems not to hold. The increasing domains condition of K-semantics
seems rather to parallel in L-semantics the property of C of being totally
defined. It is because in Kripke semantics it is assumed from the very be-
ginning that the same individual exists in every related world, i.e. the coun-
terpart relation is the identity relation and it is totally defined, that CBF is
intertwined with the increasing domains condition.

3. The asymmetry between BF and CBF

The asymmetry between BF and CBF is better seen in the presence of
axiom B : A → 23A.

The system Q◦.B.

The language of Q◦.B is a standard first-order modal language L and Q◦.B
is given by adding axiom B : A → 23A to the system Q◦.K which
is characterized by the class of all Kripke frames. Here are its axioms and
rules:
truth-functional tautologies 2(A → B) → (2A → 2B)
∀xj(∀xiA(xi) → A(xj/xi)) ∀xi(A → B) → (∀xiA → ∀xiB)
∀xj∀xiA ↔ ∀xi∀xjA A → ∀xiA, xi not free in A

Inference rules : Modus Ponens, Necessitation, Universal Generalization
(from A infer ∀xiA).
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The system Q◦.B is valid with respect to the class of symmetric K-frames,
but it is unknown if it is also complete with respect to that class. By adding
CBF to Q◦.B we get a system which contains BF among its theorems
and which is complete with respect to the class of symmetric K-frames with
constant inner domains and constant outer domains.8

In the presence of symmetry either validity of the condition that “domains
never increase” or validity of the condition that “domains never decrease”
leads to the constant domains condition, and so one would expect that adding
either CBF or BF would lead to the same system. Instead, by adding BF
to Q◦.B we get a K-incomplete system: CBF is valid on all K-frames for
Q◦.B + BF and still it is not a theorem of Q◦.B + BF .9

In order to see this we show how to transform any wff A of L into a wff
τnA, for some n, of the typed language Lτ , such that Q◦.B + BF ` A
only if τnA is valid on all symmetric Lewis frames where the counterpart
relation is surjective and u-totally defined. Now, take the following instance
of CBF : 2∀x1P (x1) → ∀x12P (x1). As we shall see τ1[2∀x1P (x1) →
∀x12P (x1)] is 2∀x2〈2 : x2〉P (x1) → ∀x2〈2 : x2〉2P (x1) and we can
easily check that this formula fails on Model V of section 2, in which R is
symmetric and C is surjective and u-totally defined. Let us check.
〈b〉 |=w 2∀x2〈2 : x2〉P (x1) since 〈b∗〉 |=v ∀x2〈2 : x2〉P (x1) and 〈a〉 |=v

∀x2〈2 : x2〉P (x1), and this is so because 〈b∗, b∗〉 |=v 〈2 : x2〉P (x1) and
〈a, b∗〉 |=v 〈2 : x2〉P (x1), in fact 〈b∗〉 |=v P (x1).

But 〈b〉 6|=w ∀x2〈2 : x2〉2P (x1) because 〈b, b〉 6|=w 〈2 : x2〉2P (x1),
because 〈b〉 6|=w 2P (x1), since 〈a〉 6|=v P (x1).
Therefore CBF is not a theorem of Q◦.B + BF .

The rest of the paper is devoted to proving the K-incompleteness of Q◦.B +
BF .

4. Q◦.B + BF is K-incomplete

We start by listing some formulas of Lτ which are valid on all L-frames.
For any projections 〈m : xi1 , ..., xik〉, 〈k : xj1 , ..., xjn〉, and 〈n : xh1

, ...,
xhs

〉 and formulas A, B of type n, C, D of type n + 1 and E of type s + 1:

8 See [3]. Here is a proof of BF : ∀x[∀x2A(x) → 2A(x)], 2∀x[∀x2A(x) → 2A(x)],
∀x2[∀x2A(x) → 2A(x)] by CBF , ∀x[3∀x2A(x) → 32A(x)], ∀x[3∀x2A(x) →
A(x)] via B, ∀x3∀x2A(x) → ∀xA(x), 3∀x2A(x) → ∀xA(x), 23∀x2A(x) →
2∀xA(x), ∀x2A(x) → 2∀xA(x), via B.

