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ON CANONICAL MODAL LOGICS THAT ARE NOT
ELEMENTARILY DETERMINED

ROBERT GOLDBLATT, IAN HODKINSON AND YDE VENEMA

Abstract
There exist modal logics that are validated by their canonical frames
but are not sound and complete for any elementary class of frames.
Continuum many such bimodal logics are exhibited, including one
of each degree of unsolvability, and all with the finite model prop-
erty. Monomodal examples are also constructed that extend K4 and
are related to the proof of non-canonicity of the McKinsey axiom.

We dedicate this paper to Max Cresswell, a pioneer in the study
of canonicity, on the occasion of his 65th birthday.

1. Introduction

A modal logic L is called canonical if it is valid in the canonical frame FL

whose points are the maximally L-consistent sets of formulas. These special
Kripke frames were introduced in the mid-1960’s by Lemmon and Scott
[25], and independently by Cresswell [2] and Makinson [27], as an extension
of the method of completeness proof due to Henkin [17]. Any formula valid
in FL is an L-theorem, and so if FL satisfies some condition on frames for
which L is sound, then it follows that L is determined by (i.e., sound and
complete for) the class of all frames satisfying that condition.

By the early 1970’s numerous logics had been shown to be determined
by Kripke frames via the technique of using the proof theory of L to es-
tablish some first-order condition on FL for which L is sound. A logic L

will be called elementarily determined if there is at least one class of frames
determining L that is elementary, i.e., is axiomatized by some first-order sen-
tences. Thus these early results gave many proofs of canonicity which at the
same time showed that the logic concerned was elementarily determined.
Moreover, the only examples of non-canonical logics that were found were
ones whose axioms expressed non-first-order properties of frames. The first
explicit such example would appear to be that in [4, p. 38], where Fine proves
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invalidity in the canonical frame for the logic extending S4.3 by the Grze-
gorczyk axiom

�(�(p→ �p) → p) → p.

Validity of this formula in S4.3-frames is equivalent to the second-order con-
dition that every non-empty subset has a maximal element. Some years ear-
lier Kripke [21] had noted that there are formulas whose validity is not pre-
served in passing from a modal algebra A to the algebra of all subsets of
the frame whose points are the ultrafilters of A. This can also been seen as
a manifestation of non-canonicity. Kripke gave the example of Dummett’s
Diodorean axiom

�(�(p→ �p) → �p) → (♦�p→ �p),

whose validity expresses discreteness of a linear ordering.
The absence of any elementarily determined instances of non-canonicity

was soon explained by the following theorem of Fine [5]:
if a modal logic L is determined by some elementary class of frames,
then it is valid in the canonical frame FL.

Fine asked whether the converse was true. If a logic is canonical, must it
be elementarily determined? Many affirmative partial solutions have been
produced for this question, which we now briefly review. A modal formula
is called r-persistent if it is validated by a Kripke frame F whenever it is
validated by some general frame based on F that is refined in the sense of
Thomason [30]. Every logic with r-persistent axioms is canonical. Lachlan
[22] showed that the class of validating frames for an r-persistent formula
is definable by a first-order sentence, and hence every r-persistent logic is
elementarily determined.1 Sahlqvist [28] gave a syntactic scheme specify-
ing infinitely many formulas, each of which defines a canonical logic and
has its frame-validity equivalent to an explicit first-order condition. Fine [6]
proved the elementary determination of any canonical modal logic that is
determined by a class of transitive frames that is closed under subframes.
Zakharyaschev [35] extended this to logics determined by a class of transi-
tive frames that is closed under cofinal subframes. Wolter [34] removed the
transitivity restriction in Fine’s result, and also proved [33] elementary de-
termination of all canonical normal extensions of linear tense logic. Jónsson
[19] gave an algebraic analysis which implies that a modal axiom of the form
ϕ(p ∨ q) ↔ ϕ(p) ∨ ϕ(q) is canonical whenever ϕ(p) is a positive formula,
and Venema [32] showed that logics with such axioms are elementarily de-
termined. In [14] it is shown that the converse of Fine’s theorem holds for

1 This result was independently proved also in [5] and [8].
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any logic that is validated by a frame F whenever it is validated by some
general frame based on F whose propositions include the singleton subsets
of F .

Fine’s theorem was strengthened to show that if L is determined by some
elementary conditions, then it is always determined by elementary condi-
tions that are satisfied by FL (see [11]). The result was also expressed alge-
braically to show [9] that if a variety V of Boolean algebras with operators
is generated by the algebras of subsets of the members of some elementary
class of relational structures, then V is closed under the perfect extension
construction of Jónsson and Tarski [20]. The converse of this algebraic for-
mulation has been confirmed for numerous varieties of cylindric, relation,
and modal algebras.

In this paper we show that the converse of Fine’s theorem fails in general,
and fails as badly as it could. We exhibit 2ℵ0 different canonical logics that
are not determined by any elementary class of frames. These are bimodal
logics, with one modality being of S5 type. All of the logics have the finite
model property and they include one of each degree of unsolvability. In ad-
dition monomodal examples are constructed that are extensions of the logic
K4 and are connected to the non-canonicity proof in [10] for the McKinsey
axiom �♦p→ ♦�p.

Our bimodal examples are related to the modal logic KMT, studied by
Hughes [18], whose validating frames are those directed graphs satisfy-
ing the non-elementary condition that the children of any node have no fi-
nite colouring. KMT has an infinite sequence of axioms whose n-th mem-
ber rules out colourings that use n colours. But the logic is also elemen-
tarily determined by the class of graphs whose edge relation R satisfies
∀x∃y(xRyRy), meaning that every node has a reflexive child. The canoni-
cal frame for KMT satisfies this condition.

Here we also use axioms that impose reflexive points on canonical frames.
But now a canonical frame is essentially the disjoint union of a family of
directed graphs, and it is only the infinite members of the family that are re-
quired to have a reflexive point to ensure canonicity. This is a non-elementary
requirement. To prove that our logics are never elementarily determined we
apply a famous piece of graph theory of Erdős [3], who showed that for
each integer n there is a finite graph Gn whose chromatic number and girth
are both greater than n, the girth being the length of the shortest cycle in
the graph and the chromatic number being the smallest number of colours
needed to colour it. The essence of the application is that if a certain logic L

were determined by an elementary class K, and infinitely many of the Gn’s
validated L, then by a compactness argument it would follow that K con-
tained an infinite graph that had no cycles of odd length. But such a graph
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can be coloured using only two colours, a property that invalidates one of the
axioms defining L. Hence the existence of K is impossible.

This paper is a companion to the article [16] which takes an algebraic
approach to our topic, making use of the duality between frames and modal
algebras as well as the theory of discriminator varieties.

