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CAN PICTURES PROVE?

IAN DOVE

Abstract
Although historically diagrams have played an influential role in the
development of mathematics, for the last hundred years or so, dia-
grams have been knocked out of their previously important position
in favor of verbal/symbolic elements. This is an untoward trend.
The arguments against the deployment of diagrams as essential el-
ements in proofs depend on mistaken views regarding the use of
diagrams. There are essentially two difficulties for the use of dia-
grams within proofs. First, there is a problem in drawing a general
conclusion from reasoning based on individual instances. Second,
the use of diagrams seems to invoke perception in a way that counts
against necessity. Answering these two difficulties will further the
cause of diagrams.

1. Introduction

Late in the Critique of Pure Reason Immanuel Kant distinguishes two vari-
eties of mathematical constructions. As examples of one variety, the osten-
sive constructions, Kant considers the constructions of geometry (and arith-
metic). For Kant these constructions are basic.1 According to Kant the other
variety of construction, the symbolic or characteristic construction, is merely
a shorthand symbolization of the basic ostensive construction. A symbolic
construction depends on the possibility of an ostensive construction for its
objective reality. This is the opposite of the current situation. The standard
view of the history of mathematics sees the use of figures as a hindrance to

1 Cf. Lisa Shabel’s interesting account of the second-class nature of symbolic construc-
tion when compared to the ostensive constructions of geometry. (Shabel 1998, 609ff.)



“06dove”
2004/6/16
page 310

i

i

i

i

i

i

i

i

310 IAN DOVE

progress in proofs. For some, this difference should be understood as a con-
flict between intuition and rigor. Since diagrams are intuitive2 , they fail to be
rigorous. And proofs, in order to be proofs, must be rigorous. The great leap
forward in mathematics comes when figures and diagrams are left behind in
favor of purely symbolic derivations. What accounts for this change since
Kant? The current view of diagrams is that they are wholly inessential ele-
ments of proofs. Diagrams may aid in understanding a particular proof, but
in this regard they are merely illustrative. It is indisputable that diagrams can
be put to this use. And we don’t want to imply that diagrams never are used
as merely heuristic devices or intuition pumps. They surely are. However,
in this paper the argument focuses on the possibility of employing diagrams
as part of the actual inferential machinery. That is, diagrams can play a role
analogous to (perhaps even equivalent to) the purely symbolic elements of
modern mathematics.

Part of the change since Kant’s time is the foundational role that arithmetic
(really algebraic manipulation) seems to have played in the development of
real analysis. Prior to the arithematization of the calculus, begun, perhaps by
Cauchy, the inferences within calculus depended upon intuitive interpreta-
tion of mathematical concepts by figures or diagrams. But as the discipline
evolved, diagrams and figures and figurative geometry generally played a
less significant role. Giovanni Ferraro, e.g., makes the following claim:

During the eighteenth century a process of degeometrization of cal-
culus took place, which consisted in the rejection of the use of di-
agrams and in considering calculus an ‘intellectual’ system where
deduction was merely linguistic and mediated. (Ferraro 2001, 535)

Ferraro is keen to show that the arithematization did not take place all at
once and that instead vestiges of figural geometry remained and informed the
move to analysis. However, the history of analysis suggests that the process
was completed and that figures and diagrams are no longer needed in proofs.
Figures and diagrams survive as heuristic devices that aid in understanding
proofs. They do not constitute any of the actual inferential machinery of
proofs, or so the standard view seems to be.

Against this view several philosophers have sought to reinstate diagrams,
figures and even pictures into their formerly vaunted position (Cf. (Brown
1997), (Giaquinto 1994), (Giaquinto 1993a), (Giaquinto 1993b) and (Gi-
aquinto 1992)). James R. Brown, for example, thinks that diagrams allow
humans to see, if only fallibly, into a realm of mathematical objects. Brown
puts it more poetically by calling the diagrams “windows to Plato’s heaven.”