9 This result was announced in [3], where Lewis frames are called counterpart Kripke
frames.
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Si 〈n : x1, ..., xn〉A ↔ A
SS 〈m : xi1 , ..., xik〉(〈k : xj1 , ..., xjn〉A)

↔ (〈m : xj1 , ..., xjk
〉 ◦ 〈k : xi1 , ..., xin〉)A

10

S¬ 〈k : xi1 , ..., xin〉(¬A) ↔ ¬〈k : xi1 , ..., xin〉A
S∨ 〈k : xi1 , ..., xin〉(A∨B) ↔ 〈k : xi1 , ..., xin〉A∨〈k : xi1 , ..., xin〉B
S∃ 〈k : xi1 , ..., xin〉(∃xn+1C) ↔ ∃xk+1〈k + 1 : xi1 , ..., xin , xk+1〉C
S2 〈k : xi1 , ..., xin〉2B → 2〈k : xi1 , ..., xin〉B
τUI◦ ∀xn+1(∀xn+2〈n + 2 : xh1

, ..., xhs
, xn+2〉E

→ 〈n + 1 : xh1
, ..., xhs

, xn+1〉E)
∀-D ∀xn+1(C → D) → (∀xn+1C → ∀xn+1D)
V Q A → ∀xn+1〈n + 1 : x1, . . . , xn〉A Vacuous Quantification

The following rules preserve L-validity:
Modus ponens, (MP ): from A and A → B infer B,
Necessitation, (N ): from A infer 2A.
Generalization, (G): from 〈n + 1 : x1, . . . , xn+1〉C infer ∀xn+1C,
Substitution for variables, (SV ): from A of type n, infer 〈k : xi1 , ..., xin〉A.

A projection 〈m : xi1 , . . . , xin〉 is said to be a selection
if {xi1 , . . . , xin} ⊆ {x1, . . . , xm} and if j 6= k then xij 6= xik . A selection

never contains the same variable twice.

A projection 〈m : xi1 , . . . , xin〉 is said to be a permutation
if it is a selection and {xi1 , . . . , xin} = {x1, . . . , xm}.

From S2 and Si we get the L-validity of

Sp 〈m : xi1 , . . . , xim〉2A ↔ 2〈m : xi1 , . . . , xim〉A

where 〈m : xi1 , . . . , xim〉 is a permutation.11

Let us consider the following generalizations of D and CD, respectively,

D∗
2〈m : xi1 , . . . , xin〉A → 〈m : xi1 , . . . , xin〉2A

10 Let the complex term 〈m : x1, ..., xn〉 of type m → n be given. The operation of
composition with terms of type n is defined so: if xn

j is a term of type n, then
〈m : xi1 , ..., xin〉 ◦ xn

j = xm
ij

,

For any pair of complex terms 〈m : xi1 , ..., xin〉 of type m → n and 〈n : xj1 , ..., xjk
〉 of

type n → k,
〈m : xi1 , ..., xin〉 ◦ 〈n : xj1 , ..., xjk

〉 = 〈m : 〈m : xi1 , ..., xin〉 ◦ xj1 , . . . , 〈m :
xi1 , ..., xin〉 ◦ xjk

〉.

11 If π is a permutation from m to m there is a permutation π∗ from m to m such that
π ◦ π∗ = π∗ ◦ π = 〈m : x1, . . . , xm〉. So π∗

2πA → 2π∗πA by S2, π∗

2πA → 2A by
Si, ππ∗

2πA → π2A by SV , 2πA → π2A by Si.
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and

CD∗ 〈m : xi1 , . . . , xin〉2A → 2〈m : xi1 , . . . , xin〉A

where 〈m : xi1 , . . . , xin〉 is a selection.