2. Colouring Graphs

A graph is a structure G = (V,E) in which E is a symmetric and irreflexive
binary relation on a non-empty set V of “vertices”. A pair (x, y) in E may
be thought of as an edge with vertices x and y. G may also be viewed as
a Kripke frame, and in that context symmetry of E is equivalent to validity
in G of the Brouwerian axiom p → �♦p. But there is no modal formula
whose validity corresponds to irreflexivity, and it is that inability to rule out
reflexive points that lies at the heart of our canonicity proofs.

A colouring of G is an assignment of colours to the points in V in such
a way that the two vertices of any edge are assigned different colours. An
n-colouring is one that uses at most n colours. This can be expressed more
set-theoretically by defining a subsetW of V to be independent if it contains
no edge, in the sense that there are no x, y ∈ W with xEy. An n-colouring
of graph G is then a partition of V into at most n independent subsets. The
chromatic number χ(G) is the smallest integer n, if it exists, for which G
has an n-colouring, and ∞ if there is no such n. Of course a finite graph
has χ(G) no bigger than the number |G| of members of V , since we can
always give every vertex a different colour. Observe that to obtain an n-
colouring it is enough to find n independent sets W1, . . . ,Wn that cover V ,
i.e., W1 ∪ · · · ∪Wn = V , for then this can be refined to a partition of V into
the independent sets

W1, W2 −W1, . . . ,Wn − (W1 ∪ · · · ∪Wn−1).

For k ≥ 3, a k-cycle, or cycle of length k, is a a sequence (x1, . . . , xk) of
distinct nodes of V , such that (x1, x2), . . . , (xk−1, xk), (xk, x1) are all in
E.2 An odd cycle is one of odd length.

Erdős [3] showed that for any integers n, k there is a finite graph G with
χ(G) > n such that G has no cycle of length k or less. He gave an existence
proof by a revolutionary probabilistic method whose power was evinced by

2 In graph theory, (x1, . . . , xk), (x2, . . . , xk, x1), and (xk, . . . , x1) are regarded as the
same cycle; but this is not important here.
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the fact that it took a decade to find an actual construction of such graphs
[26].

Here is a summary of the facts from graph theory that we will use. This
is essentially standard material, but we give proofs for the sake of complete-
ness.

Theorem 2.1 :
(1) A graph has a 2-colouring if, and only if, it has no odd cycles.
(2) If G = (V,E) and G ′ = (V ′, E′) are graphs, and f : V → V ′ preserves

edges, i.e., xEy implies fxE ′fy, then if G has an odd cycle of length n
or less, so does G ′.

(3) There exists a computable enumeration {Gn : n ≥ 2} of finite graphs Gn

with χ(Gn) > n and Gn having no cycle of length n or less, such that if
2 ≤ m < n, then |Gm| < |Gn| and χ(Gm) < χ(Gn).

Proof.
(1) If G has a 2-colouring, and x1, . . . , xk is any cycle in G, then the odd-

indexed vertices x1, x3, . . . must have the same colour, while xk has a
different colour to x1, so k cannot be odd.

For the converse, assume G has no odd cycles. Define a walk of length
n from x to y to be a sequence x = x0, x1, . . . , xn = y of vertices with
xiExi+1 for all i < n. The length is the number of edges in the walk,
and we allow n = 0 here. If x0 = xn, the walk is closed. First we
show that G cannot have any closed walks of odd length. For if it did,
we could pick such a walk x0, x1, . . . , xn = x0 whose odd length n was
least possible. Then the minimality of n would ensure that x1, . . . , xn

are distinct — for if 1 ≤ i < j ≤ n and xi = xj then both xi, . . . , xj and
x0, . . . , xi, xj+1, . . . , xn would be closed walks of length less than n,
and one of them would be of odd length since their combined edges are
just the edges of the original odd-length walk. It follows that x1, . . . , xn

would be an odd cycle, contrary to hypothesis on G.
Now a graph is connected if any two of its vertices have a walk con-

necting them. Any graph is the disjoint union of connected subgraphs,
each of which can be coloured independently. Hence we can assume
that G is connected. To define a 2-colouring, fix a vertex x of G and then
assign any vertex y colour 1 if there is an even-length walk from x to
y, and colour 2 otherwise. For any edge (y, z) ∈ E, if y and z got the
same colour, then from the definition of the colour assignment and con-
nectivity there would exist walks from x to y and x to z whose lengths
had the same parity (both even or both odd). But then taking the walk
from x to y, then following the edge (y, z) and finally the reverse of the
same-parity walk from x to z would give a closed walk of odd length —
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which we have just seen does not exist. Thus y and z must get different
colours, and the 2-colouring of G is established.

(2) If G has an odd cycle C with |C| ≤ n, restrict the edge relation of G to
C to regard C as a graph in its own right. Similarly, let the image-set
f(C) = {fx : x ∈ C} be viewed as a subgraph of G ′. Now if G ′ had no
odd cycle of length ≤ n, then since |f(C)| ≤ n, f(C) would have no odd
cycle at all, and so by (1) would have a 2-colouring. Then assigning to
x ∈ C the same colour as fx would give a 2-colouring of C, since edges
are preserved. But that contradicts (1), since C is an odd cycle.

(3) Fix a recursive enumeration of all isomorphism types of finite graphs, in
order of their cardinality. If Gm (2 ≤ m < n) have been defined, define
Gn to be the first graph in the enumeration with no cycles of length ≤ n,
chromatic number greater than both n and χ(Gm) and |Gn| > |Gm| for
all m with 2 ≤ m < n.

�

3. Frames and Models

Take a propositional language with two box-type modalities, denoted � and
A. Their duals will be denoted ♦ and E. A frame for this language is a
structure F = (W,R

�
, R

A
) with R

�
and R

A
being binary relations on W .

For any binary relation R we will use the notation Rx for the set {y : xRy}
of all R-alternatives of a point x. Recall that a model M on frame F is an
assignment to each propositional variable p of a set M(p) ⊆ W , thought
of as the set of points at which p is true, or satisfied. This extends to assign
a truth-set M(ϕ) to each formula ϕ, with the definitions for the modalities
given by M(�ϕ) = {x : Rx

�
⊆ M(ϕ)} and M(Aϕ) = {x : Rx

A
⊆

M(ϕ)}. ϕ is valid in F , F |= ϕ, if M(ϕ) = W for all models M on
F . ϕ is satisfiable in F if it is true at some point of some model on F (i.e.,
F 6|= ¬ϕ), and is falsifiable in F if it is false at some point of some model
on F (i.e., F 6|= ϕ). For a class K of frames we write K |= ϕ to mean
that F |= ϕ for all F ∈ K. For a logic L, an L-frame is any frame F that
validates all L-theorems, which we indicate by writing F |= L.

