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MATHEMATICAL DIAGRAMS IN PRACTICE:
AN EVOLUTIONARY ACCOUNT

IULIAN D. TOADER

Abstract
This paper provides an analysis of mathematical diagrammatic
proofs with the background of a mind/body understanding of the
origin of mathematics. They are embedded in a general frame of di-
agrammatic reasoning in order to find out what is the cognitive fea-
ture that supports them, and whether this could supply a Platonistic
explanation of them. Some of these pictures work by a decontex-
tualization of information, that is, through extrapolation from the
determined context in which it first appears. This cognitive abil-
ity may be regarded as an evolutionary acquirement of the human
brain, and, if interpreted as a quasi-perception of a mathematical
abstract reality, it can account for our epistemic access to mathe-
matical objects. In this case, it is shown that a realist view about
(some) mathematical pictures must accompany a realist conception
of mathematics that allows diagrams a meaningful role in the prov-
ing procedure.

The source of mathematics is the progressive development of the mind itself.
Morris Kline, Mathematics: The Loss of Certainty

1. Introduction

The late Wittgenstein claims that philosophy cannot interfere with the ac-
tual use of language, that it leaves everything as it is, including mathematics.
In other words, philosophy of mathematics may aim at nothing more than
characterizing sets, numbers, functions, etc., and their use by mathemati-
cians. Formalism and Platonism, for example, give different accounts of
mathematics without altering anything in the usual business of mathemati-
cians. Recently, George Lakoff and Rafael Núñez suggested that a cognitive
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342 IULIAN D. TOADER

approach would definitely change mathematics, and that a precise charac-
terization of what ‘mathematical ideas’ are would turn the ‘mind-free math-
ematics’ of the 20th century into a “mind-based mathematics [. . . which is]
a product of the embodied human mind within a physical and social envi-
ronment” (Lakoff and Núñez 1997, 2000). It is doubtful that their analysis
would indeed modify mathematical practice, but perhaps it is less so with
respect to the theoretical accounts of the nature of mathematical proof.

In spite of the apparently obvious characteristics of a mathematical proof,
its nature is a moot question. Whether it should take exclusively an analytic
form, i.e., be represented within a formal system, or a synthetic one, which
uses intuitive picturable constructions, it is a matter of mathematical method
and practice. I assume here that (at least some of) the mathematical diagrams
that are used as synthetic proofs are on a par (in the sense of being reliable)
with the analytic proofs. This does not mean that they could or should re-
place each other, but only that their coexistence is a real fact in mathematical
practice.

My concern will be to question whether it is possible to make sense of the
mathematical intuition at work in these ‘picture-proofs’, and to query if this
intuition squares with that faculty which the Platonist claims we use when
it comes to mathematical truth. Jim Brown considers picture-proofs to be
‘windows to Plato’s heaven’ (Brown 1997, 1999), instruments that help ‘the
mind’s eye’ the way telescopes and microscopes aid the head’s eyes1 . In this
paper, I intend to explore whether a cognitive approach to such proofs could
offer explanatory support to this metaphor. Mathematical diagrams are em-
bedded in a general frame of diagrammatic reasoning in order to find out
what is the cognitive feature that supports them. This feature would conjec-
turally be the same one that allows us to extract information out of activities
within our physical environment. Some mathematical picture-proofs work,
in my view, by a decontextualization of information (as it is the case with,
e.g., infinite series in elementary number theory), i.e., by extrapolating it
from the empirical context in which it first appears. If this is so, then a real-
ist conception about mathematics could be based on such cognitive abilities
that allow us to decontextualize, and these abilities may be regarded as an
evolutionary acquirement of the human brain. In this event, a naturalist (in
this cognitivist sense) epistemology of mathematical pictures would support
mathematical (Gödelian) Platonism.