CD∗ is L-valid since it is a particular instance of S2, whereas D∗ can be
obtained from D and Si.12

As a consequence, the equivalence:

DS 2〈m : xi1 , . . . , xin〉A ↔ 〈m : xi1 , . . . , xin〉2A

is valid on all L-frames where C is u-totally defined. Validity of DS is going
to play a major role in what follows.

The strategy we are going to make use of in the sequel is a refinement of
the one introduced in [5] to relate classical logic formalized in a usual first
order language to classical logic formalized in a typed language.

Let E be either a term or a formula of L. Define

φ[E] = maxk(xk occurs in E)

φ counts both the free and the bound variables of E. For any wff A of L and
n ≥ φ(A) we define a formula τn[A]13 of Lτ of type n as follows:

τn[Pm(xi1 , . . . , xim)] = Pm(n : xi1 , . . . , xim)
τn[¬A] = ¬τn[A]
τn[2A] = 2τn[A]
τn[A ∗ B] = τn[A] ∗ τn[B] ∗ ∈ {∨,∧,→}
τn[∃xiA] = ∃xn+1(〈n+1 : x1, . . . , xi−1, xn+1, xi+1, . . . , xn〉τn[A])
τn[∀xiA] = ∀xn+1(〈n+1 : x1, . . . , xi−1, xn+1, xi+1, . . . , xn〉τn[A])

For simplicity’s sake, we will often write 〈n + 1 : x1, . . . , xn+1/i, . . . , xn〉
instead of 〈n + 1 : x1, . . . , xi−1, xn+1, xi+1, . . . , xn〉.

By A(xi1/xk1
, . . . , xin/xkn

) we denote the formula obtained by simultane-
ously substituting xih for the free occurrences of xkh

, i ≤ h ≤ n, in A.
We use the notation A(xi1 , . . . , xin) to denote the formula obtained from A
(whose free variables are all among x1, . . . , xn) by simultaneously substitut-
ing xi1 for x1, . . . , xin for xn.

12 If 〈m : xi1 , . . . , xin〉 is a selection, there are xin+1
, . . . , xim such that 〈m :

xi1 , . . . , xin , xin+1
, . . . , xim〉 is a permutation. Since 〈m : xi1 , . . . , xin〉 = 〈m :

xi1 , . . . , xin , xin+1
, . . . , xim〉◦〈m : x1, . . . , xm−1〉◦〈m−1 : x1, . . . , xm−2〉◦· · ·◦〈n+1 :

x1, . . . , xn〉, D∗ obtains.

13 This definition is taken from [5].
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Let A be a wff whose free variables are among x1, . . . , xn. We say that
(xi1 , . . . , xin) is an A-suitable substitution iff

(i) (xi1 , . . . , xin) is a selection,
(ii) if xk has a bound occurrence in A, then either xk is different from

any of xi1 , . . . , xin or xk = xik .14

For example, if φ[A] ≤ n, then (x1, . . . , xn) is an A-suitable substitution.
Given (i) and (ii), xi1 , . . . , xin are free for x1, . . . , xn in A. Moreover

(xi1 , . . . , xin) is a B-suitable substitution for any subformula B of A.

In brief, now our aim is to show that model V is “a model for Q◦.B+BF ”
in the following sense: for any theorem A of Q◦.B + BF and for any n ≥
φ[A], we show that τn[A] is valid on all L-frames where R is symmetric
and C is u-totally defined and surjective, so τn[A] is valid on model V. Since
τ1[2∀x1P (x1) → ∀x12P (x1)] is not valid on model V, as shown at the
beginning of this section, CBF is not a theorem of Q◦.B + BF .

In the next lemmas we will use the symbol “ |= ” to denote validity on all
L-frames where C is u-totally defined, if not otherwise specified.

Lemma 4.1: Let A be a wff of L. If n ≥ φ[A], m ≥ n, m ≥ φ(xi1), . . . , m ≥
φ(xin), and (xi1 , . . . , xin) is an A-suitable substitution, then

|= τm[A(xi1 , . . . , xin)] ↔ 〈m : xi1 , . . . , xin〉τn[A]

Proof. By induction on A. |= τm[Pn(xi1 , . . ., xin)] iff |= P n(m :
xi1 , . . ., xin) iff |= 〈m : xi1 , . . ., xin〉P

n(n : x1, . . ., xn)] iff |= 〈m :
xi1 , . . ., xin〉τn[Pn(x1, . . ., xn)].

