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HALLDÉN-COMPLETENESS AND MODAL RELEVANT LOGIC

EDWIN D. MARES∗

Abstract
This paper shows that a wide range of normal and non-normal modal
relevant logics are Halldén-complete and also that there are some
otherwise reasonable looking modal relevant logics that are not Hall-
dén-complete. This paper is dedicated to Max Cresswell on the oc-
casion of his 65th birthday.

1. Introduction

A propositional logic L is Halldén-complete if and only if for all formulae
A and B that do not have any variables in common, A∨B is a theorem of L
only if one of A or B is a theorem of L. This is a rather intuitive property for
a logic to have. Consider a proof that classical propositional logic (hence-
forth, ‘CPC’) is Halldén-complete. Suppose that A and B have no variables
in common and that neither is a theorem of CPC. Then for each there is a
assignment of truth values to propositional variables that makes it false. Let
vA be a value assignment that makes A false and vB a value assignment that
makes B false. Now, let v be such that, for all p in V ar(A) (the set of vari-
ables in A), v(p) = vA(p), and for all variables q in V ar(B), v(q) = vB(q).
It is easy to show that v is a falsifying value assignment for A∨B. It would
seem that any reasonable logic should allow us to “glue together” falsifying
models of unrelated formulae to create a falsifying model of their disjunc-
tion. In An Introduction to Modal Logic, Hughes and Cresswell express this
intuition exactly:

it would certainly be strange to have (A ∨ B) valid when
neither A nor B is valid and they have no common variable;
for by normal criteria of validity this would mean that (a)
we could make a value-assignment to variables in A which
would falsify it, (b) this would not commit us to any particular

∗The author thanks Rob Goldblatt, Sue Wild, and Nick Smith for discussions related to
this paper.
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60 EDWIN D. MARES

assignment of values to variables in B, (c) we could make
an assignment which would falsify B, and yet (d) we could
not falsify both A and B at the same time ... This seems
paradoxical at the very least. ([6] p 268)

As Hughes and Cresswell say, this seems paradoxical. But some otherwise
quite reasonable modal logics are not Halldén-complete. The logic K is
perhaps the most prominent among them. It is a theorem of K that

♦(p∨ ∼p) ∨ �q,

although neither disjunct of this formula is a theorem. It is clear that gluing
models for modal logics is more complicated than gluing value assignments
for CPC (see [3]). For this reason this intuition is not expressed in A New
Introduction to Modal Logic [7]. But even when we realise that a favourite
modal logic is Halldén-incomplete, the feeling does remain that something
is lacking in that logic. In the case of K, as we shall see, it is that its models
do not all have enough structure to allow them to be glued together in the
right way.

From the point of view of view of relevant logic, there are also syntac-
tic reasons to want a logic to be Halldén-complete. Halldén-completeness
closely resembles the relevance property. The relevance property is had by a
logic L if and only if for all theorems A → B of L, A and B share at least
one variable. We can define an intensional disjunction ⊕ (called “fission”)
such that A ⊕ B =df ∼A → B. Thus, a paraphrase of the definition of the
relevance property tells us that A ⊕ B is a theorem of a relevant logic only
if A and B have a variable in common. Thus, the relevance property is a
strengthened and intensional form of Halldén-completeness.

Moreover, Halldén-complete logics have a more relevant “feel” than in-
complete ones. Suppose that A ∨ B is a theorem of L and A and B do not
share any variables. What sort of rationale can be given for the disjunction’s
being a theorem? If the logic is Halldén-complete, we can say that we can
prove one of the disjuncts and then disjoin the other by a rule of disjunction
introduction. This is a justification that relevant logicians feel good about.
Disjunction introduction, viz.,

A

∴ A ∨ B
,
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HALLDÉN-COMPLETENESS AND MODAL RELEVANT LOGIC 61

is a rule that relevant logicians accept. We think that it follows directly from
the meaning of extensional disjunction. If the logic is not Halldén-complete,
then we cannot use this justification in every case.1

Although relevant logicians should care whether their logics are Halldén-
complete, there are interesting and otherwise reasonable-seeming Halldén-
incomplete modal relevant logics. Halldén-completeness has never been
taken to be a defining feature of relevant logics, so we seem within our rights
to label these systems as such.

On the other hand, a very wide range of modal relevant logics are Halldén-
complete. There are relevant logics that resemble the Halldén-complete nor-
mal modal logics based on CPC, but there are also non-normal modal rel-
evant logics that are Halldén-complete. There is even a logic that closely
resembles the modal logic K that is Halldén-complete.

