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LEIBNIZ’S AND KANT’S PHILOSOPHICAL IDEAS
AND THE DEVELOPMENT OF HILBERT’S PROGRAMME

ROMAN MURAWSKI∗

Abstract
The aim of this paper is to indicate some connections between Leib-
niz’s and Kant’s philosophical ideas on the one hand and Hilbert’s
and Gödel’s philosophy of mathematics on the other. We shall be
interested mainly in issues connected with Hilbert’s programme and
Gödel’s incompleteness theorems.

Hilbert’s programme — which gave rise to one of the important domains of
mathematical logic, i.e., to proof theory, and to one of the three main the-
ories in the contemporary philosophy of mathematics, i.e., to formalism —
arose in a crisis situation in the foundations of mathematics on the turn of
the nineteenth century.1 Main controversy centered around the problem of
the legitimacy of abstract objects, in particular of the actual infinity. Some
paradoxes were discovered in Cantor’s set theory but they could be removed
by appropriate modifications of the latter. The really embarrassing contra-
diction was discovered a bit later by Russell in Frege’s system of logic.

Hilbert’s programme was on the one hand a protest against proposals of
overcoming those difficulties and securing the edifice of mathematics by re-
stricting the subject and methods of the latter (cf. Brouwer’s intuitionism as
well as proposals of L. Kronecker, H. Poincaré, H. Weyl) and on the other
an attempt to justify the classical (infinite) mathematics and to save its in-
tegrity by showing that it is secure.2 His attitude can be well characterized

∗Paper written in the framework of the Polish-Flemish research project BIL 01/80.

1 It is not clear who introduced the name “crisis of the foundations of mathematics”
(Grundlagenkrise der Mathematik) but it was Hermann Weyl who popularized it through
his lecture “Über die neue Grundlagenkrise in der Mathematik” held in Zurich — cf. (Weyl,
1921).

2 Detlefsen writes that “Hilbert did want to preserve classical mathematics, but this was
not for him an end in itself. What he valued in classical mathematics was its efficiency
(including its psychological naturalness) as a mean of locating the truths of real or finitary
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422 ROMAN MURAWSKI

by his famous (and often quoted) sentence from (1926): “Aus dem Paradies,
das Cantor uns geschaffen hat, soll uns niemand vertreiben können” (No one
should be able to drive us from the paradise that Cantor created for us).

The problem was stated for the first time by Hilbert in his lecture at the
Second International Congress of Mathematicians held in Paris in 1900 (cf.
Hilbert, 1901). Among twenty three main problems which should be solved
he mentioned there as Problem 2 the task of proving the consistency of ax-
ioms of arithmetic (under which he meant number theory and analysis). He
has been returning to the problem of justification of mathematics in his lec-
tures and papers (especially in the twenties) where he proposed a method of
solving it.3 One should mention here his lecture from 1901 held at the meet-
ing of Göttingen Mathematical Society in which he spoke about the problem
of completeness and decidability. Hilbert asked there, in E. Husserl’s for-
mulation: “Would I have the right to say that every proposition dealing only
with the positive integers must be either true or false on the basis of the
axioms for positive integers?” (cf. Husserl, 1891, p. 445). In a series of lec-
tures in the twenties Hilbert continued to make the problems more precise
and simultaneously communicated partial results obtained by himself and his
students and fellow researchers: Paul Bernays, Wilhelm Ackermann, Moses
Schönfinkel, John von Neumann. One should mention here Hilbert’s lec-
tures in Zurich (1917), Hamburg (1922) (cf. Hilbert, 1922), Leipzig (1922),
Münster (1925) (cf. Hilbert, 1926), second lecture in Hamburg (1927) (cf.
Hilbert, 1927) and the lecture “Problems der Grundlegung der Mathematik”
at the International Congress of Mathematicians held in Bologna (1928) (cf.
Hilbert, 1929). In the latter Hilbert set out four open problems connected
with the justification of classical mathematics which should be solved: (1) to
give a (finitist) consistency proof of the basic parts of analysis (or second-
order functional calculus), (2) to extend the proof for higher-order functional
calculi, (3) to prove the completeness of the axiom systems for number the-
ory and analysis, (4) to solve the problem of completeness of the system of
logical rules (i.e., the first-order logic) in the sense that all (universally) valid
sentences are provable. In this lecture Hilbert claimed also — wrongly, as

mathematics. Hence, any alternative to classical mathematics having the same benefits of
efficiency would presumably have been equally welcome to Hilbert” (cf. Detlefsen, 1990,
p. 374).