A = 2B.
|= τm[(2B)(xi1 , . . . , xin)] iff |= τm[2(B(xi1 , . . . , xin))] iff |= 2τm[(B
(xi1 , . . . , xin))] iff by induction hyp. |= 2〈m : xi1 , . . . , xin〉τn[B] iff
by DS (〈m : xi1 , . . . , xin〉 is a selection, since it is a B-suitable substitution)
|= 〈m : xi1 , . . . , xin〉2τn[B] iff |= 〈m : xi1 , . . . , xin〉τn[2B].

A = ∃xkB.
|= τm[(∃xkB)(xi1 , . . . , xin)] iff |= τm[∃xk(B(xi1 , . . . , xk/xk, . . . , xin))]
iff |= ∃xm+1〈m+1 : x1, . . . , xm+1/k, . . . , xm〉τm[B(xi1 , . . . , xk/xk, . . . ,
xin)] iff by induction hyp. |= ∃xm+1〈m + 1 : x1, . . . , xm+1/k, . . . , xm〉

14 Condition (ii) guarantees that if a selection is expanded with an identical substitution,
say xk/xk (xk bound in A), then it remains a selection. For example (x2) is not a suit-
able substitution for (P (x1) ∧ ∃x2Q(x2)) because (∃x2Q(x2))(x2) is going to be equal to
∃x2(Q(x2)(x2, x2)) and (x2, x2) is not a selection any more.
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〈m : xi1 , . . . , xk/k, . . . , xin〉τn[B] iff |= ∃xm+1〈m+1 : xi1 , . . . , xm+1/k,
. . . , xin〉τn[B].

|= 〈m : xi1 , . . . , xin〉τn[∃xkB] iff
|= 〈m : xi1 , . . . , xin〉∃xn+1 (〈n + 1 : x1, . . . , xn+1/k, . . . , xn〉τn[B]) iff
by S∃

|= ∃xm+1〈m+1 : xi1 , . . . , xin , xm+1〉(〈n+1 : x1, . . . , xn+1/k, . . . , xn〉τn

[B]) iff |= ∃xm+1〈m + 1 : xi1 , . . . , xm+1/k, . . . , xin〉τn[B].

Whence
|= τm[(∃xkB)(xi1 , . . . , xin)] ↔ 〈m : xi1 , . . . , xin〉τn[∃xkB].

Corollary 4.2: Let A be a pure wff. If n ≥ φ[A], then for any p ≥ n,

(a) |= τp[A] ↔ 〈p : x1, . . . , xn〉τn[A]

If n ≥ 1, then

(b) |= τp[A] only if |= τn[A]

Proof. (a)
|= τp[A] ↔ τp[A(x1, . . . , xn)]
|= τp[A] ↔ 〈p : x1, . . . , xn〉τn[A] by lemma 4.1

(b)
|= τp[A]
|= τp[A]
|= 〈p : x1, . . . , xn〉τn[A] by (a)
|= 〈n : x1, . . . , xn, x1, . . . , x1

︸ ︷︷ ︸

(p−n)−times

〉〈p : x1, . . . , xn〉τn[A]

by SV , the proviso that n ≥ 1 is used
|= 〈n : x1, . . . , xn〉τn[A]
|= τn[A]

Lemma 4.3: Let A be any wff. If n ≥ φ[A], m ≥ n, m ≥ φ(xi1), . . . , m ≥
φ(xin), and xi1 , . . . , xin are free for x1, . . . , xn in A, then

|= 〈m : xi1 , . . . , xin〉τn[A] → τm[A(xi1 , . . . , xin)]

Proof. By induction on A. Analogous to the proof of the previous lemma.