In this paper we will explore Halldén-completeness in modal relevant log-
ics. The techniques used are generalisations of methods due to Kripke,
Meyer, van Benthem, and Humberstone.

2. p-Morphisms

Some of the results that we prove below are extensions of a theorem by
Johan van Benthem and Lloyd Humberstone. Their theorem uses the notion
of a psuedo-epimorphism (or ‘p-morphism’) between frames. Suppose that
F = (W, M) and F ′ = (W ′, M ′) are frames for modal logics.2 A p-
morphism from F to F ′ is a function f from W into W ′ such that the
following hold ([5] p 11):3

• if Mab, then M ′f(a)f(b);
• if M ′f(a)b, ∃x(Max & b = f(x)).

1 It might seem odd that we are saying that Halldén-complete logics are more relevant
than Halldén-incomplete logics, since the Halldén-incomplete systems we will look at are
generally weaker than many of the Halldén-complete logics that we will examine. I am,
however, trying to make a point about the procedures for proving theorems in the logic, not
about the nature of the theorems themselves.

For a more protracted and deeper discussion of the virtues of Halldén-completeness from
the points of view of CPC, relevant logic, and intuitionist logic see [15].

2 I use ‘M ’ with and without subscripts throughout this paper for the binary modal ac-
cessibility relation.

3 We can only use the following definition: f is a p-morphism if and only if f(a)M ′b if
and only if ∃x(aMx & b = f(x)).



“04mares”
2004/10/4
page 62

i

i

i

i

i

i

i

i

62 EDWIN D. MARES

Definition 1 : A class of frames X is said to be closed under p-morphic fusion
if and only if for any two frames F1 and F2 in X and any worlds a in F1

and b in F2, there is a frame F3 in X and a world c in F3 such that there is
a p-morphism f1 from F3 to F1 and a p-morphism f2 from F3 to F2 so that
f1(c) = a and f2(c) = b. (F3, c) is called a p-morphic fusion of (F1, a) and
(F2, b). (F1 and F2 are called “projections of F”.)

Now we can state the van Benthem-Humberstone theorem:4

Theorem 2 : (van Benthem and Humberstone) If a class of frames charac-
terising L is closed under p-morphic fusion, then L is Halldén complete.

Let’s go through the proof of this theorem, since we will use it later.

Proof. Suppose that a class of frames characterising L is closed under p-
morphic fusion and that 0L A and 0L B, where A and B have no variables
in common. Let F1 =< W1, M1 > be a frame and M1 =< W1, M1, v1 >
be a model that falsifies A and a a world in M2 that makes A false according
to v1. And let F2 =< W2, M2 > be a frame and M2 =< W2, M2, v2 > be
a model that falsifies B and b a world in M2 that makes A false according
to v2. Let (F , d) b a p-morphic fusion of (F1, a) and (F2, b), where F =<
W, M > (under functions f1 : W → W1 and f2 : W → W2). Let v be a
value assignment on F such that for all variables p in A, v(p) = {x ∈ W :
f1(x) ∈ v(p)} and for all variables q in B, v(q) = {x ∈ W : f2(x) ∈
v(q)}. Let us call < W, M, v >, M.

We will prove that that M falsifies A ∨ B. We will do so by showing that
d 2v A and d 2v B.

Let us begin with A. Suppose that C is a formula such that V ar(C) ⊆
V ar(A). We show that for all worlds c in W , c |=v C if and only if
f1(c) |=v1

C.
Case 1. C is a propositional variable. Then v(C) = {x : f1(x) ∈ v1(C)}.
Case 2. C is a conjunction, say, D ∧ E. Follows by the inductive hypoth-

esis and the truth condition for conjunction.
Case 3. C =∼ D. Follows by the inductive hypothesis and the truth

condition for negation.
Case 4. C = �D. Suppose first that f1(c) |=v1

�D. If there are no
worlds accessible from f1(c), then, by definition of a p-morphism, there are
no worlds accessible from c. So if f1(c) |=v1

�D by virtue of there being
no worlds accessible from f1(c), c |=v �D. So, let d be an arbitrary world
such that Mcd. Then, by the definition of a p-morphism, Mf1(c)f1(d). By

4 We also use the following definition: A class of frames characterises a logic if and only
if that logic is both sound and complete over that class of frames.
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the truth condition for necessity, f1(d) |=v1
D. By the inductive hypothesis,

d |=v D. Thus, by the truth condition for necessity, c |=v �D.
Now suppose that c |=v �D. By the definition of a p-morphism, if there

are no worlds accessible from c, then there are no worlds accessible from
f1(c). So, let e′ be an arbitrary world such that M1f1(c)e