A frame F ′ = (W ′, R′
�
, R′

A
) is a subframe of F if W ′ ⊆ W and R′

�
and

R′
A

are the restrictions to W ′ of R
�

and R
A

respectively. If further we have
Rx

�
⊆ W ′ and Rx

A
⊆ W ′ for all x ∈ W ′, then F ′ is an inner subframe of

F . In that case, any formula valid in F is valid in F ′. For each point x
of F there is a smallest inner subframe of F containing x, called the inner
subframe generated by x.

We will work from now on with basic frames, defined as those for which
R

A
is an equivalence relation, R

�
⊆ R

A
, and R

�
is symmetric (n.b.: we
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do not require R
�

to be irreflexive.) The R
A
-equivalence classes are usually

called clusters. Each cluster is an inner subframe of F , because Rx
�
⊆ Rx

A
,

and can be viewed as a basic frame in its own right on whichR
A

is universal.
Hence any basic frame on which R

A
is universal will simply be called a

cluster. If ϕ is true at some point in a model on a cluster, then Eϕ is true
everywhere in the cluster. Dually, if ϕ is false at some point, then Aϕ is false
everywhere in the cluster in that model.

Each graph G = (V,E) will be treated as a basic frame by puttingR
�

= E
and R

A
= V × V . Thus any graph is a cluster, and any R

�
-irreflexive

cluster is a graph. Observe that in any model M on G, a truth-set of the form
M(ϕ ∧ �¬ϕ) is an independent set, since it can contain no R

�
-edge.

Now fix two disjoint infinite lists p1, p2, . . . and q1, q2, . . . of propositional
variables. For m ≥ 1, let Em be the formula

Ep1 ∧ E(p2 ∧ ¬p1) ∧ · · · ∧ E(pm ∧ ¬p1 ∧ · · · ∧ ¬pm−1).

For n ≥ 1, let χn be the formula

E
(

(q1 → ♦q1) ∧ · · · ∧ (qn → ♦qn)
)

.

If Em is true at a point x in a model on a basic frame, then the cluster Rx
A

contains distinct points x1, . . . , xm with pi true at xi for all i ≤ m. Con-
versely, if a cluster has at least m points then we can define a model on it
that satisfies Em.

The formula χn is a variant of the axiom MTn of [18]. Note that if n ≥ m,
then the formula χn → χm is valid in all frames. If a cluster contains a
reflexive point x, i.e., xR

�
x, then no formula of the form ϕ → ♦ϕ can ever

be falsified at x, and so the cluster validates χn for all n ≥ 1. In the case
of a graph G, if χn is falsifiable in some model M on G, then for each point
x there must be some i ≤ n with qi true and ♦qi false at x. Hence the n
independent sets M(qi ∧ �¬qi) cover the graph and so can be refined to
an n-colouring. Conversely, given an n-colouring of G we can associate a
variable qi with each colour (independent set) to obtain a falsifying model
on G for χn.

For m,n ≥ 1, let χ[m,n] be the formula Em → χn.

Lemma 3.1 :
(1) Em is satisfiable in a cluster F iff F has at least m elements.
(2) χn is falsifiable in a graph G iff χ(G) ≤ n. Equivalently, G |= χn iff

χ(G) > n.
(3) For any m,n ≥ 2, χ[ |Gm|,m] is valid in Gn.
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Proof. Parts (1) and (2) summarize the above observations. For (3), if the
antecedent E|Gm| of χ[ |Gm|,m] is true at some point in a model on Gn, then
by (1), Gn has at least |Gm| elements, so n ≥ m. Since χ(Gn) > n, we then
have χ(Gn) > m so by (2), Gn validates the consequent χm of χ[ |Gm|,m].

�

4. Canonical Logics With the FMP

If our propositional language is generated by an infinite set of variables of
size κ, then canonical frames built from this language will typically be of
size 2κ. The canonicity results of this paper hold with κ any infinite cardinal
here: all that is required is that there be at least a countably infinite set of
variables.

By a basic logic we will mean any normal propositional bimodal logic L,
in the language of � and A, that obeys the rule of uniform substitution of
formulas for variables and includes the following axioms:

S5A: Ap→ p, Ep→ AEp
Sub: Ap→ �p
B�: p→ �♦p.

A frame validates these axioms if, and only if, it is a basic frame.
Recall that the canonical frame FL = (WL, R�

, R
A
) for a normal logic L

has WL as the set of all maximally L-consistent sets of formulas, with

xR
�
y iff {ϕ : �ϕ ∈ x} ⊆ y iff {♦ϕ : ϕ ∈ y} ⊆ x,

and likewise xR
A
y iff {ϕ : Aϕ ∈ x} ⊆ y iff {Eϕ : ϕ ∈ y} ⊆ x.

For each formula ϕ, let ‖ϕ‖L = {x ∈ WL : ϕ ∈ x}. The canonical
model ML has ML(ϕ) = ‖ϕ‖L. In general, a formula is an L-theorem iff it
belongs to every maximally L-consistent set, so if FL |= ϕ, then ML |= ϕ
so ‖ϕ‖L = ML(ϕ) = WL, and thus L ` ϕ.

Lemma 4.1 : For any finite sequence x1, . . . , xm of distinct points of WL

there exist formulas ϕ1, . . . , ϕm such that ϕi ∈ xj iff i = j. Hence if S is
any finite subset of WL, then for each set X ⊆ S there is a formula ϕX such
that X = ‖ϕX‖L ∩ S.

Proof. If i 6= j, there exists ϕij ∈ xi with ϕij /∈ xj . Put ϕi =
∧

i6=j ϕij .
Then if S = {x1, . . . , xm} and X = {xi1 , . . . , xik}, put ϕX = ϕi1 ∨ · · · ∨
ϕik . �
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Lemma 4.2 : Let L be a normal logic obeying the rule of uniform substitution.
If F is a finite inner subframe of FL, then F |= L.

Proof. This is standard: a finite inner subframe of any canonical frame for
any normal logic validates that logic. To see why, let M be a model on
F , and suppose F has underlying set S. For each variable p there is, by
Lemma 4.1, a formula ϕp such that M(p) = ‖ϕp‖L ∩ S. Then an induction
on formation of formulas shows that for any formula ψ, M(ψ) = ‖ψ∗‖L∩S,
where ψ∗ is the result of uniformly replacing each variable p of ψ by ϕp. But
if L ` ψ, then L ` ψ∗, so ‖ψ∗‖L ∩ S = S. Hence any L-theorem is true at
every point of every model on F . �

Now let L be a basic logic. The axioms S5A ensure that R
A

is an equiv-
alence relation on WL, axiom Sub enforces R

�
⊆ R

A
, and B� makes R

�

symmetric, so FL is a basic frame.

Lemma 4.3 : Let L be any basic logic with the property that there are infin-
itely many n for which there exists an m such that L ` χ[m,n]. If F is any
infinite cluster of FL, then F contains an R

�
-reflexive point.

Proof. Take any point x in F , and let

y0 = {ϕ : Aϕ ∈ x} ∪ {ψ → ♦ψ : ψ is a formula}.