1 Such comparisons between diagrams and optical devices are commonly encountered at
least since Frege’s Begriffsschrift. Cf. Toader, forthcoming.
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2. Two kinds of intuition

Two major events occurred in mathematics in the 19th century: the (re)dis-
covery of non-Euclidean geometries, and the developments known as the
arithmetization program. They were thought of as a forceful attack against
Euclidean geometry, both as the only possible theory about space and as the
only one available framework for analysis. Once arithmetic replaced this
framework, some mathematical functions were found to behave in an abnor-
mal manner (in the view of ordinary understanding of continuity as a move-
ment in space and time), and were therefore dubbed ‘monsters’. A graphical
representation of a function is, in that ordinary view, a one-dimensional ob-
ject, as it describes the path taken by something that is moving. Beyond
this view, one can prove that a continuous function (this time, understanding
continuity as the iterative dense attribution of points in the image-domain of
the function) which usually defines a curve, can fill a square. More exactly,
the function takes real numbers from the interval [0, 1] and maps them into a
conveniently chosen sequence of curves that is found to completely cover a
quadrate. It is of course outrageous to intuition (or at least to a kind of it) to
find a one-dimensional object to be also a two-dimensional one.

Fig. 1a

Here is Felix Hausdorff’s 1914 version of the story (Hausdorff 1965, 369–
71). Consider first a quadrate and its four equal quadrate sections, then its
sixteen quadrate sections. Imagine this sectioning as infinite. Thus, each
little quadrate diminishes to a point as each of its sides converges to a length
equal to zero. Between point-centers of each decreasing quadrate, curves
are conveniently drawn (fig. 1a). When quadrates are reduced to their point-
centers, the curve is said to fill the whole surface of the initial large quadrate.
Then, “by projecting the quadrate to one of its sides one obtains a motion that
describes a straight line whose each point is being reached ℵ times” (ibid.,
372, note 1). If one projects this back onto the quadrate, it appears that
Hausdorff conceives of a curve as a motion of a point (mind the arrow in
his diagram), which reaches every point position in the quadrate. However,
what is the exact meaning of this ‘motion’? Can one really move along a
path and in this way step on each point of a surface? This question was in
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fact separating the concept of continuity from that of motion. The intuition
as based on the latter was vanquished.

Thus, for example, in a paper from 1933, “The Crisis of Intuition”, Hans
Hahn discusses the role played by intuition in the domain of geometry, and
attempts to demonstrate how even here, where everybody would recognize
the original field of application of intuition, one ought not to trust it, but
reject it as a misleading way of approaching true knowledge. Of course,
Hahn’s voice is only one in the neopositivist chorus against Kantian a priori
synthetic propositions, and his enemy was now the pure intuitive ground of
these. Beside the ‘monstrous’ function above, he offers also the example
of curves that do not admit tangents in any of their points (Hahn 1988, 89),
i.e., of continuous functions nowhere differentiable. The diagrams he draws
are supposed to validate his point. Thus, take two straight segments and
replace each half of them by a correspondent configuration of three segments
(fig. 1b). Then each half of the twelve is replaced again by three.

Fig. 1b

By successively doing this, one gets the whole idea. Such curves do exist.
Nevertheless, Hahn maintained that this diagram (Streckenzüge) constructed
by successive approximations, becomes too minute to be directly grasped
by intuition, and only logical analysis can rigorously describe it or prove its
existence. Weierstrass’s analytic proof can count as a legitimate valid proof
for the existence of such a curve, the picture cannot do it. This is an old
story in the history of mathematics, the story of the war between synthetic
and analytic methods. The issue is what should one take as a geometrical
proof: diagrams or equations?

The analytic stance of Hahn’s logicism, which is in fact a continuation of
the arithmetization programs of Bolzano and Weierstrass, is clear enough.
Space-filling curves exist, but diagrams cannot help us to prove it. Intuition
fails, and logic reveals itself as more far reaching. Nevertheless, it is not
a mistaken idea to consider some pictures more telling than others. Some
‘proofs without words’ seem more graspable or more perspicuous than oth-
ers. For example, the well-known picture-proofs of Pythagoras theorem are
quite convincing. (See figure 2 for one based on Euclid’s proof.) If this is
so, then where between these and the ‘monsters’ does intuition begin to fail?
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I think that the answer reveals an alternative: either the proofs are different
in an important sense, or they address two different kinds of intuition.

Fig. 2

The second possibility has been discussed by Solomon Feferman (Feferman
2000). He distinguishes between a physical-geometric intuition and a set-
theoretical one. The former is what is called upon in teaching and doing
mathematics, and is indeed the instrument for understanding diagrammatic
proofs such as those for the Pythagoras theorem2 . The latter is an intuition
that is no more harassed by ‘monsters’; on the contrary, it succeeds in grasp-
ing them. A somehow similar point is made by Lakoff and Núñez, and will
be dealt with in the next section. The first possibility, the difference between
various picture-proofs, is the subject of the fourth section.