A = 2B. When 〈m : xi1 , . . . , xin〉 is not a selection, DS doesn’t hold
anymore, and by using S2 we can only prove that

|= 〈m : xi1 , . . . , xin〉τn[2B] → τm[2B(xi1 , . . . , xin)]. To
wit,
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|= 〈m : xi1 , . . . , xin〉τn[2B] iff |= 〈m : xi1 , . . . , xin〉2τn[B] only
if by S2 |= 2〈m : xi1 , . . . , xin〉τn[B]. Then by induction hypothesis,
|= 2τm[B(xi1 , . . . , xin)] therefore |= τm[2B(xi1 , . . . , xin)].

A = ∃xkB. By inspecting the last paragraph of the proof of lemma 4.1 we
soon realize that |= 〈m : xi1 , . . . , xin〉τn[∃xkB] iff |= ∃xm+1〈m + 1 :
xi1 , . . . , xm+1/k, . . . , xin〉τn[B]. This holds iff, by composition,
|= ∃xm+1〈m+1 : x1, . . . , xm+1/k, . . . , xm〉〈m : xi1 , . . . , xk/k, . . . , xin〉τn

[B], therefore, by induction hypothesis,
|= ∃xm+1〈m + 1 : x1, . . . , xm+1/k, . . . , xm〉τm[B(xi1 , . . . , xk/xk, . . . ,
xin)], so
|= τm[∃xk[B(xi1 , . . . , xk/xk, . . . , xin)] whence
|= τm[(∃xkB)(xi1 , . . . , xin)]. Consequently
|= 〈m : xi1 , . . . , xin〉τn[∃xkB] → τm[(∃xkB)(xi1 , . . . , xin)].

Lemma 4.4: Let A be a wff of L and n = max(1, φ[A]).
If Q◦.K ` A then F |= τn[A]

for any L-frame F where C is u-totally defined.
If Q◦.B + BF ` A then F |= τn[A]

for any symmetric L-frame F where C is surjective and u-totally defined.

Proof. The lemma holds also for any n ≥ max(1, φ[A]) and the proof
is the same. The condition that n ≥ 1 entitles us to make use of corol-
lary 4.2(b). By induction on the length of the proof of A. Consider ax-
iom UI◦: ∀xj(∀xiA → A(xj/xi)) which is the same as ∀xj(∀xiA →
A(x1, . . . , xj/xi, . . . , xn)), where for each k 6= i, xk is replaced by itself.

|= τn[∀xj(∀xiA → A(x1, . . . , xj/xi, . . . , xn))] iff
|= ∀xn+1〈n + 1 : x1, . . . , xn+1/j , . . . , xn〉(τn[∀xiA] → τn[A(x1, . . . ,
xj/xi, . . . , xn)]). Let σ = 〈n + 1 : x1, . . . , xn+1/j , . . . , xn〉, then
|= ∀xn+1σ(τn[∀xiA] → τn[A(x1, . . . , xj/xi, . . . , xn)]),

iff
|= ∀xn+1 σ (∀xn+1〈n+1 : x1, . . . , xn+1/i, . . . , xn〉τn[A] → τn[A(x1, . . . ,
xj/xi, . . . , xn)]), IF , by lemma 4.3,
|= ∀xn+1 σ (∀xn+1〈n + 1 : x1, . . . , xn+1/i, . . . , xn〉τn[A] → 〈n : x1, . . . ,
xj/i, . . . , xn〉τn[A]) iff
|= ∀xn+1 σ (∀xn+1 〈n + 1 : x1, . . . , xn+1/i, . . . , xn〉τn[A] →
〈n + 1 : x1, . . . , xn, xj〉〈n + 1 : x1, . . . , xn+1/j , . . . , xn〉τn[A])

Let C = 〈n + 1 : x1, . . . , xn+1/j , . . . , xn〉τn[A], then

|= ∀xn+1 σ (∀xn+1C → 〈n : x1, . . . , xn, xj〉C) iff
|= ∀xn+1 (σ ∀xn+1C → σ ◦ 〈n : x1, . . . , xn, xj〉C)
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|= ∀xn+1(〈n + 1 : x1, . . . , xn+1/j , . . . , xn〉∀xn+1C →
〈n + 1 : x1, . . . , xn+1/j , . . . , xn〉〈n : x1, . . . , xn, xj〉C) iff

|= ∀xn+1(∀xn+2〈n + 2 : x1, . . . , xn+1/j , . . . , xn, xn+2〉C →
〈n + 1 : x1, . . . , xn+1/j , . . . , xn, xn+1〉C).