If y0 is L-consistent, then it extends to a set y ∈ WL. Then xR
A
y, so y

belongs to the cluster F , and {♦ψ : ψ ∈ y} ⊆ y, so yR
�
y as desired.

But if y0 were not consistent, then since the set {ϕ : Aϕ ∈ x} is closed
under finite conjunctions it would follow that there are formulas Aϕ ∈ x, and
ψ1, . . . , ψk for some k ≥ 1, such that L ` ϕ→ ¬

(

(ψ1 → ♦ψ1)∧· · ·∧(ψk →

♦ψk)
)

. By the given property of L there must be an n ≥ k and an m such
that L ` χ[m,n]. For k < j ≤ n put ψj = ψk, so then

L ` ϕ→ ¬
(

(ψ1 → ♦ψ1) ∧ · · · ∧ (ψn → ♦ψn)
)

.

Since L is normal this implies that

L ` Aϕ→ A¬
(

(ψ1 → ♦ψ1) ∧ · · · ∧ (ψn → ♦ψn)
)

,

and hence as Aϕ ∈ x we get

E
(

(ψ1 → ♦ψ1) ∧ · · · ∧ (ψn → ♦ψn)
)

/∈ x. (1)
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But F is infinite, so we can choose m distinct points x1, . . . , xm in F . Let
ϕ1, . . . , ϕm be the formulas given by Lemma 4.1. Then (ϕi∧

∧

1≤j<i¬ϕj) ∈

xi, and so as R
A

is universal on F , E(ϕi ∧
∧

1≤j<i¬ϕj) ∈ x, for all i ≤ m.
Hence

∧

1≤i≤m

E(ϕi ∧
∧

1≤j<i¬ϕj) ∈ x. (2)

However (1) and (2) contradict the fact that every substitution instance of
χ[m,n] belongs to x. It follows that y0 is L-consistent. �

Theorem 4.4 : Let L be a basic logic defined by additional axioms of the
form χn or χ[m,n]. If there are infinitely many n for which there exists an
m such that L ` χ[m,n], then L is a canonical logic that has the finite model
property and is determined by a class of finite clusters.

Proof. FL is the disjoint union of its clusters. Let F be any cluster. If F is
finite, then F |= L by Lemma 4.2. If F is infinite, then it contains an R

�
-

reflexive point by Lemma 4.3. Hence F |= χn for every n ≥ 1, and so F
validates every χ[m,n]. Thus F is a basic frame validating every additional
axiom of L, so again F |= L. Altogether FL is the disjoint union of a set of
frames that each validate L, so FL |= L, i.e., L is canonical.

For the finite model property, suppose that L 6` ϕ. We have to show that ϕ
is falsifiable in a model on a finite L-frame. Now there is some x ∈WL with
ϕ /∈ x, so ϕ is false at x in the canonical model ML. Let F = (S,R

�
, R

A
)

be the cluster of x in FL, and M the restriction of ML to F , i.e., M(p) =
ML(p) ∩ S. Then ϕ is false at x in M. If S is finite, then F |= L and we
are done.

If however S is infinite, then it contains an R
�

-reflexive point. We then
carry out a standard filtration process through the finite set Γ of all subfor-
mulas of ϕ, to get a falsifying model for ϕ on a finite basic frame that also
has a reflexive point and so validates L. This is done by defining an equiv-
alence relation ∼ on S by putting y ∼ z iff y ∩ Γ = z ∩ Γ. Let S ′ be the
quotient set S/∼, and f : S → S ′ the natural map. Put F ′ = (S′, R′

�
, R′

A
),

where fyR′
�
fz iff y′R

�
z′ for some y′ ∼ y and some z′ ∼ z, and similarly

for R′
A
. Putting M′(p) = f(M(p)) for all p ∈ Γ gives a model on F ′ such

that M′(ψ) = f(M(ψ)) for all ψ ∈ Γ. It follows that fx /∈ M′(ϕ), so ϕ is
false at fx in M′.
M′ is what is known as the least filtration of M through Γ. Its underlying

set S′ is finite, with at most 2|Γ| elements. The symmetry of R
�

and the
universality of R

A
on S transfer to R′

�
and R′

A
on S′, respectively, so F ′ is
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a finite cluster. But there is some y ∈ S with yR
�
y, and hence fyR′

�
fy,

so F ′ has a reflexive point, which is enough to force F ′ |= L as explained
above.

To sum up, we have seen that every non-theorem of L is falsifiable on a
finite L-frame that is a cluster. �

As a first example of a logic fulfilling this Theorem, let EG be the basic
logic3 with additional axioms {χ2} ∪ {χ[ |Gn|, n] : n > 2}. (The role of χ2

will be explained in the next section.)

Theorem 4.5 : EG is a decidable logic.

Proof. From the computable enumeration {Gn : n ≥ 2} (Theorem 2.1(3))
we obtain a computable enumeration of the formulas {χ[ |Gn|, n] : n > 2}.
Since there are only finitely many other axioms of EG, it follows that the
set of all axioms is computably enumerable, and therefore so is the set of all
EG-theorems.

Now a finite cluster F validates EG iff it either contains an R
�

-reflexive
point, or else is a graph with χ(F) > 2 and also χ(F) > n for all n > 2
such that |Gn| ≤ |F| (see Lemma 3.1). There are finitely many such n, so
it is decidable whether F |= EG. Hence we can computably enumerate the
(isomorphism types of) finite EG-clusters. By simultaneously enumerating
all formulas and checking whether they are valid in finite EG-clusters, we
can obtain a computable enumeration of the set of all formulas that are fal-
sifiable in some finite cluster that validates EG. By Theorem 4.4, this is an
enumeration of the set of all non-theorems of EG.

Since every formula appears in just one of these two enumerations, either
that of the theorems or that of the non-theorems, the set of EG-theorems is
decidable. �

We will now construct continuum many logics fulfilling Theorem 4.4. We
write [2) for the set {n ∈ ω : n ≥ 2}. For each subset J of [2) let EGJ be
the basic logic with additional axioms

{χ2} ∪ {χ[ |Gn|, χ(Gn)] : n ∈ J}.

The formula χ[ |Gn|, χ(Gn)] can be interpreted as asserting of a graph that
if it has at least as many vertices as Gn then its chromatic number is greater
than the chromatic number χ(Gn) of Gn. If J is infinite, then by Theorem
4.4 EGJ is canonical and has the finite model property.

3
EG stands for “Erdős graphs”.
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Lemma 4.6 : Let m,n ∈ [2) and J ⊆ [2).
(1) Gn |= χ[ |Gm|, χ(Gm)] iff m 6= n.
(2) If n /∈ J , then Gn |= EGJ .
(3) n ∈ J if, and only if, EGJ ` χ[ |Gn|, χ(Gn)].