′. We show that
e′ |=v1

D. By the definition of a p-morphism, there is a world e in W such
that Mce and f1(e) = e′. By the truth condition for necessity, e |=v D.
By the inductive hypothesis, e′ |=v1

D. Thus, by the truth condition for
necessity, f1(c) |=v1

�D.
The argument with regard to B and F2 is similar.
Now consider A and B. Recall that a 2v1

A and b 2v2
B. Since f1(a) = d

and f2(b) = d, d 2v A and d 2v B. Thus, d 2v1
A ∨ B and so A ∨ B is not

valid and L is Halldén-complete. �

The van Benthem-Humberstone theorem generalises an idea that Kripke
uses in [8] to prove the Halldén-completeness of some normal modal log-
ics. Kripke, in effect, shows that the frames that characterise these logics are
closed under p-morphic fusion by showing that they are closed under prod-
ucts. The product of two frames F1 =< W1, M1 > and F2 =< W2, M2 >
is a frame F =< W, M > such that

• W = W1 × W2 = {(a, b) : a ∈ W1 & b ∈ W2};
• M = M1 ⊗ M2 = {((a1, a2), (b1, b2)) : M1a1b1 & M2a2b2}.

We then define a function f1 from W to W1 such that f1((a1, a2)) = a1 and
a function f2 from W to W2 such that f2((a1, a2)) = a2. When we have a
class of serial frames closed under direct products, our functions f1 and f2

thus defined are p-morphisms.
But when we do not have seriality the mere closure of a class of frames

under products does not guarantee that we have closure under p-morphic fu-
sion. For consider the logic K. Its frames form a class that is closed under
products, but the Kripke construction will not always yield p-morphisms be-
tween a product and the frames of which it is the product. Take two frames,
F1 and F2. Also suppose that there is a world a in W1 such that M1aa and
a world b in W2 that does not have any worlds accessible from it. Then, in
the product of these two frames we get the world (a, b) which has no worlds
accessible from it. Then the function f1 is not a p-morphism, for it does not
satisfy the condition that if M1f1((a, b))a, then ∃x(M(a, b)x & a = f1(x)).
In fact, as we said in the introduction above, K is not Halldén-complete, and
so by van Benthem and Humberstone’s theorem, we will not always be able
to find any other p-morphism between two frames and their product.

In what follows, we will introduce a class of modal relevant logics and
their semantics. We will show that we can characterise an interesting class
of these logics by sets of “completely serial” frames. We will then gener-
alise the van Benthem-Humberstone theorem to show that these logics are
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64 EDWIN D. MARES

Halldén-complete. We will also look at two logics which are not Halldén-
complete. As we said in the introduction above, we will see that there are
some interesting ways in which relevant logics are similar to classically-
based modal logics in this regard, but some very interesting ways in which
they are different.

3. The Logic RC

It is time for us to introduce the logics that are the central topic of this paper.
They are modal extensions of the relevant logic R – Anderson and Belnap’s
logic of relevant implication. The language includes propositional variables
p, q, ..., the unary connectives ∼ and �, the binary connectives ∧ and →,
and parentheses. The usual formation rules apply.

We also use the following defined connectives:

A ∨ B =df ∼ (∼ A∧ ∼ B)

A ⊃ B =df ∼ A ∨ B

♦A =df ∼ � ∼ A

Our base logic is André Fuhrmann’s system, RC [4]. The following are its
axiom schemes and rules:

(1) A → A
(2) (B → C) → ((A → B) → (A → C))
(3) (A → (B → C)) → (B → (A → C))
(4) (A → (A → B)) → (A → B)
(5) (A ∧ B) → A
(6) (A ∧ B) → B
(7) ((A → B) ∧ (A → C)) → (A → (B ∧ C))
(8) ((A → C) ∧ (B → C)) → ((A ∨ B) → C)
(9) A → (A ∨ B)

(10) A → (B ∨ A)
(11) (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (B ∧ C))
(12) (A →∼A) →∼A
(13) A ↔∼∼A
(14) (A →∼B) → (B →∼A)
(15) (�A ∧ �B) → �(A ∧ B)
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HALLDÉN-COMPLETENESS AND MODAL RELEVANT LOGIC 65

Rules

` A → B
` A

` B
(MP)

` A
` B

` A ∧ B
(Adjunction)

` A → B

` �A → �B
(RM → )

We will need the following lemma:

Lemma 3 : `RC (A → B) → (∼A ∨ B)

Here is a brief sketch of a proof of this lemma:

1. ∼(∼A ∨ B) → (∼∼A∧ ∼B) def ∼ , fiddling
2. (∼∼A∧ ∼B) →∼B axiom 6
3. (A → B) → (∼B →∼A) axiom 14, fiddling
4. ∼A → (∼A ∨ B) axiom 9
5. (A → B) → (∼B → (∼A ∨ B)) 3,4, transitivity of →
6. (A → B) → ( (∼∼A∧ ∼B) → (∼A ∨ B)) 2,5, transitivity of →
7. (A → B) → (∼(∼A ∨ B) → (∼A ∨ B)) 1,6, transitivity of →
8. (∼(∼A ∨ B) → (∼A ∨ B)) → (∼A ∨ B) axiom 12, fiddling
9. (A → B) → (∼A ∨ B) 7,8, transitivity of →

4. Routley-Meyer Semantics

An RC-frame is a structure of the form F =< K, 0, R, M, ∗ >, where K
is a non-empty set, 0 is a non-empty subset of K, R is a ternary relation on
K, M is a binary relation on K, and ∗ is an operator on K such that the
following definitions and conditions hold:

• a ≤ b =df ∃x(x ∈ 0 & Rxab);
• if Rabc, then Rbac;
• if ∃x(Rabx & Rxcd), then ∃x(Racx & Rxbd);
• Raaa;
• if Rabc, then Rac∗b∗;
• if Rbcd and a ≤ b, then Racd;
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66 EDWIN D. MARES

• a∗∗ = a;
• if a ≤ b , then b∗ ≤ a∗;
• if Mbc and a ≤ b, then Mac.

We refer to this last condition as the “transmission” postulate. We need it
to make hereditariness hold on frames. That is, it is required to show that if
a |=v A and a ≤ b, then b |=v A for every formula A.

An RC-model is a structure M =< K, 0, R, M, ∗, v >, where < K, 0, R,
M, ∗ > is an RC-frame and v is a function from propositional variables to
subsets of K such that for all worlds a and b in K and all propositional
variables p,

if a ∈ v(p) and a ≤ b, then b ∈ v(p).

Each value assignment, v, determines an interpretation relation |=v on K×
Wff such that

(1) a |=v p if and only if a ∈ v(p);
(2) a |=v A ∧ B if and only if a |=v A and a |=v B;
(3) a |=v ∼A if and only if a∗ 2v A;
(4) a |=v A → B if and only if ∀x∀y((Raxy & x |=v A) ⇒ y |=v B);
(5) a |=v �A if and only if ∀x(Max ⇒ x |=v A).

We say that a formula A is valid on M =< K, 0, R, M, ∗, v > if and only
if for every world a ∈ 0, a |=v A. A is said to be RC-valid if and only if it is
valid on every RC-model.

We can characterise other modal relevant logics by restricting the class
of frames so that they all obey certain principles. Here is a list from [4] of
schemes and the semantic principles correlated with them:

Name Scheme Postulate
K �(A → B) ∃x(Rabx & Mxc)

→ (�A → �B) ⇒ ∃x∃y(Max & Mby & Rxyc)
D �A → ♦A ∃x(Max & Ma∗x∗)
T �A → A Maa
4 �A → ��A (Mab & Mbc) ⇒ Mac
B A → �♦A Mab ⇒ Mb∗a∗

5 ♦A → �♦A (Ma∗c & Mab) ⇒ Mb∗c

(N)
` A

∴ ` �A
(a ∈ 0 & Mab) ⇒ b ∈ 0.
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We call all of the logics that can be constructed from RC and the addition of
some or all of the schemes of this list, Meyer-Fuhrmann logics.5

5. rp-Morphisms

In order to adapt the van Benthem-Humberstone theorem to modal relevant
logics, we need the following definitions:

Definition 4 : (rp-morphism) If F =< K, 0, R, M, ∗ > and F ′ =< K ′, 0′,
R′, M ′, ∗′ > are RC-frames, then a relevant p-morphism (rp-morphism) is a
function from K onto K ′ such that the following conditions hold: (1) a ∈ 0
if and only if f(a) ∈ 0′; (2) if Rabc, then R′f(a)f(b)f(c);(3) if R′f(a)bc,
∃x∃y(Raxy & b = f(x) & c = f(y)); (4) if Mab, then Mf(a)f(b);(5) if
M ′f(a)b, ∃x(Max & b = f(x)); (6) f(a∗) = (f(a))∗

′

.

Definition 5 : (rp-morphic fusion) If F1 and F2 are RC-frames and a is a
world in F1 and b is a world in F2, then (F , c) is an rp-morphic fusion
of (F1, a) and (F2, b) if and only if F is an RC-frame, c is a world in F ,
and there are rp-morphisms f1 from F to F1 and f2 from F to F2 such that
f1(a) = c and f2(b) = c.