2 We attach no special Kantian significance to the word “intuition,” as we don’t think
this view is aimed at Kant in particular, though surely Kant is sometimes the target of this
critique.
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(Brown 1997, 174) For Brown, though, the criticisms of the use of diagrams
are correct; however diagrams facilitate a kind of understanding of the math-
ematical realm. Thus, mathematicians are correct in deploying diagrams in
proofs, as diagrams reliably lead to correct results (though they never seem
to get beyond the realm of mere evidence for Brown). Marcus Giaquinto, on
the other hand, sees diagrams and figures as having unlimited employment in
geometry and arithmetic while they have only limited application in calculus
or analysis. The view of the present paper is that neither of these positions is
quite right, though both go a long way towards reestablishing diagrammatic
reasoning as legitimate within mathematics.

These views do not go far enough, however. On the one hand Brown con-
cedes too much to the critic of diagrammatic reasoning, though he does this
not out of a failure to appreciate the arguments. Instead, Brown has a falli-
bilist view of proofs generally, i.e., he is willing to see even verbal/symbolic
proofs as providing evidence. Thus, pictures, diagrams and figures fit well
within this view of proof. Unfortunately, it is unlikely that Brown’s view of
proofs will convince the motivated skeptic. Thus, Brown’s gains come at the
cost of great revision to what we may take as the received view of mathe-
matical practice. Normally a proof provides more than mere evidence of the
truth of a theorem. Rather, a proof guarantees the truth or shows the neces-
sity of the theorem. Mere evidence is too weak of a notion to capture the
standard view of proof. Furthermore, Brown’s examples of diagrammatic
failure are unconvincing, even to the mathematically naïve.

Giaquinto, on the other hand, is very careful to distinguish what he calls
“evidential” uses of diagrams from their appropriate deployment in the dis-
covery of significant theorems. Against the standard pitfalls involved in the
use of diagrams in mathematical reasoning, Giaquinto shows how what he
calls “visual methods” are appropriately deployed in both arithmetic and ge-
ometry. Furthermore he shows that these visual methods can be used with
limited success in elementary real analysis (or calculus). The reason that
visual methods fail to have unlimited application in analysis is that analy-
sis requires the concept of infinity, e.g., in the concept of continuity. Visual
methods cannot model infinite processes adequately. Thus, for Giaquinto at
least, visual methods can be used so long as one is careful to avoid draw-
ing conclusions regarding infinite processes. Of this result Giaquinto seems
correct. However, his analysis of the possible hazards of invoking visual
methods in analysis is not entirely correct. We show that there are ways of
avoiding some of the risks Giaquinto finds lurking in visual methods.
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312 IAN DOVE

2. The Formalist Objection

The standard complaint against using diagrams in proofs is that if the proof
depends on the diagram, the resulting inference will lack the necessity usu-
ally associated with proofs. One finds, for example, the following criticism
given by Niel Tennant (Tennant 1986).

[The diagram] is only an heuristic to prompt certain trains of infer-
ence; ... it is dispensable as a proof-theoretic device; ... indeed, ... it
has no proper place in the proof as such. For the proof is a syntactic
object consisting only of sentences arranged in a finite, inspectable
array. (Tennant 1986, 304, quoted in Shin 1994, 2, emphasis added)

This criticism seems to have three related components. First, diagrams are
merely heuristic, i.e., the diagram can serve no greater purpose than that of
intuition pump. A diagram may help one to understand a given inference, but
it doesn’t help to actually draw the inference. Put another way, the diagram
isn’t really a part of the proof as much as it is part of an explanation of the
proof. Secondly, the diagrams are formally dispensable. The proofs work
without any associated diagrams. Take away an associated diagram from
a modern formal proof and the proof still works. Lastly, since proofs are
(wholly) syntactic objects and diagrams aren’t, diagrams can’t be elements
of real proofs. These three elements are part of what we will call the “formal
objection.” Although we shall spell out the components of this objection in
more detail below, the basic problem for diagrams is that they can’t impart
necessity or guarantee truth in the way that purely formal or wholly symbolic
reasoning can. We consider two components to the formalist objection. First,
there is a problem of generalization. Since diagrams are individual instances
of mathematical concepts it is unclear how we could draw general or uni-
versal conclusions from reasoning based on these. A second problem comes
from the way that diagrams contribute to the understanding. The standard
view is that the properties of diagrams are read off the diagram in an em-
pirical way. That is, if you want to know something about a diagram you
simply look at it. The employment of an empirical process counts against
the necessity of the mathematical claim. We shall deal with these problems
separately.