Proof. Note that Gn |= χ2 by Lemma 3.1(2), since χ(Gn) ≥ χ(G2) > 2. Let
cm = χ(Gm).
(1) Suppose Gn |= χ[ |Gm|, cm]. Then if m = n, the antecedent of χ[ |Gm|,

cm] is satisfied in Gn, so Gn |= χcn
, which by Lemma 3.1(2) gives the

absurdity χ(Gn) > cn. Hence m 6= n.
Conversely, suppose m 6= n. If m > n, then the formula χ[ |Gm|, cm]

is valid in Gn because its antecedent E|Gm| cannot be satisfied in Gn. But
if m < n, then the formula is again valid in Gn because χ(Gn) > cm
and therefore the consequent is valid in Gn.

(2) Suppose n /∈ J . Then ifm ∈ J , we get Gn |= χ[ |Gm|, χ(Gm)] from part
(1).

(3) If n ∈ J , then χ[ |Gn|, χ(Gn)] is an axiom of EGJ . But if n /∈ J , then
we have Gn |= EGJ by part (2) and Gn 6|= χ[ |Gn|, χ(Gn)] by part (1), so
EGJ 6` χ[ |Gn|, χ(Gn)] by soundness.

�

Part (3) of this lemma immediately gives

Corollary 4.7 : If J 6= J ′, then EGJ 6= EGJ ′ . �

Theorem 4.8 : If J is an infinite subset of [2), then J and EGJ have the same
degree of unsolvability.

Proof. We show that each of the properties “n ∈ J” and “EGJ ` ϕ” is
decidable relative to an oracle for deciding the other property.

For any n ≥ 2 we can effectively find the formula χ[ |Gn|, χ(Gn)], so by
Lemma 4.6(3), relative to an oracle that decides provability in EGJ we can
decide membership of J .

The converse is similar to the proof of Theorem 4.5. From the computable
enumeration {Gn : n ≥ 2} we obtain, relative to an oracle for deciding
membership of J , a computable enumeration of {χ[ |Gn|, χ(Gn)] : n ∈ J}.
Hence the set of all axioms of EGJ is computably enumerable relative to this
oracle for J , and therefore so is the set of all EGJ -theorems.

But a finite cluster F validates EGJ iff it either contains an R
�

-reflexive
point, or else is a graph with χ(F) > 2 and also χ(F) > χ(Gn) for all n ∈ J
such that |Gn| ≤ |F|. Hence relative to J it is decidable whether F |= EGJ .
This implies, similarly to 4.5, that there is a computable enumeration of the
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set of all formulas that are falsifiable in some finite cluster that validates
EGJ . Since J is infinite this is an enumeration of the set of all non-theorems
of EGJ , by Theorem 4.4.

Altogether then, given an oracle for J we can computably enumerate both
the set of theorems and the set of non-theorems of EGJ , and so we can decide
theoremhood in EGJ . �

5. Failure of Elementary Determination

We are going to show that certain of the logics EGJ are not sound and com-
plete with respect to any elementary class of frames. For this purpose we use
the notion of a homomorphism f : F → F ′ between two clusters, defined as
a function that preserves the R

�
relations, i.e., xR

�
y implies fxR′

�
fy.

Lemma 5.1 : Let K be any class of basic frames, and LK = {ϕ : K |= ϕ}
the logic it determines. Then for any n ≥ 2 such that Gn |= LK there exists
a frame Fn ∈ K and a cluster Cn of Fn for which there is a homomorphism
fn : Cn → Gn.

Proof. Suppose the elements of Gn are x1, . . . , xk. Take variables p1, . . . , pk,
and let ∆n be the finite set consisting of the following formulas.

A(p1 ∨ · · · ∨ pk)
A¬(pi ∧ pj) for 1 ≤ i < j ≤ k
A(pi → �¬pj) for all i, j such that not xiR�

xj .

Take a model Mn on the cluster Gn with Mn(pi) = {xi} for all i ≤ k.
Then every member of ∆n is true at all points in the model, hence so is
the conjunction δn of the members of ∆n. Since Gn |= LK, it follows that
LK 6` ¬δn, so there must be a model M based on a frame in K having a
point t such that δn is true at t in M. Hence all members of ∆n are true at t.

Let Cn be the cluster of t in M. Then for each point x in Cn there is
exactly one i such that pi is true at x in M. Put fn(x) = xi ∈ Gn, to
define fn : Cn → Gn. The formulas A(pi → �¬pj) ensure that fn is a
homomorphism. �

Theorem 5.2 : Let K be any class of basic frames that validate χ2. If there
are infinitely many n such that Gn |= LK, then K is not an elementary class.

Proof. Suppose, for the sake of contradiction, that K is elementary. Then
there is a set Σ of sentences in the first-order language of frames F =
(W,R

�
, R

A
) such that F |= Σ iff F ∈ K.
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Add to the first-order language a unary relation symbol C, and let δ be the
sentence

∃xCx ∧ ∀x(Cx→ ¬xR
�
x) ∧ ∀x

(

Cx→ ∀y(Cy ↔ xR
A
y)

)

asserting that the interpretation of C in F is an irreflexive cluster, and hence
is a graph.

For each k, let γk be the sentence

∃x1 · · · ∃xk

(

∧

1≤i6=j≤k(Cxi ∧ xi 6= xj) ∧
∧

1≤i<k xiR�
xi+1 ∧ xkR�

x1

)

asserting that the interpretation of C contains a k-cycle. Put

∆ = Σ ∪ {δ} ∪ {¬ γk : k is odd}.

We will show that ∆ has a model. This model must be of the form (F , C),
where F |= Σ and C is an irreflexive cluster of F that contains no odd cycle.
Then F ∈ K and so by hypothesis F |= χ2, hence C |= χ2 as C is an inner
subframe of F . But as C has no odd cycle it is 2-colourable, and therefore
C 6|= χ2 by Lemma 3.1(2). This contradiction shows that K cannot be an
elementary class after all.

It remains to prove that ∆ has a model. Now take any nwith Gn |= LK. By
Lemma 5.1 there is an Fn ∈ K and a cluster Cn of Fn with a homomorphism
fn : Cn → Gn. Since reflexive points are preserved by homomorphisms, and
Gn has no reflexive points, it follows that Cn is irreflexive. Also if Cn had an
odd cycle of length ≤ n, then by Theorem 2.1(2) so too would Gn, which is
false. Hence

(Fn, Cn) |= Σ ∪ {δ} ∪ {¬ γk : k is odd and k ≤ n}.

Since by assumption there are arbitrarily large n for which Gn |= LK, this
suffices to show that every finite subset of ∆ has a model, and hence by
Compactness that ∆ itself has one too. �

Theorem 5.3 : There are exactly 2ℵ0 distinct basic logics that are canonical
and have the finite model property but are not sound and complete for any
elementary class of frames. They include the decidable logic EG and logics
having every possible degree of unsolvability, as well as undecidable logics
that have decidable axiomatizations.