We now prove a relevant version of the van Benthem-Humberstone theo-
rem:

Theorem 6 : If a logic L is characterised by a class of RC-frames closed
under rp-morphic fusion, then L is Halldén-complete.

Proof. Let L be some logic characterised by a class of RC-frames closed
under rp-morphic fusion. Suppose that 0L A and 0L B, where A and B do
not share any variables. Also suppose that F1 (=< K1, 01, R1, M1, ∗1 >)
and F2 (=< K2, 02, R2, M2, ∗2 >) are frames in this class and worlds a1 ∈
K1 and a2 ∈ K2 are such that a1 2v1

A and a2 2v2
B. Let (F , a) be an

rp-morphic fusion of (F1, a1) and (F2, a2) where F =< K, 0, R, M, ∗ >
and a ∈ K. Suppose also that f1 is an rp-morphism from F to F1 and f2

is an rp-morphism from F to F2. We construct a value assignment v on F
such that for all p ∈ V ar(A), v(p) = {x ∈ K : f1(x) ∈ v1(p)}, and for all
q ∈ V ar(B), v(q) = {x ∈ K : f2(x) ∈ v2(q)}.

5 Meyer’s name is prefixed here since he is the first one to formulate one of these logics,
i.e., RC+N+K+T+4 = NR.
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68 EDWIN D. MARES

We show that for arbitrary worlds b1 in F1 and for all formulae C such
that V ar(C) ⊆ V ar(A),

b1 |=v1
C if and only if b |=v C,

where f1(b) = b1 and for all D such that V ar(D) ⊆ V ar(B) and b2 in F2,

b2 |=v2
D if and only if b′ |=v D,

where f2(b
′) = b2. We prove this by an induction on the length of formulae.

The proof is the same as for the van Benthem-Humberstone theorem, except
for the following cases.

The negation case. Suppose that C =∼ E. By the truth condition for
negation,

f1(b) |=v1
∼E if and only if f1(b)

∗1 2v1
E.

By clause 6 in the definition of an rp-morphism, f1(b)
∗1 = f1(b

∗). So,

f1(b) |=v1
∼E if and only if f1(b

∗) 2v1
E.

By the inductive hypothesis,

f1(b
∗) 2v1

E if and only if b∗ 2v E.

By the truth condition for negation,

b |=v ∼E if and only if b∗ 2v E.

Therefore,

f1(b) |=v1
∼E if and only if b |=v ∼E,

i.e.,

b1 |=v1
∼E if and only if b |=v ∼E.

The implication case. Suppose that C = E → F . Suppose first that
b |=v E → F . Suppose also that R1f1(b)c

′d′ and c′ |=v1
E. We show

that d′ |=v1
F . By clause 3 of the definition of an rp-morphism, there are

worlds c and d such that f1(c) = c′, f1(d) = d′ and Rbcd. By the inductive
hypothesis,

c |=v E.
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Thus, by the truth condition for implication and our assumption that a |=v

E → F ,

d |=v F.

So, by the inductive hypothesis

d′ |=v1
F,

which is what we set out to prove.
Suppose now that b1 |=v1

D → E. Also suppose that Rbcd and c |=v E.
We show that d |=v F . By clause 2 of the definition of an rp-morphism,
R1f1(b)f1(c)f1(d). Moreover, by the inductive hypothesis,

f1(c) |=v1
E.

By our assumptions that b1 = f1(b) and b1 |=v1
D → E, and by the truth

condition for implication,

f1(d) |=v1
F.

Therefore, by the inductive hypothesis,

d |=v F,

as required.
Thus, we have shown that for all C such that V ar(C) ⊆ V ar(A) and for

all worlds b f1(b) |=v1
C if and only if b |=v C. As before, the proof for B is

similar. Now we assume that A and B are non-theorems of L and that they do
not share any variables. Then, there is a frame F1 =< K1, 01, R1, M1, ∗1 >,
a model M1 =< K1, 01, R1, M1, ∗1, v1 >, and a world a1 in 01 such that
a1 2v1

A. And there is a frame F2 =< K2, 02, R2, M2, ∗2 > , a model
M2 =< K2, 02, R2, M2, ∗2, v2 >, and a world a2 in 02 such that a2 2v1