2.1. The Problem of Generalization and Individual Instances

In logic, for example, one can draw a general conclusion from reasoning
based upon individual instances just in case the individuals are properly re-
stricted. Depending on the system under consideration the restrictions are
spelled out in terms of new constants or flagged individuals. If one can de-
rive a formula, “Pa,” containing a constant “a,” where “a” doesn’t appear in
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any open assumptions3 , then one can conclude (∀x)Px where every instance
of “a” is replaced by “x.” Without these restrictions in place, the worry is
that one would make hasty generalizations. For example, without this re-
striction one could infer, “everyone is a baseball player,” from the fact that
“Pete Rose is a baseball player.” The problem for this inference is that Pete
Rose isn’t a properly restricted individual. In fact, Pete Rose has properties
that make him different from the population at large. As such, we shouldn’t
be able to generalize from the case of Pete Rose.

How can we stop hasty generalization in cases that involve diagrams? Put
another way this is the worry that we can never tell when a given inference
is justified in cases that involve diagrams because there is no way to distin-
guish the essential from the accidental qualities of a diagram. Jody Azzouni
(forthcoming), e.g., points out that not all properties of figures are relevant
to a given proof. Hence, we need a way of distinguishing the relevant from
irrelevant elements.

A set of related developments require comment here. Logic diagrams, in
the form of Venn Diagrams, Euler Circles and Line Diagrams, have held
a recent vogue. For example, Eric Hammer (Hammer 1994) has spelled
out a formal system that includes both verbal/symbolic elements as well as
diagrammatic elements. His formalism employs Venn-like Diagrams as ele-
ments and gives rules for inferring from both sentences (in appropriate form)
and diagrams. Thus, he is able to do precisely what is claimed not to be pos-
sible if the formal objection is correct. Unfortunately, we cannot appeal
to Hammer’s results. This is so because the system he develops cannot be
generalized to mathematical diagrams, though his system does represent a
counterexample to the formal objection to logic diagrams.

Hammer’s system begins with what he calls “well-formed representations.”
The verbal/symbolic elements of representation are the usual logical ele-
ments that make up well-formed formulas. In addition to these representa-
tions Hammer includes the notion of a “well-formed diagram.” The primitive
elements of a diagrammatic representation are a “rectangle,” “closed curve,”
“shading,” “line” and “x” as shown below in Figure 1 (Hammer 1994, 75).

Figure 1

3 An open assumption is one that hasn’t been discharged by a discharging rule like Con-
ditional Proof or reductio ad absurdum.
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314 IAN DOVE

A well-formed representation is any well-formed formula (wff) defined in
the usual way or any well-formed diagram. A diagram is well formed if it
conforms to the following conditions.

Definition 2.1 : The set of “well-formed diagrams” (wfds) is the smallest
class satisfying the following four conditions:

1. Any rectangle is a well-formed diagram (wfd).
2. If D is a wfd and C is a closed curve labeled by exactly one set term

not occurring in D, the diagram obtained by adding C to D such
that C intersects each enclosed region of D exactly once, and that it
overlaps only part of each enclosed region, is a wfd.

3. If D is a wfd and b is any constant symbol, then the diagram obtained
by adding either a b-sequence or an x-sequence to D is a wfd, pro-
vided that every link of the sequence falls entirely within the rectangle
and does not contact any border of a closed curve of D.

4. If D is a wfd, then the diagram obtained by shading some enclosed
area of D is a wfd, provided that the shading is entirely bounded by
parts of closed curves and the rectangle. (Hammer 1994, 75–76)

An x-sequence is a finite chain of ⊗’s connected by lines and a b-sequence
is a finite chain of b’s connected by lines (Hammer 1994, 75). From these
definitions we can relate the usual semantic notions of a formal language to
this system. The rectangle represents a Domain.4 The closed curves repre-
sent predicates (the extensions of sets). The ⊗’s represent variables. In a
diagram the region of overlap of two closed curves represents the intersec-
tion of those predicates (the intersection of the extensions of the given sets).
If a region is shaded it is empty. If a region is not shaded it is possibly non-
empty. An ⊗ in a region represents that region’s non-emptiness. And a b in
a region represents that b is an element of the predicate(s) of the region.