3 A good account of the development of Hilbert’s views can be found in (Smoryński,
1988); see also (Peckhaus, 1990) where detailed analysis of Hilbert’s scientific activity in the
field of the foundations of mathematics in the period 1899–1917 can be found, as well as
(Detlefsen, 1986) and (Ketelsen, 1994).
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it would turn out — that the consistency of number theory had been already
proved.4

Hilbert’s attempts to clarify and to make more precise the programme of
justifying classical mathematics were accompanied by a philosophical re-
flection on mathematics. One can see here the turn to idealism,5 in particular
to Kant’s philosophy. In fact Hilbert’s programme was Kantian in character.
It can be seen first of all in his paper “Über das Unendliche” (1926). He
wrote there:

Finally, we should recall our true theme and draw the net re-
sult of our reflections for the infinite. That net result is this:
we find that the infinite is nowhere realized. It is neither
present in nature nor admissible as a foundation in that part
of our thought having to do with the understanding (in un-
serem verstandesmäßigen Denken) — a remarkable harmony
between Being and Thought. We gain a conviction that runs
counter to the earlier endeavors of Frege and Dedekind, the
conviction that, if scientific knowledge is to be possible, cer-
tain intuitive conceptions (Vorstellungen) and insights are in-
dispensable; logic alone does not suffice. The right to operate
with the infinite can be secured only by means of the finite.

The role which remains for the infinite is rather that of an
idea — if, following Kant’s terminology, one understands as
an idea a concept of reason which transcends all experience
and by means of which the concrete is to be completed into a
totality [. . . ]6

In Kant’s philosophy, ideas of reason, or transcendental ideas, are concepts
which transcend the possibility of experience but on the other hand are an
answer to a need in us to form our judgements into systems that are complete
and unified. Therefore we form judgements concerning an external reality
which are not uniquely determined by our cognition, judgements concerning
things in themselves. To do that we need ideas of reason.

4 Only after Gödel published his incompleteness theorems in 1931 did Hilbert come to
realize that Ackermann’s proof, which he meant here, did not establish the consistency of
all of number theory. In fact, Ackermann showed in (1924–25) only the consistency of a
fragment of number theory. Cf. also (Ackermann, 1940). Other results of that type were also
obtained by J. von Neumann (1927) and J. Herbrand (1931).

5 Detlefsen says in this context about instrumentalism — cf. his (1986).

6 English translation after (Detlefsen, 1993).
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Kant claimed that space and time as forms of intuition (Formen der reinen
Anschauung) suffice to justify and to found the notion of potential infinity
(the actual infinity was not considered by him). Hilbert indicated a mistake
in this approach. Since the actual infinity cannot be justified by purely log-
ical means, Hilbert treated it as an ideal element. Hence his solution to the
problem of the actual infinity was in fact of a Kantian character.

In likening the infinite to a Kantian idea, Hilbert suggests that it is to be un-
derstood as a regulative rather than a descriptive device. Therefore sentences
concerning the infinite, and generally expressions which Hilbert called ideal
propositions, should not be taken as sentences describing externally existing
entities. In fact they mean nothing in themselves, they have no truth-value
and they cannot be the content of any genuine judgement. Their role is rather
regulative than descriptive. But on the other hand they are necessary in our
thinking. Hence their similarity to Kant’s ideas of reason is evident — they
play the similar cognitive role. We do not claim that the ideal elements by
Hilbert are the same as (are identical with) ideas of reason by Kant. We
claim only that they play the same role, i.e., they enable us to preserve the
rules of reason (Verstand) in a simple, uniform and simultaneously general
form. It is achieved just by extending the domain by ideal elements (ideas)
(cf. Majer, 1993 and 1993a).