B. Since this class of models is closed under rp-morphic fusion, there is a
frame F =< K, 0, R, M, ∗ >, a world a, and functions f1 and f2 such that
(F , a) is an rp-morphic fusion of (F1, a1) and (F1, a2). By clause 1 of the
definition of an rp-morphism, a ∈ 0. We now construct a value assignment
v on F such that v(p) = {f1(x) : x |=v1

p}, for all p ∈ V ar(A), and
v(q) = {f2(x) : x |=v2

q}, for all q ∈ V ar(B). By the above proof,
a |=v A if and only if a1 |=v1

A and a |=v B if and only if a2 |=v2
B. Thus,

a 2v A and a 2v B. By the truth condition for disjunction, a 2v A ∨ B.
Since L is characterised by this class of models, A∨B is not a theorem of

L, and this is what we set out to prove. �



“04mares”
2004/10/4
page 70

i

i

i

i

i

i

i

i

70 EDWIN D. MARES

6. Products of Routley-Meyer Models

We now would like to know which logics are characterised by classes of
frames closed under rp-morphic fusion. We do not give a full answer to this
question, but we do show that RC and its Meyer-Fuhrmann extensions are
among these logics. To prove that these logics are closed under rp-morphic
fusion we use a construction due to Meyer [14] (which generalises Kripke’s
construction we saw above). The construction, as we apply it here, uses the
following two definitions:

Definition 7 : (Product of Routley-Meyer Frames) Where F1 =< K1, 01, R1,
M1, ∗1 > and F2 =< K2, 02, R2, M2, ∗2 > are modal Routley-Meyer
frames, their product is a structure F =< K, 0, R, M, ∗ > such that

• K = K1 × K2;
• 0 = 01 × 02;
• R = {((a1, a2), (b1, b2), (c1, c2)) : R1a1b1c1 & R2a2b2c2};
• M = {((a1, a2), (b1, b2)) : M1a1b1 & M2a2b2};
• for all (a1, a2) ∈ K, (a1, a2)

∗ = (a∗1

1
, a∗2

2
).

Definition 8 : (Complete Seriality) A frame F =< K, 0, R, M, ∗ > is R-
serial if and only if for all a ∈ K, ∃x∃yRaxy. It is M-serial if and only for
if all a ∈ K, ∃xMax. And it is completely serial if and only if it is both
R-serial and M-serial.

We need R-seriality for a reason similar to the reason why we need M-
seriality. Suppose that A → B fails to hold at a world a in a particular
model. Also suppose that there is another model and a world a′ such that
there are no worlds b′ and c′ such that Ra′b′c′. Then, in the product of the
two models, there are no worlds that are R-accessible from (a, a′) and so all
implicational formulae are true at that world.

Lemma 9 : Every class of completely serial frames closed under products is
also closed under rp-morphic fusions.

Proof. Suppose that X is a class of completely serial frames closed under
products. Assume also that F1 =< K1, 01, R1, M1, ∗1 > and F2 =<
K2, 02, R2, M2, ∗2> are in X and so is their product F =< K, 0, R, M, ∗>.
We set f1 : K −→ K1 and f2 : K −→ K2 to be such that f1((a1, a2)) = a1

and f2((a1, a2)) = a2. It is easy to show that both of these functions are
rp-morphisms. �
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7. Canonical Models

Lemma 9 above raises the issue of which systems of modal relevant logic
are characterised by classes of completely serial frames and are closed under
products. It is clear that all classes of models for systems which include the
logic R are R-serial, since they satisfy the postulate that Raaa for all worlds
a. In fact we will prove that we do not even need this postulate to show that
a relevant logic is characterised by a class of R-serial frames.

What is surprising is that imposing M -seriality on the class of RC-frames
does not make valid any additional formulae. This seems odd, since we are
used to there being a link between M -seriality and the D scheme, �A →
♦A. As we have seen, however, the postulate correlated with D is stronger
than M -seriality. The reason why we need a stronger condition is that the
relationship between M and possibility is not the standard Kripkean re-
lation. In our model theory, for any world a, a |=v ♦A if and only if
∃x(Ma∗x & x∗ |=v A).

To see that RC is characterised by a class of completely serial frames, we
will examine its canonical model. But, before we can define the canonical
model we need a few other definitions. For a logic L, an L-theory is a set
of formulae Γ such that, for any wff A if G1, ..., Gn are all in Γ and `L

(G1 ∧ ... ∧ Gn) → A, then A is in Γ as well. A theory Γ is said to be prime
if and only if for every disjunction A∨B in Γ, at least one of A or B is in Γ.
A theory Γ is called regular if and only if all the theorems of the logic are in
Γ.

Where Γ is a set of formulae, �−1Γ is the set of formulae A such that
�A ∈ Γ.

The RC-canonical model is a structure < K, 0, R, M, ∗, v > such that
• K is the set of prime theories of L;
• 0 is the set of prime regular theories of L;
• Rabc if and only if, for all formulae A and B, if A → B ∈ a and

A ∈ b, then B ∈ c;
• Mab if and only if �−1a ⊆ b;
• vL(p) = {a ∈ KL : p ∈ a}.