From this Hammer is able to give a system within which one can infer
a well-formed diagram from another well-formed diagram, a well-formed
formula from another well-formed formula, a well-formed formula from a
well-formed diagram and a well-formed diagram from a well-formed for-
mula. Each of these inferences is completely syntactically specified so it
answers the formal objection. Furthermore, the relations between wff’s and
wfd’s can be made explicit. One can represent the same propositions in two
different modes: one as a formula the other as a diagram. For instance one

4 Here we diverge from Hammer’s actual presentation. For Hammer, it seems, the rectan-
gle can stand for a set, property or predicate. We take the rectangle to represent the extension
of the domain.
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could symbolize the proposition, “all dogs are mammals,” and the proposi-
tion, “all mammals are warm-blooded,” as follows.

(1) ∀x(Dx ⊃ Mx)
(2) ∀y(My ⊃ Wy)

To represent the same propositions in diagrams we simply use a rectangle
for the domain and closed curves for each of the predicates.

D M M W

To show that all dogs are mammals one must eliminate all dogs from the
diagram that fall outside of the extension of the set of mammals. This is
accomplished by shading. We shade the region where non-mammalian dogs
would be in order to show that the region is empty (See Figure 2a). In these
wff’s the domain is the universe and the predicates are the obvious ones as
is the case with the wfd’s.

D M

W

From figure 2c one can infer the wff:
(3) ∀z(Dz ⊃ Wz)

This is possible because although it is a diagram, it represents the content of
proposition (3). Thus, if propositions (1–2) are true, then, (3) has to be true.
In this case the diagrammatic reasoning preserves truth and validity.

This system, however, doesn’t help in the case of mathematical proofs gen-
erally. The problem is that within this Venn-like logical system, the diagrams
have clearly stated syntactical rules for their construction (the well-formed
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diagram rules). Moreover there are explicit rules that allow inferences be-
tween diagrams and formulas (and vice versa).5 The syntactic units of the
diagrams are regions and these regions behave like digital representations as
opposed to analog representations.6 The main difference between an analog
and a digital representation is that for analog representations and not for dig-
ital representations every difference can make a difference7 (Cf. Goodman
1976, 164ff.). The diagrams are finite-state representations where the basic
element is a region. Within a region there are only a finite number of differ-
ent states it can be in. And, depending on the state of the region, different
relations to other regions obtain. So, for example, it doesn’t matter where
in a given region an ⊗ occurs. The difference between the upper-right of a
region and the lower-left of a region make no difference to the state of the
diagram. What’s more, the state of the diagram is “read off” from the dia-
gram.

A AB B

Figure 3a Figure 3b

The diagrams in figures 3a and 3b are equivalent as both represent the con-
tent of the symbolic sentence (∃x)Ax, i.e., “something is an A.” This is
known because their regions are equivalent. And this equivalence isn’t af-
fected by the location of an ⊗ within a region. In both of these cases the
regions corresponding to the A’s that aren’t B’s aren’t empty, regardless of
where the ⊗’s are.

This simply isn’t the case with typical mathematical diagrams. Neverthe-
less, in what follows we will make a case for employing diagrams within
mathematical proofs that avoids the formalist objection. Though we can’t

5 It is the existence of these rules that makes the system “heterogeneous,” in Hammer’s
terminology. (Cf. Hammer 1994, 74)

6 This terminology is from Nelson Goodman (Goodman 1976, 159–164).

7 This explanation is due to Rachel Zuckert (private communication).
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appeal to the particular system developed by Hammer8 we can use the in-
sight into what makes these diagrams acceptable to inform the account of
diagrams we will pursue. The basic idea will be that though the employ-
ment of diagrams in mathematics does (superficially) appeal to individuals,
this reasoning is properly general because the individuals are arbitrary. This
means that the conclusions based on the diagrams will be appropriately nec-
essary. Consider, for example, the proof that the perpendicular bisector of
the base of an isosceles triangle will also bisect the summit angle. Start with
an isosceles triangle, 4ABC.

A

B CD

Figure 4

Construct the perpendicular bisector to the base BC from point D to the
summit angle A. Since 4ABC is isosceles, ∠B = ∠C. Moreover, ∠CDA =
∠BDA since they are both ⊥. And, CD = BD because D is the bisector
of CB. Then triangle ADC = ADB by angle-side-angle (ASA). Since the
triangles are congruent, DA bisects ∠A.