But this formula is L-valid, hence τn[∀xj(∀xiA → A(xj/xi))] is valid on
all L-frames where C is u-totally defined.

Consider axiom A → ∀xiA, where xi does not occur in A.
|= τn[A] → τn[∀xiA] iff |= τn[A] → ∀xn+1〈n + 1 : x1, . . . , xn+1/i, . . . ,
xn〉τn[A], iff by lemma 4.1, |= τn[A] → ∀xn+1τn+1[A(x1, . . . , xn+1/xi,
. . . , xn)] iff since xi does not occur in A, |= τn[A] → ∀xn+1τn+1[A(x1,
. . . , xn)] iff by lemma 4.1, |= τn[A] → ∀xn+1〈n + 1 : x1, . . . , xn〉τn[A],
and this formula is L-valid.

Consider ∀xi(A → B) → (∀xiA → ∀xiB). Let σ = 〈n + 1 : x1, . . . ,
xn+1/xi, . . . , xn〉, then |= τn[∀xi(A → B)] → (τn[∀xiA] → τn[∀xiB])
iff |= ∀xn+1στn[A → B] → (∀xn+1στn[A] → ∀xn+1στn[B]) iff |=
∀xn+1τn+1 [A(σ) → B(σ)] → (∀xn+1τn+1[A(σ)] → ∀xn+1τn+1[B(σ)])
iff |= ∀xn+1(τn+1[A(σ)] → τn+1[B(σ)]) → (∀xn+1τn+1[A(σ)] → ∀xn+1

τn+1 [B(σ)]), and this formula is L-valid.

Consider axiom BF : ∀xi2A → 2∀xiA. |= τn[∀xi2A] → τn[2∀xiA] iff
|= ∀xn+1〈n + 1 : x1, . . . , xn+1/i, . . . , xn〉τn[2A] → 2τn[∀xiA] iff
|= ∀xn+1〈n + 1 : x1, . . . , xn+1/i, . . . , xn〉2τn[A] →

2∀xn+1〈n + 1 : x1, . . . , xn+1/i, . . . , xn〉τn[A] iff by DS,
|= ∀xn+12〈n + 1 : x1, . . . , xn+1/i, . . . , xn〉τn[A] →

2∀xn+1〈n + 1 : x1, . . . , xn+1, . . . , xn〉τn[A], and this formula is
valid on all L-frames where C is surjective.

As to the rule of Modus Ponens, assume by induction hypothesis that |=
τn[A] and |= τm[A → B], where m ≥ n. So |= 〈m : x1, . . . , xn〉τn[A] by
SV and |= τm[A] by corollary 4.2(a). Moreover
|= τm[A] → τm[B], so |= τm[B], and by corollary 4.2(a)
|= 〈m : x1, . . . , xq〉τq[B], since m ≥ q, where q = max(1, φ[B]), then

|= τq[B], by corollary 4.2(b).

As to the generalization rule, assume by induction hypothesis that
|= τn[A]. By the rule of substitution for the free variables, |= 〈n + 1 :

x1, . . . , xn+1, . . . , xn〉τn[A], so |= ∀xn+1〈n + 1 : x1, . . . , xn+1/i, . . . , xn〉
τn[A], therefore |= τn∀xi[A].
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5. Q◦.B + BF and Q◦
=.B + BF

A consequence of the K-incompleteness of Q◦.B + BF is that Q◦.B + BF
with identity, Q◦

=.B + BF , is not a conservative extension of Q◦.B + BF
since CBF is a theorem of Q◦

=.B + BF .