3. A cognitive science of mathematics

The title of this section is the name of the new field of study Lakoff and
Núñez said they have brought to light. Its main tenet is to render a ‘mind-
based mathematics’ (as opposed to the ‘mind-free mathematics’ of the foun-
dational studies) by characterizing primarily ‘mathematical ideas’ instead of
other notions like set, number, etc. This is supposed to radically change

2 This intuition can be cultivated and extended, e.g., to the study of analysis in higher
dimensional spaces. This is a claim made also by Reichenbach, in a Helmholtzian note, with
respect to the visualizability of non-Euclidean geometries (Reichenbach 1958).
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mathematics as it is done and taught3 . The rationale for this approach comes
from the disrepute into which formal reason has allegedly fallen, and the
progress cognitive sciences have reached lately. In fact, one attempts to over-
come the old dichotomy between the context of discovery and the context of
justification into a new context of development (Nersessian 1995). That is,
it is claimed, a mathematical (or scientific) problem requires, nowadays, no
more answers (only) in formal chains of logical inferences. What is required
is to trace how one is reaching problems and solutions, more exactly, how
human brains within bodies in a certain physical and social environment at-
tempt to obtain objective solutions. Thus, the cognitive approach identifies
mathematical proofs not with sequences of symbols, but with psychological
entities, i.e., ideas.

Lakoff and Núñez maintain that mathematics has a metaphorical struc-
ture: metaphors are conceptual mappings, which projects a domain into an-
other domain in a structure-preserving fashion. They warn though that these
terms are not taken from formal mathematics, but from cognitive linguis-
tics. Within this framework they analyze the language of mathematics, and
show that it is full of metonymies and metaphors. Still, these are not mat-
ters of language, but matters of thought. Basic for understanding (elemen-
tary) mathematics is the notion of the mathematical agent that collects, trav-
els, or constructs4 . All these activities come forth by studying the language
of mathematics, and unveil mathematics as grounded “in our sensorimotor
functioning in the world, in our very bodily experiences”. For instance, the
arithmetical result ‘7+5 = 12’ can be read as ‘12 is 5 more than 7’, or as ‘If
you put 7 and 5 together, it makes 12’. The first reading shows that numbers
are collections of physical objects, and that addition is putting collections to-
gether with other collections to form larger collections. The second reading
suggests that the result of an arithmetic operation is a constructed object. But
there is also the metaphor of ‘arithmetic as motion’, where addition means
taking steps along a path a given distance, for example, from the location of
7 to the location of 12.

Now, how can diagrammatic proofs be understood on these cognitive foun-
dations? As long as curves are interpreted as paths upon which a traveler is
moving, it is clear that the capacity required to understand what a diagram
displays is the physical-geometric intuition, i.e., the one based on motion. A

3 This is actually no new stuff. Contemporaneous accounts of mathematics that stress
the importance of ideas in real mathematical practice are as old as (Hersh 1979), and the
consideration of mathematical change could be traced back on an empiricist line of thought
to (Kitcher 1983).

4 The notion of an ideal agent who is collecting and ordering physical objects accessible
to perception is again primarily found in (Kitcher 1983).
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picture-proof of Pythagoras theorem is a succession of moving, cutting, dis-
placing, and rearranging (see above fig. 2). By inspecting how we describe
the picture, all these activities are revealed. However, we are getting the truth
from the diagram without using any word. If this is so, then for a cognitive
analysis to say something meaningful about mathematical diagrams and the
way they are used in mathematical practice, mental imagery would seem,
I think, more appropriate than cognitive linguistics. Moreover, as it turned
out, imagery is not epiphenomenal in diagrammatic reasoning: “[S]ubjects
manipulate their images of the diagrams in order to reach their conclusions.
If the diagrams were translated into an underlying propositional represen-
tation, there would be no way to explain the improved performance when
diagrams were presented” (Bauer and Johnson-Laird 1993).