How can we be sure that there isn’t something about this particular figure
that acts like Pete Rose did in the fallacious inference from the fact that Pete
is a baseball player to the false conclusion that everyone is? We answer this
question in section 3 below.

2.2. The Problem of “Reading” a Diagram

Besides the problem of generalization, there is another problem that warns
against using diagrams in proofs. The problem is that the use of diagrams

8 Or any of the related systems developed by, e.g., Shin (Shin 1994).
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seems to invoke perception in a way that counts against necessity. Since
proofs are meant to establish necessary results, the use of an empirical method
would count against the supposed necessity of the conclusions. The prob-
lem can be stated rather simply. Although a diagram is meant to represent
mathematical relations, our knowledge of these representations is perceptual
and the information we glean from the diagram is perceptual knowledge.
Perception is fallible. Thus, no proofs can depend on diagrams.

We see this view espoused even by friends of diagrams. For example,
James R. Brown, in discussion the virtues of a diagrammatic proof of the
Intermediate Zero Theorem thinks that the picture plays a perceptual role in
giving evidence for the truth of the theorem.

I should add that the way the picture works is much like a direct
perception: it is not some sort of encoded argument. (Brown 1997,
166 emphasis added).

What is the key about Brown’s statement is that one doesn’t really reason
from the picture or diagram. Instead, one perceives some feature that is rep-
resented in the picture or diagram. One may “interpret” various elements
of the picture in the process of “seeing” the conclusion, but this is a very
different method, or so it seems to Brown, from reasoning with purely ver-
bal/symbolic elements.

David Tall, although a fan of using “visualization” in teaching mathemat-
ics, considers this method substandard as regards proof.

Visualization has its distinctive downside. The problem is that pic-
tures can often suggest false theorems. (Tall 1991, 106)

The problem it seems that any appeal to a “visual technique” or a “visual
object” will open the door to fallibility.

To see that this view of diagrams can lead to error, consider the following
example (given by (Brown 1997, 162ff), (Tall 1991, 106) and (Giaquinto
1994, 798ff.). The Intermediate Zero Theorem states that if a continuous
function defined on a closed interval [a, b] has a value of f(a) > 0 and
f(b) < 0, then there is a point, c, between points a and b such that f(c) = 0.

For instance, it was considered satisfactory to give a visual proof
of the intermediate value theorem[.] The curve was considered as a
‘continuous thread’ so that if it is negative somewhere and positive
somewhere else it must pass through zero somewhere in between.
Yet we know that the function f(x) = x3 − 2 defined only on the
rational numbers is negative for x = 1, and positive for x = 2, but
there is no rational number a for which f(a) = 0. Thus visualiza-
tion skills seem to fail us. Life is hard. (Tall 1991, 106)

The problem is that we cannot visually distinguish a curve that is continuous
from one that is merely dense. Both curves have the same kind of represen-
tation in a diagram.
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f (a) f (b)

f (x)

f (x) 0

Figure 5

f (c) 0

The visual proof of this theorem, is criticized by Giaquinto as well (Cf. Gi-
aquinto 1994, 799). And even Brown, whose stated goal is to “make a case
for pictures having a legitimate role to play as evidence and justification,
well beyond a heuristic role” (Brown 1997, 161), explains the use of this
diagram in terms that seem to count against it being a mathematical process.

Even if the picture merely does psychological work, that in itself
could only be explainable by assuming that δ − ε continuity and
pencil continuity are somehow deeply related. (Brown 1997, 166)

Brown concedes that the picture, at best, captures a quasi-mathematical con-
cept that falls somewhere short of the rigorous concept of δ − ε continuity.
He goes on to compare the use of pictures in proofs to tests or experiments
in natural science (Brown 1997, 166). This indicates that for Brown, the
use of diagrams, if not wholly empirical, is at least analogous to empirical
processes. And this use is therefore subject to the same pitfalls as empirical
methodology. We will return to this problem in section 4.
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3. The Arbitrary Instance

The first step towards making diagrams legitimate in proofs is to make it
clear how it is possible to generalize from reasoning based on individual in-
stances. This problem has a long history. For example, Ian Mueller suggests
that Greek mathematicians had a sense of the possible difficulties, though he
doesn’t think that they ever gave an adequate solution.