Proof. Let J be any subset of [2) that is infinite and coinfinite, i.e., the com-
plement [2) − J is also infinite. By Theorem 4.4, EGJ is canonical and
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has the finite model property. Suppose that EGJ is determined by a class
of frames K, i.e., EGJ = LK. Since EGJ is a basic logic and has χ2 as an
axiom, each member of K is a basic frame validating χ2. But by Lemma
4.6(2), the set {n : Gn |= LK} includes [2)−J and so is infinite. In that case
K is not elementary by Theorem 5.2.

Now there are 2ℵ0 distinct subsets J of [2) that are infinite and coinfinite,
and each defines a distinct logic EGJ by Corollary 4.7. Since there are 2ℵ0

logics altogether, this proves the first statement of the Theorem. The case of
EG is similar, since {n : Gn |= EG} = [2). The case of the different possible
degrees of unsolvability follows from Theorem 4.8, since every degree is the
degree of some infinite coinfinite subset of [2).

Finally, let J be any computably enumerable but undecidable subset of
[2). Then J is infinite and coinfinite. Since J is undecidable, so too is EGJ

by Lemma 4.6(3). From the enumerability of J we obtain a computable
enumeration ϕ1, ϕ2, ϕ3, . . . of the axioms of EGJ , and then by Craig’s trick
we get {ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∧ ϕ2 ∧ ϕ3, . . . } as a decidable set of axioms for
EGJ . �

The inclusion of the Brouwerian axiom p → �♦p in basic logics ensured
that their frames have the symmetry property enjoyed by the edge relations
of graphs, and this led to a proof of Theorem 5.2 by a simple compactness
argument together with some accessible graph theory. The analysis could be
carried through without the symmetry assumption, but that would require a
more involved proof of the appropriate version of 5.2. What really lies in
the background here is the following fact, which provides a criterion for fail-
ure of elementary determination that applies to logics in any kind of modal
language.

Theorem 5.4 : Let L be a normal modal logic for which there exists a set
{Fi : i ∈ I} of finite L-frames and an ultrafilter D on I such that the
ultraproduct

∏

D Fi is not an L-frame. Then L is not determined by any
elementary class of frames.

Proof. (Sketch.) This is shown in [15] for a monomodal logic, but the result
holds in general. One approach to it is to use the fact, which follows from
[13, 4.12] or [12, 11.4.2], that if L is determined by some elementary class of
frames, then it is determined by an elementary class K that is closed under
inner subframes and has FL ∈ K. But every finite L-frame is isomorphic
to an inner subframe of FL, so this implies {Fi : i ∈ I} ⊆ K. Then
∏

D Fi ∈ K as elementary classes are closed under ultraproducts. But that
contradicts the fact that

∏

D Fi 6|= L and L is sound for K.
To see why the assertion about finite L-frames holds, let F be any such

frame, and take a model M on F such that for each element x of F there
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is a variable p with M(p) = {x}. Put fx = {ϕ : x ∈ M(ϕ)}. Since
F |= L, fx is maximally L-consistent, so this gives a map f : F → FL. It is
straightforward to check that f is an isomorphism between F and a subframe
of FL that is inner (the latter requires the finiteness of F). �

We will use the criterion of this Theorem in the next sections to demon-
strate further failures of elementary determination.

6. Monomodal Examples

By applying a translation of bimodal logic into monomodal logic due to
Thomason [31] it would be possible to convert the logics EGJ into single-
modality logics that are canonical but not elementarily determined. Here
instead we give more natural examples by adapting some ideas that were
used in [10] to prove the non-canonicity of the McKinsey axiom �♦p →
♦�p, or equivalently ♦(♦p→ �p).

We define a sequence {Hn : n ≥ 1} of finite monomodal frames Hn =
(Wn, Rn), depicted as

En

Mn
0

a
a

a
a

a
aa

�
�

�
�

�
��

b
b

b
b

b
b

b
!

!
!

!
!

!
!

t t t
t
x1

...

xn

S

S = {x1, . . . , xn}

hhhhhhhhh

(((((((((

#

"

 

!

'

&

$

%
Here En = {k ∈ ω : 1 ≤ k ≤ n2n} (as will become apparent, any set
with n2n elements would do for En). Then Mn = {S ⊆ En : |S| = n}
is the set of all n-element subsets of En, and Wn = {0} ∪Mn ∪ En. Thus
|Hn| = 1 +

(

n2n

n

)

+ n2n. The binary relation Rn is specified by

R0
n = Mn ∪ En

RS
n = S for S ∈Mn

Re
n = ∅ for e ∈ En.
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The frame Hn is generated by the point 0 whose Rn-alternatives are all
points of Wn except itself. The members of Mn are the middle-points of
Hn. The alternatives of each S ∈ Mn are just the members of S. The
members of En are end-points of Hn and have no Rn-alternatives. Note that

every middle-point of Hn has exactly n alternatives, (3)

a fact that will be crucial below (in the proof of Lemma 6.7). It is readily
checked that Rn is transitive. Hence Hn validates the logic K4, which is
the normal modal logic with axiom 4: �p → ��p, valid in precisely the
transitive frames.

We use a single diamond modality ♦ with dual �. For m ≥ 1, let ∃m be
the formula

♦p1 ∧ ♦(p2 ∧ ¬p1) ∧ · · · ∧ ♦(pm ∧ ¬p1 ∧ · · · ∧ ¬pm−1).

∃m is satisfiable at x in a frame (W,R) iff |Rx| ≥ m.
For n ≥ 1, let µn be the formula

♦2> → ♦
(

♦> ∧ (♦q1 → �q1) ∧ · · · ∧ (♦qn → �qn)
)

,

where ♦2> abbreviates ♦♦>.

Lemma 6.1 : (1) Hn |= µm for all m ≤ n.
(2) For n ≥ 2, Hn |= µm iff m ≤ n.

Proof.
(1) It is enough to show that Hn |= µn, since µn → µm is valid whenever

m ≤ n. The antecedent ♦2> of µn is satisfiable just at the generator 0
in Hn, so the only issue is whether the consequent of µn is also satisfied
at 0. That depends on the truth-values of variables at end-points.

There are 2n possible truth-value assignments to the list q1, . . . , qn of
variables. Given a model M on Hn, by labelling each end-point by
the valuation it gives to these variables we get a partition of En into at
most 2n subsets, with all the members of any one partition-set assigning
the same values to q1, . . . , qn. One of these ≤ 2n subsets must have at
least n elements, or else there could be at most (n − 1)2n end-points
altogether, contradicting the fact that |En| = n2n. Hence there exists
an n-element set S, i.e., a middle-point of Hn, such that all members
of S assign the same values to q1, . . . , qn. Thus each qi has a constant
truth-value on RS

n , and therefore (♦qi → �qi) is true at S for all i ≤ n.
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But ♦> is also true at S, by (3), so S makes the consequent of µn true
at the generator 0 in the arbitrary model M on Hn, as desired.