Q◦
=.B + BF is Q◦.B + BF plus

REF x = x
SUBS x = y → (A(x//z) → A(y//z)).

Here are some auxiliary lemmas:
1. `Q◦

=
.K ∀x∃y(y = x)

2. `Q◦

=
.K ∃xA(x) → ∃x[∃y(y = x) ∧ A(x)]

3. `Q◦

=
.K x = y → 2(x = y) (Necessity of Identity) NI

4. `Q◦

=
.B x 6= y → 2(x 6= y) (Necessity of Distinction) ND

5. `Q◦

=
.B+BF

∃y(y = x) → 2∃y(y = x) (Necessity of Existence) NE

Proof of 2.:
`Q◦

=
.K ∀x∃y(y = x) 1.
" ∃xA(x) → ∀x∃y(y = x) ∧ ¬∀x¬A(x)
" ∃xA(x) → ¬[∀x∃y(y = x) → ∀x¬A(x)]
" ∃xA(x) → ¬∀x[∃y(y = x) → ¬A(x)]
" ∃xA(x) → ∃x[∃y(y = x) ∧ A(x)]

Proof of 4.:
`Q◦

=
.B x = y → 2(x = y) NI
" 3(x 6= y) → (x 6= y)
" 23(x 6= y) → 2(x 6= y) via B
" (x 6= y) → 2(x 6= y)

Proof of 5.:
`Q◦

=
.B+BF x = y → 2(x = y) NI
" 3(x = y) → (x = y) via B
" ∃y3(x = y) → ∃y(x = y),
" 3∃y(x = y) → ∃y(x = y) via BF
" 23∃y(x = y) → 2∃y(x = y),
" ∃y(x = y) → 2∃y(x = y) via B.

Let A = 3A(x) ∧ ∃y(y = x) and B = 2∀y¬A(y).
`Q◦

=
.B+BF A ∧ B → 3A(x) ∧ ∃y(y = x) ∧ 2∀y¬A(y)
" A ∧ B → 3A(x) ∧ 2∃y(y = x) ∧ 2∀y¬A(y) via NE
" A ∧ B → 3[A(x) ∧ ∃y(y = x) ∧ ∀y¬A(y)]
" A ∧ B → 3[A(x) ∧ ¬A(x)]
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" A ∧ B → 3⊥
" A ∧ B → ⊥
" A → ¬B
" A → 3∃yA(y)
" 3A(x) ∧ ∃y(y = x) → 3∃yA(y)
" ∃x[3A(x) ∧ ∃y(y = x)] → 3∃yA(y)
" ∃y3A(y) → 3∃yA(y) via 2.

So CBF is a theorem of Q◦
=.B + BF .

6. K-incompleteness of extensions of Q◦.B + BF

It follows from lemma 4.4 that all the logics Q◦.L + BF , where L is any
propositional modal logic valid on the frame of model V are Kripke incom-
plete. Moreover all the logics Q◦.L + BF where L is any propositional
modal logic such that K + (2A ↔ A) ⊇ L ⊇ K + T + B are Kripke
incomplete, in fact model VI below is a model for any such logic and still it
falsifies CBF . T is the axiom 2A → A corresponding to reflexivity. In
particular, Q◦.S5 + BF is K-incomplete.

The frame of model VI consists of a single reflexive point w, Dw consists
of the single individual b and Uw of both individuals a and b. The coun-
terpart relation is reflexive, symmetric (and transitive), u-totally defined and
surjective. Therefore model VI is a model for any (consistent) free quanti-
fied extension of K + T + B + BF .

Model VI F 6|= CBF

�
�

�
�

webc ac

b ∈ P̂ a /∈ P̂

〈〉 |=w ∀x1P (x1) 〈b〉 6|=w 2P (x1)

〈〉 6|=w 2∀x1P (x1) → ∀x12P (x1)

Dip. di Filosofia,
Univ. di Bologna
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