The cognitive analysis of mathematical propositions reveals, according to
Lakoff and Núñez, the main metaphor of the arithmetization program in the
19th century: a curve is a metaphorically constructed set of points. Hence, a
space-filling curve is no more aiming at rejecting our geometrical intuition
(as Hahn would have it), it simply does not address the ‘kinematic’ kind of
intuition. Such a curve is a sequence of sets of points, and the quadrate is also
a set of points, so the continuous function maps points onto points. Motion
is definitely out. However, such an approach only makes the distinction
between different sorts of intuition. It does not really explain how we reach
the truth through a ‘monstrous’ mathematical diagram.

4. Diagrammatic proofs, and motion

Various geometrical and topological subjects are said to require ‘flexibility
of mind’ (Sato 1999). Beyond the metaphor, what does this requirement re-
ally consist in? What does it mean to have a flexible mind? To pick out a
solution, which involves some image manipulations, seems unavailable to a
non-flexible (or maybe just untrained) mind. The training enhances the abil-
ity to simulate mentally some succession of events. Thought experiments
(at least some of them) have indeed a diagrammatic appearance. Solving a
problem of geometry without using pencil and paper, or getting the solution
before any auxiliary construction is actually drawn, looks like experiment-
ing. A picture-proof of the Pythagoras theorem is such an experiment, a
surrogate for, e.g., cutting the paper and rearranging it. However, in the case
of ‘monsters’ something different is going on. There, the same event (e.g.,
the replacement of one segment by three segments suitably chosen, as above
in fig. 1b) should be repeated infinitely. A similar trick is displayed (fig. 3)
in some picture-proofs in elementary number theory (Nelsen 1993). Some
instances of the picture along the proving procedure are similar to real sit-
uations, i.e., these instances can be drawn on paper. The sequence of these
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instances is though infinite, and the infinite case cannot of course be drawn.
Nevertheless, a few instances are enough to suggest the solution. We can
conclude the truth from them. The problem is: how can we make such ‘in-
ferences’? What cognitive mechanisms allow us to develop and trust proofs
like this? To answer in terms of set-theoretical intuition, or infinite reitera-
tion intuition (Poincaré), is not getting too far. Behind the notion of intuition,
the real nature of informal mathematical reasoning could be eventually un-
covered.

1 + 2 + ... + =     +n

nn

2 2

2

Fig. 3 Fig. 4

I propose to inspect the general case of diagrammatic and qualitative reason-
ing, in order to tentatively find some answers valid also for the mathematical
reasoning. So, consider first a complex of interlocked gears (fig. 4), an ex-
ample often used in motion prediction. The direction of motion for one gear
is given, the other should be predicted. This seems to be extremely simple
for us to solve directly by ‘reading’ the picture, and somehow more com-
plicated when one comes to do it formally in a computational fashion. It is
natural to think that we use here our physical-geometrical intuition, which
comes down to our trained ability to extract information from motions within
our physical environment. Consider now a complex of infinitely many inter-
locked gears. Of course, we can draw only some, and when given the motion
of one of them we predict the others. If suitably arranged, we are sure mo-
tion is predictable for every gear. The concept of the infinite involved here
is Shaughan Lavine’s one. It represents an “extrapolation from daily experi-
ence of indefinitely large size” (Lavine 1994, 247). In other words, in order
to be able to consider an infinite gear system, one has to start with the one
in figure 4, and then one has to keep adding gears until the whole complex
becomes too large to be drawn in a specific context (i.e. within a time in-
terval, or by someone, etc.). In the same manner, the configuration of the
number-theoretical picture-proof is predictable for any value of n.
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Let us consider the diagram of the above infinite series drawn like in figure 5.
What does our picture really say? One could keep adding columns to the left,

Fig. 5

they will always fit between the two lines, even when this happens outside
any determined context. The fact that our construction holds for any value of
n can be considered a generalization of the empirically contextualized facts.
Another possibility is to see it as a diagrammatic version of mathematical
induction5 .

The self-evidence of mathematical induction is based on properties of our
mind, Henri Poincaré said nearly a century ago. What could these be? As
a principle, induction can be evidently true or ‘intrinsically plausible’ (Par-
sons 2000) only on rational grounds, as it involves the concept of number.
It is a matter of debate whether a perception-like attitude à la Gödel toward
mathematical concepts and objects accompanies these grounds. What is rel-
evant to my purpose here is whether this intentional attitude has anything to
do with the intuition involved in getting the truth out of a diagram. But this
is a problem deferred to section 5.