We will not go through the completeness proof for RC here. It is sketched in
[4]. Rather, we need to point out that, given this definition, for all worlds a
in the canonical model, there is a world c such that Racc. This is very easy
to show, since we can merely let c be the set of all formulae. Similarly, if c
is the set of formulae, then Mac for any index a. Thus, the canonical frame
is completely serial. The upshot of this is that the class of completely serial
RC-frames characterises RC.

Moreover, using Meyer’s proof from [14], we can prove the following
theorem:
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Lemma 10 : The class of completely serial RC-frames is closed under prod-
ucts.

This implies that RC is characterised by a class of completely serial frames
closed under rp-morphic fusion. Hence,

Theorem 11 : RC is Halldén-complete.

The same proof goes through for all of the Meyer-Fuhrmann logics, hence
we can say that

Theorem 12 : Every Meyer-Fuhrmann logic is Halldén-complete.

We note that this theorem holds for RK (=RC+N+K), even though it does
not hold for its classical cousin K. In the next section, however, we will see
that a very closely related relevant logic is not Halldén-complete.

8. K⊃

A scheme that is of particular interest in connection with Halldén-complete-
ness, is the following:

�(A ∨ B) → (♦A ∨ �B) (K ⊃)

It is called ‘K⊃’ because it is equivalent to the distribution of necessity over
material implication. The addition of K⊃ to modal relevant logics is inter-
esting for various reasons. First, when it is added to certain normal systems,
such as RKD, RKT, RK4, RKT4, RKT45, we obtain systems that contain
all of the theorems of their counterparts based on CPC (D, T, K4, ...) in the
vocabulary that includes only necessity, negation, conjunction, propositional
variables, and parentheses. Thus, these relevant logics can be seen as both
subsystems and extensions of their classical counterparts (see [10]).

Another virtue of K⊃ is that adding it to the logics specified above allows
these logics to be characterised by a fairly natural class of frames. To make
valid K⊃, we add to the definition of our class of frames the postulate

Mab ⇒ ∃x(x ≤ b & Max & Ma∗x∗)

(see [13] and [10]). We can define a relation N such that Nab if and only if
Mab and Ma∗b∗. Then we can prove that a world a satisfies �A if and only
if every world that is Naccessible to a satisfies A and it satisfies ♦A if and
only if some world N -accessible to a satisfies A. In other words, N and the
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modal operators have the same relationship as an accessibility relation in a
Kripke model for a normal modal logic based on CPC.

In fact, we can make the definition of frames for modal relevant logics
with K⊃ even more Kripkean. We alter the transmission principle to say
that, if Mbc and a ≤ b, then there is some world d such that d ≤ c and
Mad [12]. Then we can merely add the postulate that if Mab, then Ma∗b∗

and we obtain a model theory in which we can derive the standard Kripkean
truth condition for possibility, which makes K⊃ valid.

As we have said, the addition of K⊃ to RK (=RC+K+RN) yields a logic
that contains exactly the theorems of the standard modal logic K in its ne-
cessity, negation, and conjunction fragment. Thus, like K, RK+K⊃ is not
Halldén-complete. Unlike the logics that we have examined so far, the
canonical model for RK+K⊃ is not M -serial. The definition of M in the
canonical model for RK+K⊃ is Mab if and only if both (i) �−1a ⊆ ♦−1a
and (ii) �−1a ⊆ b [11]. There are many worlds in the canonical model for
RK+K⊃ which are not connected to anything by M .

The addition of K⊃ to RC also creates a Halldén-incomplete logic.

Lemma 13 : RC+K⊃ is not Halldén-complete.

Proof. First we show that (∼�p ∨ ♦p) ∨ �q is a theorem of RC+K⊃ and
then we prove that neither (∼�p ∨ ♦p) nor �q are theorems of it. Here is
the proof that `RC+K⊃ (∼�p ∨ ♦p) ∨ �q:

1. p → (p ∨ q) Axiom 9
2. �p → �(p ∨ q) 1, RM →
3. �(p ∨ q) → (♦p ∨ �q) K ⊃
4. �p → (♦p ∨ �q) 2, 3, Axiom 2
5. ∼�p ∨ (♦p ∨ �q) 4, lemma 3
6. (∼�p ∨ ♦p) ∨ �q 5, associating

In systems with the axiom D, (∼�p ∨ ♦p) is a theorem. But in RC+K⊃ it
is not a theorem. This is easily shown. Take a one world frame (with a the
only world) and make the modal accessibility relation be the empty relation.
Then set Raaa. Clearly, this is an RC-frame that satisfies K⊃. Regardless
of the value assignment used, (∼�p ∨ ♦p) turns out false. Obviously, �q
is not a theorem of RC+K⊃ either. To produce a counterexample, take a one
world model again, set Maa, and make q false at a. �

On the other hand,

Theorem 14 : If L is a logic constructed by adding (only) zero or more of the
Meyer-Fuhrmann schemes to RC+K⊃+D, then L is Halldén-complete.
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The proof of this theorem is easy. It is sufficient to show that the classes
of models that characterise each of these logics is completely serial and is
closed under products.