We use ideas of reason and ideal elements in our thinking because they
allow us to retain the patterns of classical logic in our reasoning. But the
operations of the classical logic can no longer be employed semantically as
operations on meaningful propositions — there is nothing in the externally
existing reality that would correspond to ideal elements and ideas of reason,
in fact they are free creations of our reason and have only “symbolic” mean-
ing. Their meaning can be determined only by an analogy — they cannot be
understood as given by intuition (Anschauung). Therefore the operations of
the classical logic should be understood only syntactically, as operations on
signs and strings of sings. Hilbert wrote in (1926):

We have introduced the ideal propositions to ensure that the
customary laws of logic again hold one and all. But since
the ideal propositions, namely, the formulas, insofar as they
do not express finitary assertions, do not mean anything in
themselves, the logical operations cannot be applied to them
in a contentual way, as they are to the finitary propositions.
Hence, it is necessary to formalize the logical operations and
also the mathematical proofs themselves; this requires a tran-
scription of the logical relations into formulas, so that to the
mathematical signs we must still adjoin some logical signs,
say
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& ∨ → —
and or implies not

and use, besides the mathematical variables, a, b, c, . . ., also
logical variables, namely variable propositions A, B, C, . . .

Hence the abstracting from meaning of expressions is connected with Hil-
bert’s attempt to preserve the laws of classical logic as laws governing math-
ematical thinking and reasoning. It is also connected with the distinction be-
tween real and ideal propositions according to which real propositions play
the role of Kant’s judgements of the understanding (Verstand) and the ideal
propositions the part of his ideas of pure reason. In (1926) Hilbert wrote:

Kant taught — and it is an integral part of his doctrine —
that mathematics treats a subject matter which is given in-
dependently of logic. Mathematics, therefore can never be
grounded solely on logic. Consequently, Frege’s and Dede-
kind’s attempts to so ground it were doomed to failure.

As a further precondition for using logical deduction and
carrying out logical operations, something must be given in
conception, viz., certain extralogical concrete objects which
are intuited as directly experienced prior to all thinking. For
logical deduction to be certain, we must be able to see ev-
ery aspect of these objects, and their properties, differences,
sequences, and contiguities must be given, together with the
objects themselves, as something which cannot be reduced to
something else and which requires no reduction. This is the
basic philosophy which I find necessary not just for mathe-
matics, but for all scientific thinking, understanding and com-
municating. The subject mater of mathematics is, in accor-
dance with this theory, the concrete symbols themselves whose
structure is immediately clear and recognizable.

According to this Hilbert distinguished between the unproblematic, ‘fini-
tistic’ part of mathematics and the ‘infinitistic’ part that needed justification.
Finitistic mathematics deals with so called real propositions, which are com-
pletely meaningful because they refer only to given concrete objects. Infini-
tistic mathematics on the other hand deals with so called ideal propositions
that contain reference to infinite totalities.

By Hilbert, analogously as it was by Kant, ideal propositions (and ideal
elements) played an auxiliary role in our thinking, they were used to ex-
tend our system of real judgements. Hilbert believed that every true finitary
proposition had a finitary proof. Infinitistic objects and methods enabled us
to give easier, shorter and more elegant proofs but every such proof could
be replaced by a finitary one. This is the reflection of Kant’s views of the
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relationship between the ideas of reason and the judgements of the under-
standing (cf. Kant, 1787, p. 383).

Kant’s and Hilbert’s ideas on the nature of mathematics and the charac-
ter of its propositions described above resemble also some ideas of Leibniz.
Leibniz’s ideas on the nature of mathematics can be characterized as simul-
taneously platonic and nominalistic. His nominalism was rather ontological
than linguistical. He claimed that we can point out mathematical objects
such as, for example, geometrical figures, only by our reason. They do not
exist anywhere in things of the external world. The mathematics of the Na-
ture does not apply to the substance, to what is ontologically primitive. To
the latter applies mathematics of ideas and possibilities, i.e., the real God’s
mathematics.

Let us return to Hilbert’s programme. According to that the infinitistic
mathematics can be justified only by finitistic methods because only they can
give it security (Sicherheit). Hilbert’s proposal was to base mathematics on
finitistic mathematics via proof theory (Beweistheorie).7 It was planned as
a new mathematical discipline in which one studies mathematical proofs by
mathematical methods. Its main goal was to show that proofs which use ideal
elements in order to prove results in the real part of mathematics always yield
correct results. One can distinguish here two aspects: consistency problem
and conservation problem.

The consistency problem consists in showing (by finitistic methods, of
course) that the infinitistic mathematics is consistent;8 the conservation prob-
lem consists in showing by finitistic methods that any real sentence which
can be proved in the infinitistic part of mathematics can be proved also in
the finitistic part, i.e., that infinitistic mathematics is conservative over fini-
tistic mathematics with respect to real sentences and, even more, that there
is a finitistic method of translating infinitistic proofs of real sentences into
finitistic ones. Both those aspects are interconnected.