Now, it is interesting to see whether the kind of inference apparent in the
above case of gear reasoning could be appropriate for the mathematical case.
When two interlocked gears are presented to us, and the ‘premises’ indicate
the motion of one of them, then the ‘conclusion’ (i.e., the other’s motion)
can be inferred. This seems similar to the proof of Pythagoras theorem, in

5 Yet another is to think of this diagrammatic proof as a visual abductive inference, but
this involves an elaborated analysis of abduction that cannot be done here.
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the following sense: we have to perform the appropriate thought experiment
guided by our physical-geometric intuition. Thus, it is possible that diagram-
matic reasoning be informative also in the other, ‘monstrous’, case, where
the iteration of some event must proceed infinitely. The kind of ‘inference’
present in such proofs is a special one, as long as one does not need to keep
drawing forever in order to believe that the proof is valid. Nevertheless, what
is implicit in the ‘premises’ as they appear in the picture is made somehow
explicit. For all that, the entire proof is not surveyable. But one condition for
a proof to be a proof at all is its perspicuousness or surveyability (Wittgen-
stein 1978, 143). What does entitle us, then, to assert the ‘conclusion’? In
the ideal infinite gear-system, the motion of any gear irrespective of its po-
sition can be predicted. The n

th gear (when n → ∞) is not drawn on paper,
but we could in principle say how it moves. The transmission of motion
is the rule of the system. The column at infinity in the number-theoretical
proof is also never drawn. In spite of this, we are sure the diagram pre-
serves the similarity with any picturable case, because the homomorphism
between different successive instances, on one side, and between them and
an empirical externally perceived construction, on the other side, rules our
construction of the picture. Recall the space-filling curve and its diagram-
matic representation. The set theoretical intuition helped us see the space
as if compounded out of points. The construction rule was then ‘dividing
the squares and suitably connecting their centers’. Irrespective of the exis-
tence or nonexistence of a Gödelian intuition, what happens here stems from
empirically based exercises of imagination, as for example shrinking of ob-
jects (while moving away from them) or repeatedly cutting them to smaller
and smaller pieces. My contention is that drawing picture-proofs (includ-
ing ‘monstrous’ ones) is an ability derived from experience, and that each of
them is tied to its empirical origins and shown to illustrate a human activ-
ity within the physical environment6 . The question is: can this very ability
support our quasi-perception of a Platonistic mathematical reality?

5. Picture-proofs and Platonism

In this section I want to discuss in more detail Jim Brown’s contention that
(at least some) picture-proofs are ‘windows to Plato’s heaven’, i.e., instru-
ments which help the ‘mind’s eye’ to grasp the mathematical reality the way

6 The general human experience is seen by Saunders MacLane as the origin of mathe-
matics (MacLane 1981).
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telescopes and microscopes aid the head’s eyes to access the physical re-
ality. Any diagram is at first of course visually perceived, and the prob-
lem is: “How does visual perception of ink on paper allow the mind’s eye
to access a certain truth about Platonic objects?” (Hofweber 2001, 415).
Brown’s claim presupposes, according to Thomas Hofweber, that the sense
which perceives the picture/window perceives further, through the window,
into Plato’s heaven. This would assume a ‘miraculous connection’ between
the body’s eyes and the ‘mind’s eye’, which assumption would undermine
Brown’s contention.

It is true that while microscopes augment visual perception, a diagram
changes it, turns it into something else. And Brown readily concedes this:
diagrams allow a ‘metaphorical seeing’, similar to the perception of what a
painting could symbolize (Brown 1999, 40). If this is the case, then mathe-
matical pictures supply a great argument for a realist conception of mathe-
matics, but, as Brown thinks, not a realist view of pictures (ibid., 39). I will
address next the problem of this ‘miraculous connection’.