(2) For n ≥ 2 it holds that (n − 1)2n+1 ≥ n2n, so there exists a partition
of En into at most 2n+1 sets each of size at most n− 1. Associate with
each partition-set X a distinct truth-valuation of q1, . . . , qn+1, and let
each member of X assign this valuation to these variables. The result is
a model in which there is no n-element set of end-points whose members
all give the same valuation to these variables. Indeed if S is any middle-
point of Hn, then S is larger than any partition set, so there must exist at
least two elements of S that belong to different partition-sets, so assign
a different truth-value to qi for some i ≤ n+ 1. For that i, ♦qi → �qi is
false at S, therefore so is

♦> ∧ (♦q1 → �q1) ∧ · · · ∧ (♦qn → �qn+1).

But this last formula is also false at all points of En, since those points
falsify ♦>, and therefore altogether the formula is false throughout R0

n.
This shows that the consequent of µn+1 is false at the generator 0, and
so Hn 6|= µn+1. It follows that Hn 6|= µm for all m > n.

�

For m,n ≥ 1, let µ[m,n] be the formula ∃m → µn.

Lemma 6.2 : For any m,n ≥ 1, µ[ |Hm|,m] is valid in Hn.

Proof. If the antecedent of µ[ |Hm|,m] is true at some point in a model on
Hn, then Hn has at least |Hm| elements, so n ≥ m. Hence Hn |= µm by
Lemma 6.1(1). �

Let µR(x) be the first-order formula

∃y
(

xRy ∧ ∃z∀w(yRw ↔ w = z)
)

asserting that there exists y ∈ Rx with |Ry| = 1. It is evident that if µR(x)
holds of a point x in a frame, then for all n ≥ 1, the consequent of µn will
be true at x in any model on that frame. Thus the elementary condition

∀x(∃z(xR2z) → µR(x))

(where xR2z iff ∃y(xRyRz)) is sufficient for validity of µn. It is not in
general necessary, as µR(0) fails in Hn for n > 1.
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Lemma 6.3 : Let L be any normal extension of K4 such that there are infin-
itely many n for which there exists an m such that L ` µ[m,n]. Let x be
a point in the canonical frame FL that generates an infinite inner subframe
and has ♦2> ∈ x. Then µR(x) holds in FL.

Proof. (This is analogous to Lemma 4.3.) Let FL = (WL, R). Put

y0 = {ϕ : �ϕ ∈ x} ∪ {♦>} ∪ {♦ψ → �ψ : ψ is a formula}.

If y0 is L-consistent, it is included in some y ∈WL. Then xRy; ♦> ∈ y and
so |Ry| ≥ 1; and (♦ψ → �ψ) ∈ y for all formulas ψ, which ensures that
|Ry| ≤ 1 and establishes µR(x) as required.

But if y0 were not L-consistent, there would be some ϕ with �ϕ ∈ x, and
some formulas ψ1, . . . , ψk, for some k ≥ 1, such that

L ` ϕ→ ¬
(

♦> ∧ (♦ψ1 → �ψ1) ∧ · · · ∧ (♦ψk → �ψk)
)

.

By assumption there is some n ≥ k and some m such that L ` µ[m,n].
Putting ψj = ψk for k < j ≤ n and applying normality of L then leads to

L ` �ϕ→ �¬
(

♦> ∧ (♦ψ1 → �ψ1) ∧ · · · ∧ (♦ψn → �ψn)
)

,

and so as �ϕ ∈ x,

♦
(

♦> ∧ (♦ψ1 → �ψ1) ∧ · · · ∧ (♦ψn → �ψn)
)

/∈ x. (4)

Since L ` �p → ��p, the relation R in FL is transitive (and hence FL |=
�p → ��p). Transitivity ensures that the inner subframe generated by
x is based on the set {x} ∪ Rx. Since this subframe is infinite, Rx must be
infinite, so we can choosem distinct points x1, . . . , xm inRx. Then there are
formulas ϕ1, . . . , ϕm with ϕi ∈ xj iff i = j. Then (ϕi ∧

∧

1≤j<i¬ϕj) ∈ xi

for all i ≤ m, and so
∧

1≤i≤m ♦(ϕi ∧
∧

1≤j<i¬ϕj) ∈ x.

Together with (4) and the fact that ♦2> ∈ x, this contradicts the fact that
every instance of µ[m,n] belongs to x. So y0 is L-consistent, and the proof
is complete. �

Theorem 6.4 : Let L be any normal extension of K4 that is defined by addi-
tional axioms of the form µn or µ[m,n]. If there are infinitely many n for
which there exists an m such that L ` µ[m,n], then L is canonical.
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Proof. Let F be the canonical frame of L. The K4 axiom �p → ��p is
canonical so is valid in F (as explained in the proof of Lemma 6.3).

Now let x ∈ F . If the inner subframe Fx generated by x is finite, then
it validates L (by the proof of Lemma 4.2), so L cannot be falsified at x in
any model on F . Alternatively, if ♦2> /∈ x, then in any model on F the
antecedent ♦2> of every µn is false at x, so every µn is true at x, and hence
so is every µ[m,n].

This leaves the case that Fx is infinite and ♦2> ∈ x. But then by Lemma
6.3 the condition µR(x) holds at x in F , which ensures that every µn, and
hence every µ[m,n], is true at x in all models on F .

Thus F validates the axioms of L. �

Now let D be a non-principal ultrafilter on {n : n ≥ 1}, and
∏

D Hn

the associated ultraproduct of the frames Hn = (Wn, Rn). Recall that
∏

D Hn = (
∏

D Wn, R) where
∏

D Wn is the quotient set of the direct
product

∏

n≥1Wn by the equivalence relation ≡ defined by: f ≡ g iff
{n : f(n) = g(n)} ∈ D. We write fD for the ≡-equivalence class of
any f ∈

∏

n≥1Wn. Then fDRgD in
∏

D Hn iff {n : f(n)Rng(n)} ∈ D.
We are going to show that µ1 is falsified in some model on the ultraprod-

uct
∏

D Hn. To do this we use the following criterion, adapted from [10,
Theorem 1].

Lemma 6.5 : Let F be a frame containing a point r such that the set

[Rr] = {y ∈ Rr : Ry 6= ∅}

is non-empty and for any y ∈ [Rr], Ry is an infinite set that is at least as
large in cardinality as [Rr]. Then µ1 is falsifiable at r in some model on F .