7 Later Hilbert named it metamathematics (Metamathematik). This name was used by
him for the first time in his lecture “Neubegründung der Mathematik” (1922). It is worth
noting that the very term “Metamathematik”, though in another meaning, appeared already
in the nineteenth century in connection with discussions on non-Euclidean geometries. It
was constructed in the analogy to the word “Metaphysik” (metaphysics) and had a pejorative
meaning. For instance, F. Schultze in (1882) said about “die metamathematischen Spekula-
tionen über den Raum” (metamathematical speculations about the space). B. Erdmann and
H. von Helmholtz contributed to the change of the meaning of this term to a positive one.

8 Note that consistency of the mathematical domain extended by ideal elements (which
have only “symbolic” meaning given by analogy and not by intuition (Anschauung)) corre-
sponds to the regulative role of the ideas of reason by Kant.
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Hilbert’s proposal to carry out this programme consisted of two steps. To
be able to study seriously mathematics and mathematical proofs one should
first of all define accurately the notion of a proof. In fact, the concept of
a proof used in mathematical practice is intuitive, loose and vague, it has
clearly a subjective character. This does not cause much trouble in practice.
On the other hand if one wants to study mathematics as a science — as
Hilbert did — then one needs a precise notion of proof. This was provided
by mathematical logic. In works of G. Frege and B. Russell (who used ideas
and achievements of G. Peano) one finds an idea (and its implementations)
of a formalized system in which a mathematical proof is reduced to a series
of very simple and elementary steps, each of which consisting of a purely
formal transformation on the sentences which were previously proved. In
this way the concept of mathematical proof was subjected to a process of
formalization. Therefore the first step proposed by Hilbert in realization of
his programme was to formalize mathematics, i.e., to reconstitute infinitistic
mathematics as a big, elaborate formal system (containing classical logic,
infinite set theory, arithmetic of natural numbers, analysis). An artificial
symbolic language and rules of building well-formed formulas should be
fixed. Next axioms and rules of inference (referring only to the form, to the
shape of formulas and not to their sense or meaning) ought to be introduced.
In such a way theorems of mathematics become those formulas of the formal
language which have a formal proof based on a given set of axioms and given
rules of inference. There was one condition put on the set of axioms (and
rules of inference): they ought to be chosen in such a way that they suffice to
solve any problem formulated in the language of the considered theory as a
real sentence, i.e., they ought to form a complete set of axioms with respect
to real sentences.

The second step of Hilbert’s programme was to give a proof of the consis-
tency and conservativeness of mathematics. Such a proof should be carried
out by finitistic methods. This was possible since the formulas of the system
of formalized mathematics are strings of symbols and proofs are strings of
formulas, i.e., strings of strings of symbols. Hence they can be manipulated
finitistically. To prove the consistency it suffices to show that there are not
two sequences of formulas (two formal proofs) such that one of them has as
its end element a formula ϕ and the other ¬ϕ (the negation of the formula
ϕ). To show conservativeness it should be proved that any proof of a real
sentence can be transformed into a proof not referring to ideal objects.

Having formulated the programme of justification of the classical (infinite)
mathematics Hilbert and his students set out to realize it. And they scored
some successes — cf., e.g., (Ackermann, 1924–25 and 1940) or (von Neu-
mann, 1927). But soon something was to happen that undermined Hilbert’s
programme.
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In 1930 Kurt Gödel proved two theorems, called today Gödel’s incom-
pleteness theorems, which state that (1) arithmetic of natural numbers and all
richer formal systems are essentially incomplete provided they are consistent
and that (2) no consistent theory containing arithmetic of natural numbers
proves its own consistency (cf. Gödel, 1931).

Gödel’s results struck Hilbert’s programme. We shall not consider here
the problem whether they rejected it.9 We shall rather ask what were the
reactions and opinions of Hilbert and Gödel. It turns out that their proposals
and solutions were strongly connected with some ideas of Leibniz.

Having learned about Gödel’s result (i.e., the first incompleteness theo-
rem) Hilbert “was angry at first, but was soon trying to find a way around it”
(cf. Smoryński, 1988). He proposed to add to the rules of inference a simple
form of the ω-rule:

ϕ(0), ϕ(1), ϕ(2), . . . , ϕ(n), . . . (n ∈ N)

∀x ϕ(x)
.