Let’s recall the main tenet of the cognitive science of mathematics dis-
cussed in section 3: “mathematics is ultimately grounded in the human body,
the human brain, and in everyday human experience, [. . . ] our mathematical
conceptual system, like the rest of our conceptual systems, is grounded in
our sensorimotor functioning in the world, in our very bodily experiences”.
This is an evolutionary point of view on mathematics, and is best expressed
in a recent book by Stanislav Dehaene:

Every single thought we entertain, every calculation we perform, re-
sults from the activation of specialized neuronal circuits implanted
in our cerebral cortex. Our abstract mathematical constructions
originate in the coherent activity of our cerebral circuits and of the
millions of other brains preceding us that helped shape and select
our current mathematical tools. [. . . ] The slow cultural evolution of
mathematical concepts is a product of a very special biological or-
gan, the brain, that itself represents the outcome of an even slower
biological evolution governed by the principles of natural selection.
The same selective pressures that have shaped the delicate mecha-
nisms of the eye, the profile of hummingbird’s wing, or the minus-
cule robotics of the ant have also shaped the human brain. From year
to year, species after species, ever more specialized mental organs
have blossomed within the brain to better process the enormous flux
of sensory information received, and to adapt the organism’s reac-
tions to a competitive or even hostile environment. (Dehaene 1997,
4)

If the ability to use diagrams (as any other mathematical device) is based
upon some activities within the physical environment, as I maintained above,
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and if diagrams are indeed like instruments, let’s venture to say that they
were primarily used as any other tool is used: to help us function adequately
within a competitive environment. All activities of our ancestors were pre-
sumably performed within a determined context, i.e., they were made by
some of them, within some time interval, in some place. Hunting or mili-
tary campaigning, for example, were actions within a context. Geometrical
diagrams appeared when people were involved in measuring the land. Let’s
imagine this as a competition: the best ‘measurers’ were gathered on a field
to make a square surface equal to two other square surfaces taken together.
Those who failed met the gallows. The contest repeated many times until
one of them (let’s call him Pythagoras) succeeded. Then they were asked to
calculate the total sum of all objects that exist. Unaware of the arbitrariness
of this task they began to count and add objects around, and were hanged.
One day an escaped Egyptian slave, who worked all his life building pyra-
mids, came to compete. Facing the weird task, he remembers the profile of
the pyramids in his own country and draws it. He puts brick after brick up
until he realizes that it’s hopeless (he knew that nobody can build a pyramid
alone, and drawing it seemed like building it up). He brings forth the unfin-
ished drawing (let’s say it was like in figure 3) and says: I have drawn only
some of the objects, in order for you to see them all. If I had drawn them all,
you could not have seen them.

Beyond this allegory, we can find an explanation for the miraculous connec-
tion between the visual perception of a diagram and the quasi-perception
through a diagram, which owes much to Shaughan Lavine’s understand-
ing of the infinite as an ‘extrapolation from daily experience of indefinitely
large size’. The ability to decontextualize the informational content of such
a picture could be regarded as an evolutionary development of human brain.
The power to see it beyond the way it looks when drawn by someone, in a
time interval, on paper, etc., explains, in my opinion, how diagrams can be
conceived of as ‘windows’ to a mathematical reality outside any empirical
context. But if this cognitive ability is interpreted as a quasi-perception of
abstract mathematical objects, in order to support Platonism, then diagrams
themselves (i.e., the ‘monstrous’ ones) must be among these abstract objects.
This is analogous to the perception of physical objects, where from the fact
that we receive data from the front side of an object, we can infer the exis-
tence of the back side of it. What can be drawn on paper is the ‘front side’ of
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a mathematical ‘monstrous’ diagram7 . Therefore, realism about (some) pic-
tures should accompany the realism about mathematics which conceives of
them as ‘windows’. Thus, beside numbers, sets, or functions, Plato’s heaven
should contain also mathematical diagrams.

6. Conclusion

Understanding the role played by motion in some kind of inferences seems
to me the most worthy advantage of studying mathematical picture-proofs
as special cases of diagrammatic reasoning. It is thus found that one puts
into a picture what one has learned to take out of experience. In this paper, I
tried to argue that an evolutionary account of mathematical diagrams could
support a Platonistic explanation of their efficacy. My conjecture was that
the cognitive mechanisms that allow us to construct and ‘read’ mathemat-
ical diagrams are those that permit us to extract information out of activi-
ties within our physical environment. In the case of some ‘monstrous’ dia-
grams, which presuppose the infinite reiteration of some constructive steps,
our acquired cognitive ability to project the diagram into a decontextualized
medium could serve as an explanation of our epistemic access to the math-
ematical reality. However, contrary to what is believed, this conjoins with a
realist conception of these mathematical diagrams.
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