9. Non-Normal Systems

One of the many interesting facts about relevant logic is that there are fewer
important differences between normal and non-normal systems of modal rel-
evant logic than there are between normal and non-normal systems of modal
logics based on CPC. Semantically, the simplest modal relevant logics are
the regular but non-normal systems. This is in stark contrast to the systems
based on CPC, for which normal systems usually have simpler semantics.

In terms of Halldén-completeness, there is also a large gap between nor-
mal and non-normal systems of classically-based modal logic. Many of the
most important systems of non-normal modal logic contain necessity gaps.
A logic L contains a necessity gap if and only if there is some number n
such that L contains no theorems of the form �nA, where ‘�n’ stands for
n-iterations of the necessity operator. Lemmon [9] has shown that for an
important class of modal logics, any system in that class that contains a ne-
cessity gap is Halldén-incomplete.

To state Lemmon’s theorem, we need two definitions. A logic L is ⊃-
regular if and only if its class of theorems is closed under the rule:

` A ⊃ B

∴ ` �A ⊃ �B
(RM ⊃ )

A logic is ♦-safe if and only if it does not contain as a theorem the formula
♦n ∼(p∨ ∼p) for any number n. Here is Lemmon’s theorem:

Theorem 15 : (Lemmon) If L is a ⊃-regular and ♦-safe modal logic that
contains all of CPC, and L contains a necessity gap, then L is Halldén-
incomplete.

Proof. Suppose that L is a ⊃-regular and ♦-safe modal logic that contains
all of CPC, which has a necessity gap of level n. Then we have:

1. `L (p∨ ∼p) ⊃ (q∨ ∼q) CPC
2. `L �n(p∨ ∼p) ⊃ �n(q∨ ∼q) 1, RM ⊃ ×n
3. `L ∼�n(p∨ ∼p) ∨ �n(q∨ ∼q) 2, CPC
4. `L ♦n ∼(p∨ ∼p) ∨ �n(q∨ ∼q) 3, def ♦

5. 0L ♦n ∼(p∨ ∼p) ♦-safety
6. 0L �n(q∨ ∼q) necessity gap
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Thus, L is Halldén-incomplete. �

Theorem 16 : RC contains no theorems of the form �A or ♦A.

Here is a sketch of a proof of this theorem. We set up an alternative seman-
tics for RC – a neighbourhood semantics in the sense of [16]. A neighbour-
hood frame for RC is a structure < K, 0, R, N, ∗ >, where < K, 0, R, ∗ > is
an R-frame and N is a relation between worlds and sets of worlds such that
(1) if a ≤ b and NbX , then NaX , (2) if NaX and NaY , then Na(X ∩Y ),
and (3) if NaX and X ⊆ Y , then NaY . The truth condition for necessity
is changed such that a |=v �A if and only if Na|A|v, where |A|v is the set
of worlds in K that satisfy A according to v. Proving soundness of RC over
this semantics is quite easy. Proving completeness is not necessary. Now, let
us take an arbitrary R-frame and add a relation N such that N is empty. This
frame is a neighbourhood frame for RC and no formulae of the form �A are
valid on it. Thus, by soundness, no necessities are theorems of RC, which is
what we set out to prove.

To show that ♦A is not a theorem of RC, we use the same model theory,
but consider instead the frame in which every world is N -related to every
subset of K including the empty set. Thus, at every world � ∼A is true (for
every valuation). By the truth condition for negation and the definition of ♦,
♦A fails to obtain at any world. By soundness, therefore, no possibilities are
theorems of RC. Thus, RC is ♦-safe.

RC avoids Lemmon’s theorem because it is not ⊃-regular. We saw above
that K⊃ is desirable because adding it to logics allows them to be charac-
terised by a more intuitive semantics and, in certain cases, adding it allows
the logic to capture all the theorems of the corresponding system based on
CPC. Adding K⊃ to a normal modal logic makes it ⊃-regular, but this is a
side effect, not a result that is desired in and of itself by relevant logicians.
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