This rule allows the derivation of all true arithmetical sentences but, in con-
trast to all rules of the first-order logic, it has infinitely many premisses.10 In
Preface to the first volume of Hilbert and Bernays’ monograph Grundlagen
der Mathematik (1934/1939) Hilbert wrote:

[. . . ] the occasionally held opinion, that from the results of
Gödel follows the non-executability of my Proof Theory, is
shown to be erroneous. This result shows indeed only that
for more advanced consistency proofs one must use the finite
standpoint in a deeper way than is necessary for the consider-
ation of elementary formalism.

To be able to indicate some connections between those ideas of Hilbert and
some ideas of Leibniz, let us recall that according to Leibniz theorems are
either primitive truths, i.e., axioms of a given theory, or propositions (called
derived truths) which can be reduced to the primitive ones by means of a
proof. A proof consists either of a finite number of steps (in this case one

9 This problem is discussed, e.g., in (Murawski, 1994 and 1999a).

10 In fact the rule proposed by Hilbert in his lecture in Hamburg in December 1930 (cf.
Hilbert, 1931) had rather informal character (a system obtained by admitting it would be
semi-formal). Hilbert proposed that whenever A(z) is a quantifier-free formula for which it
can be shown (finitarily) that A(z) is correct (richtig) numerical formula for each particular
numerical instance z, then its universal generalization ∀xA(x) may be taken as a new premise
(Ausgangsformel) in all further proofs.
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says about finitistic truth or about finitely analytic sentences) or of an infi-
nite number of steps (one deals then with infinitistic truths or with infinitely
analytic sentences). Primitive truths are necessary and finitely (directly) an-
alytic, derived truths are either necessary (though not identical), i.e., finitely
analytic, or contingent, i.e., infinitely analytic. On the other hand Leibniz
claimed that necessary truths possess finite proofs while contingent ones
have only infinite proofs. So the difference between them is rather of a prac-
tical character and not of a substantial character. A being with unbounded
calculating possibilities would be able to decide all the truths directly, hence
any truth would be for him necessary. Here is the source and reason for Leib-
niz’s idea of a real logical calculus, ars combinatoria (only its fragments are
known to us in the form of finitistic systems of logic). This calculus must be
infinitistic. So Leibniz allowed infinite elements in reasonings and proofs.
Consequently Hilbert’s proposal to allow the ω-rule is compatible with Leib-
niz’s ideas and has in fact the Leibnizian character.

An explicit influence of Leibniz on Gödel’s reactions on the new situation
in logic and the foundations of mathematics after incompleteness results can
be also seen. Before we present and discuss some details note that after 1945
Gödel’s interests were concentrated almost exclusively on the philosophy of
mathematics and on the philosophy in general. He studied works of Kant
and Leibniz as well as phenomenological works of Husserl (especially in
the fifties). In his Nachlaß several notes on the works of those philosophers
and on their views were found. Gödel claimed that it was just Leibniz who
had mostly influenced his own scientific thinking and activity (Gödel stud-
ied Leibniz’s works already in the thirties). Hao Wang writes that “Gödel’s
major results and projects can be viewed as developments of Leibniz’s con-
ceptions along several directions” (cf. Wang Hao, 1987, p. 261). Gödel
accepted main ideas of Leibniz’s monadology, he was interested in a real-
ization of a modified form of characteristica universalis (Gödel’s incom-
pleteness theorems indicated that the idea cannot be fully realized). Both
Leibniz and Gödel were convinced of the meaning and significance of the
axiomatic method. Gödel’s results indicated the necessity of some changes
and modifications in Leibniz’s programme, though Gödel was still looking
for axiomatic principles for metaphysics from which the whole of knowl-
edge could be deduced (or which at least would be a base of any knowledge).
He was searching among others for a method of analyzing concepts which
would induce methods allowing to obtain new results. Add also that Gödel
first got the idea of his proof of the existence of God in reading Leibniz (cf.
Wang Hao, 1987, p. 195).