Proof. Let κ be the cardinality of [Rr], and let {yλ : λ < κ} be an indexing
of the members of [Rr] by the ordinals λ less than κ. For each λ, distinct
points yλ0, yλ1 ∈ Ryλ will then be defined in such a way that {yλ0, yλ1} ∩
{yµ0, yµ1} = ∅ whenever λ 6= µ < κ. Then declaring q1 to be true just at
the points in {yλ1 : λ < κ} defines a model on F in which q1 is false at yλ0,
and true at yλ1, making ♦q1 → �q1 false at yλ. Since this is the case for
every member yλ of [Rr], while ♦> is false at every member ofRr − [Rr], it
follows that ♦(♦> ∧ (♦q1 → �q1)) is false at r in this model. On the other
hand, ♦2> is true at r, since [Rr] 6= ∅. Hence µ1 is false at r.

It remains then to show that the yλi can be defined as claimed. Fix λ < κ,
and suppose inductively that yµi has been defined for all µ < λ and i ∈
{0, 1}, such that yµi 6= yνj whenever µ 6= ν < λ and j ∈ {0, 1}. Let

Yλ = {yµ0, yµ1 : µ < λ}.
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Then if λ is a finite ordinal, Yλ is a finite set, so as Ryλ is infinite by hypoth-
esis, distinct points yλ0, yλ1 can be selected from Ryλ − Yλ. If however λ is
infinite, then the cardinality of Yλ is at most that of λ, and hence is less than
κ. ButRyλ has cardinality at least κ, so again the selection of yλ0, yλ1 ∈ Ryλ

can be made to ensure that yµi 6= yνj for all µ 6= ν ≤ λ and all i, j ∈ {0, 1}.
Hence the construction extends to λ, and so goes through by induction. �

We also need the following fact about cardinalities of ultraproducts that
is due to [7, Theorem 1.28] (the proof can also be found in [1, Theorem
6.3.12]):

Lemma 6.6 : If {Xn : n ≥ 1} is a collection of finite sets, and {n : |Xn| =
k} /∈ D for all k ∈ ω, then |

∏

D Xn| = 2ℵ0 . �

Lemma 6.7 : µ1 is falsifiable in
∏

D Hn.

Proof. Let r = 〈rn : n ≥ 1〉D in
∏

D Hn, where rn = 0 ∈ Wn. Notice
that in Hn, the set [R0

n] = {x ∈ R0
n : Rx

n 6= ∅} is just the set Mn of middle
points. Hence [R0

n] 6= ∅ for all n ≥ 1, and so [Rr] 6= ∅ in
∏

D Hn. Indeed if
g ∈

∏

n≥1Mn, then gD ∈ [Rr]. Moreover, each y ∈ [Rr] is equal to gD for
some g ∈

∏

n≥1Mn.
Since D is non-principal, it contains only infinite sets. Thus as |Wn| is

a strictly increasing function of n, it is not constant on any set in D, so by
Lemma 6.6 it follows that

∏

D Hn has |
∏

D Wn| = 2ℵ0 elements. But if
y ∈ [Rr] in

∏

D Hn, we can similarly show that Ry is of size 2ℵ0 , so that r
satisfies Lemma 6.5, giving the desired result that µ1 is falsifiable at r. To see
this, let y = gD for some g ∈

∏

n≥1Mn. Then for each h ∈
∏

n≥1R
g(n)
n

we have g(n)Rnh(n) for all n ≥ 1, so yRhD in
∏

D Hn, i.e., hD ∈ Ry.
This shows that the natural injection

∏

D R
g(n)
n �

∏

D Wn has its range
included in Ry. But for each n ≥ 1, g(n) is a middle-point of Hn, so
|R

g(n)
n | = n by (3). So |R

g(n)
n | is a strictly increasing function of n, hence

cannot be constant on any set in D, which ensures that |
∏

D R
g(n)
n | = 2ℵ0 ,

hence |Ry| = 2ℵ0 . �

Now let H be the normal extension of K4 with axioms µ1 and µ[ |Hn|, n]
for all n ≥ 2.

Theorem 6.8 : H is canonical but not determined by any elementary class of
frames.
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Proof. Canonicity follows from Theorem 6.4. The frame Hn validates the
logic H for all n ≥ 1, but the ultraproduct

∏

D Hn does not, since it invali-
dates the axiom µ1. Failure of elementary determination then follows from
Theorem 5.4. �

These constructions can be adapted to show that there are 2ℵ0 distinct nor-
mal extensions of K4 that are canonical but not elementarily determined. For
each set J of positive integers let HJ be the normal extension of K4 with ax-
ioms µ1 and µ[ |Hn| − 1, n + 1] for all n ∈ J . Using Lemma 6.1 it can be
shown that if n /∈ J then Hn |= HJ , and that

J = {n : HJ ` µ[ |Hn| − 1, n+ 1]}.

If J is infinite, then HJ is canonical by Theorem 6.4. If J is also coinfinite
then we can take a non-principal ultrafilter on {n : n /∈ J}, and then the
resulting ultraproduct of the family {Hn : n /∈ J} of HJ -frames will falsify
µ1, showing that HJ is not elementarily determined. It is left to the reader to
verify the details of these claims.

Now let H+ be the normal extension of H by the additional axiom �3⊥
whose validating frames are defined by the condition ∀x∀y¬(xR3y). An
H+-frame has depth at most two, where the depth of a frame is the length
of its longest cycle-free R-path. If V is any finite set of propositional vari-
ables, then up to provable equivalence in H+, there are only finitely many
non-equivalent formulas whose variables come from V . This property was
established in [29, Theorem II.6.5] for any frame-complete normal logic L

extending K4 that has a fixed finite upper bound on the depth of L-frames. It
implies that the Lindenbaum algebra of L generated by V is finite, and hence,
since Lindenbaum algebras are free, that every finitely generated L-algebra
is finite. Then any L-algebra is locally finite, meaning that all of its finitely
generated subalgebras are finite.4

The interest in H+ is that it shows that even the strong hypothesis of local
finiteness of algebraic models does not imply the converse of Fine’s theorem.
H+ is canonical, but is not elementarily determined because all of the frames
Hn validate H+. Note that local finiteness readily implies that H+ has the
finite model property.

We end now with some questions for further investigation. First, is there
a canonical but not elementarily determined logic that is Halldén complete?
Recall that Halldén completeness of L means that for any two formulas ϕ
and ψ that have no variables in common, if L ` ϕ ∨ ψ then either L ` ϕ or

4 See [13, Theorem 6.3] for a direct proof that if F is transitive and has finite depth, then
the modal algebra of all subsets of F is locally finite.
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L ` ψ. The axioms of the form χ[m,n] and µ[m,n] show that none of the
logics discussed in this paper are Halldén complete.

Second, is every canonical normal extension of K4.3 elementarily deter-
mined? As already mentioned, it was shown in [33] that every canonical nor-
mal extension of linear tense logic is elementarily determined, so the ques-
tion asks: does this hold for the future fragment of tense logic? A counter
example including S4.3 would be of particular interest, since all extensions
of S4.3 are finitely axiomatizable.
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