Having presented the connections between Leibniz and Gödel in general,
let us turn now to problems related to the incompleteness theorems. Observe
at the beginning that in his first philosophical paper “Russell’s Mathematical
Logic” (1944) Gödel has turned among others to the question whether (and
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in which sense) the axioms of Principia Mathematica can be considered to
be analytic. And he answered that if analyticity is understood as reducibility
by explicit or contextual definitions to instances of the law of identity then
even arithmetic is not analytic because of its undecidability. He wrote in
(1944, p. 150):

[. . . ] analyticity may be understood in two senses. First, it
may have the purely formal sense that the terms occurring can
be defined (either explicitly or by rules for eliminating them
from sentences containing them) in such a way that the ax-
ioms and theorems become special cases of the law of identity
and disprovable propositions become negations of this law.
In this sense even the theory of integers is demonstrably non-
analytic, provided that one requires of the rules of elimination
that they allow one actually to carry out the elimination in a
finite number of steps in each case.11

The inspiration of Leibniz can be easily seen here (compare Leibniz’s finitely
analytic truths). On the other hand if infinite reduction, with intermediary
sentences of infinite length, is allowed (as would be suggested by Leibniz’s
theory of contingent propositions) then all the axioms of Principia can be
proved analytic, but the proof would require “the whole of mathematics”.
Gödel wrote in (1944, pp. 150–151):

Leaving out this condition by admitting, e.g., sentences of
infinite (and non-denumerable) length as intermediate steps
of the process of reduction, all axioms of Principia (includ-
ing the axioms of choice, infinity and reducibility) could be
proved to be analytic for certain interpretations [. . . ] But this
observation is of doubtful value, because the whole of math-
ematics as applied to sentences of infinite length has to be
presupposed in order to prove this analyticity, e.g., the axiom
of choice can be proved to be analytic only if it is assumed to
be true.

What concerns problems directly connected with the incompleteness re-
sults one should note that already in (1931) Gödel wrote explicitly:

I wish to note expressly that Theorem XI (and the correspond-
ing results for M and A) do not contradict Hilbert’s formal-
istic viewpoint. For this viewpoint presupposes only the ex-
istence of a consistency proof in which nothing but finitary

11 Because this would imply the existence of a decision procedure for all arithmetical
propositions. Cf. Turing 1937. [Gödel’s footnote]
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means of proof is used, and it is conceivable that there exist
finitary proofs that cannot be expressed in the formalism of P
(or M or A).12

And in the footnote 48a (evidently an afterthought) to (1931) Gödel wrote:

As will be shown in Part II of this paper, the true reason for
the incompleteness inherent in all formal systems of mathe-
matics is that the formation of ever higher types can be con-
tinued into the transfinite [. . . ] while in any formal system at
most denumerably many of them are available. For it can be
shown that the undecidable propositions constructed here be-
come decidable whenever appropriate higher types are added
(for example, the type ω to the system P). An analogous situ-
ation prevails for the axiom system of set theory.13

At the Vienna Circle meeting on 15th January 1931 Gödel argued that it is
doubtful, “whether all intuitionistically correct proofs can be captured in a
single formal system. That is the weak spot in Neumann’s argumentation”.14

Gödel suggested that Hilbert’s programme may be continued by allowing
two principles which can be treated as finitistic, namely (1) the principle of
transfinite induction on certain primitive recursive well-orderings, and (2) a
notion of computable functions of finite type (i.e., of computable function-
als), to which the process of primitive recursion can be extended in a natural
way.

The first principle (more exactly, the induction up to the ordinal ε0) was
later applied by Gerhard Gentzen to prove the consistency of the arithmetic
of natural numbers (cf. Gentzen, 1936 and 1938). Later many Gentzen style
proofs of the consistency of various fragments of analysis and set theory
have been given — cf., e.g., the monographs (Schütte, 1960) and (Takeuti,
1975).

The second principle was applied by Gödel in (1958). He considered there
the question of how far finitary reasoning might reach. The problem was

12 Theorem XI states that if P (the system of arithmetic of natural numbers used by Gödel
in (1931) and based on the system of Principia) is consistent then its consistency is not
provable in P; M is set theory and A is classical analysis. English translation according to
(Heijenoort, 1967, p. 615).

13 English translation taken from (Heijenoort, 1967, p. 610). Note that as one of the con-
firmations of Gödel’s thesis expressed here can serve the fact that if, e.g., T is an extension
of Peano arithmetic PA and a predicate S of the language L(T) is a satisfaction predicate for
the language L(PA) with the appropriate properties then T proves consistency of PA (cf., e.g.,
Murawski, 1997 and 1999).

14 Quotation taken from (Sieg, 1988).
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considered by him also in (1972) (this paper was a revised and expanded
English version of (1958)). Gödel claimed here that concrete finitary meth-
ods are insufficient to prove the consistency of elementary number theory
and some abstract concepts must be used in addition. He wrote (pp. 271–
273):

P. Bernays has pointed out [. . . ] on several occasions that,
in view of the fact that the consistency of a formal system
cannot be proved by any deductive procedures available in
the system itself, it is necessary to go beyond the framework
of finitary mathematics in Hilbert’s sense in order to prove
the consistency of classical mathematics or even of classical
number theory. Since finitary mathematics is defined [. . . ]
as the mathematics of concrete intuition, this seems to imply
that abstract concepts are needed for the proof of consistency
of number theory. [. . . ] By abstract concepts, in this con-
text, are meant concepts which are essentially of the second
or higher level, i.e., which do not have as their content proper-
ties or relations of concrete objects (such as combinations of
symbols), but rather of thought structures or thought contents
(e.g., proofs, meaningful propositions, and so on), where in
the proofs of propositions about these mental objects insights
are needed which are not derived from a reflection upon the
combinatorial (space-time) properties of the symbols repre-
senting them, but rather from a reflection upon the meanings
involved.

And in the footnote b to (1972) Gödel added:

What Hilbert means by ‘Anschauung’ is substantially Kant’s
space-time intuition confined, however, to configurations of
a finite number of discrete objects. Note that it is Hilbert’s
insistence on concrete knowledge that makes finitary math-
ematics so surprisingly weak and excludes many things that
are just as incontrovertibly evident to everybody as finitary
number theory. E.g., while any primitive recursive definition
is finitary, the general principle of primitive recursive defini-
tion is not a finitary proposition, because it contains the ab-
stract concept of function. There is nothing in the term ‘fini-
tary’ which would suggest a restriction to concrete knowl-
edge. Only Hilbert’s special interpretation of it makes this
restriction.

However he was convinced that a precise definition of concrete finitary meth-
od would have to be given in order to establish with certainty the necessity
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of using abstract concepts. In (1946) he explicitly called for an effort to use
progressively more powerful transfinite theories to derive new arithmetical
theorems or new theorems of set theory. He wrote (p. 151):

Let us consider, e.g., the concept of demonstrability. It is
well known that, in whichever way you make it precise by
means of a formalism, the contemplation of this very formal-
ism gives rise to new axioms which are exactly as evident
and justified as those with which you started, and that this
process of extension can be iterated into the transfinite. So
there cannot exist any formalism which would embrace all
these steps; but this does not exclude that all these steps (or at
least all of them which give something new for the domain of
propositions in which you are interested) could be described
and collected together in some non-constructive way. In set
theory, e.g., the successive extensions can most conveniently
be represented by stronger and stronger axioms of infinity.
It is certainly impossible to give a combinational and decid-
able characterization of what an axiom of infinity is; but there
might exist, e.g., a characterization of the following sort: An
axiom of infinity is a proposition which has a certain (decid-
able) formal structure and which in addition is true. Such a
concept of demonstrability might have the required closure
property, i.e., the following could be true: Any proof for a
set-theoretic theorem in the next higher system above set the-
ory (i.e., any proof involving the concept of truth which I just
used) is replaceable by a proof from such an axiom of infinity.
It is not impossible that for such a concept of demonstrabil-
ity some completeness theorem would hold which would say
that every proposition expressible in set theory is decidable
from the present axioms plus some true assertion about the
largeness of the universe of all sets.

∗

The above considerations indicated some connections between the philos-
ophy of Leibniz and Kant on the one hand and ideas of Hilbert and Gödel
concerning the philosophy of mathematics on the other. We showed that
the essential assumptions of Hilbert’s programme (i.e., the distinction be-
tween real and ideal propositions and the conception of the role and meaning
of ideal elements in the mathematical knowledge) are connected with some
distinctions made by Leibniz and Kant (ideas of reason). On the other hand
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Hilbert’s and Gödel’s proposals how to continue the programme of justifi-
cation of (infinitary) mathematics after the discovery of the incompleteness
phenomenon indicate some influence of Leibniz, namely the admittance, at
least in certain contexts, of some of the infinitistic methods and principles.
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