It is natural to ask about the legitimacy of such a proof. How can
one move from an argument based on a particular example to a gen-
eral conclusion, from an argument about the straight line AB to a
conclusion about any straight line? I do not believe that Greeks ever
answered this question satisfactorily, but I suspect that the threefold
repetition of what is to be proved reflects a sense of the complexity
of the question. (Mueller 1981, 13)

The “threefold repetition” that Mueller mentions refers to the standard pre-
sentation of a geometrical proof, i.e., the proposition to be proved is stated
three times. The conclusion to be proved is stated, initially, in general terms.
Then, on the basis of an initial (particular) figure the conclusion is drawn
in terms of the individual figure. Finally, in the last step of the proof the
conclusion is stated in the same general terms as its initial formulation at
the beginning of the proof. Mueller sees the Greeks as prescribing a rule or
principle.

Of course, insisting that the particular argument is sufficient to es-
tablish the general protasis is not a justification, but it does amount
to laying down a rule of mathematical proof: to prove a particular
case is to count as proving a general proposition. (Mueller 1981,
13)

By itself this rule is insufficient. The problem is that it doesn’t seem to rule
out hasty generalizations of the kind mentioned above regarding Pete Rose.
To understand the problem let us revisit the logical situation.

Consider the following inference from (4) to (5).
(4) Steve is a human with a heart and two lungs.
(5) So every human has a heart and two lungs.

The problem with the inference is that it is possible, though unlikely, that
there are (living) humans with no hearts or less than two lungs. Having a
heart and two lungs is inessential for being a human. And simply restating
the conclusion three times would not make it true. Since the generalization
is meant to cover humans universally, the characteristics that we attribute to
them from an inference must not depend on any accidental features of the
particular human we investigate.
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Formally this possible difficulty is overcome by restricting the individuals
within the context of a generalization. But the restrictions are based on an
informal principle.

As is well known, there exist certain informal procedures for ar-
guing to a universal conclusion from an existential premise. We
may establish that all objects of a certain kind have a given property
by showing that an arbitrary object of that kind has that property[.]
(Fine 1985, 1)

Kit Fine relates the informal procedure to the formal quantification rule of
universal generalization. But he is not alone in this.

The introduction rule for ∀ will model the principle that whenever
we have deduced an instance of a universal proposition from a set of
premises, we can deduce from these premises the universal propo-
sition itself, provided that the instance is arbitrary. This proviso
can be spelled out as the demand that the individual with which
the universal proposition is instantiated doesn’t figure in any of the
premises or in the universal proposition itself. (Zalabardo 2000,
132–133)

This leads to the question of whether the informal or pre-formal principle
depends on its formal statement for its truth. If the pre-formal principle
depends on the formal rule for its correctness, then unless we can give a
formalization of the rules of diagrammatic reasoning in a manner similar to
Hammer above, no general results will be justified on the basis of particular
figures. And we think that it is unlikely that a formal theory of diagrams is
forthcoming. However, it seems that the formal theory is informed by infor-
mal or pre-formal principles. For example, suppose that Hilbert’s formaliza-
tion of (Euclidean) geometry lead to the proof of theorems that contradicted
the known results of Euclidean geometry. Which theory would yield? It is
our assertion that in this case the formal theory would yield. And in this we
follow Imre Lakatos (Cf. Lakatos 1976) in supposing that formal mathemat-
ics gets its sense from pre-formal mathematical theories.

Still, we need an account of arbitrary instances so that we can tell the cor-
rect generalizations from their hasty and fallacious cousins. In this regards
we will follow Kit Fine’s presentation in spirit if not in detail. The basic
idea, initially, is that an arbitrary instance is one that has all and only the
properties of the class it is meant to represent.

(AI) An instance of a concept is arbitrary if and only if it has all and
only those properties common to the class it is meant to represent.

However, this view faces well-known and long-standing difficulties. For
example, consider the case of an arbitrary triangle. What are its properties if
it has all and only those properties of the class it is meant to represent? Let
us suppose that the concept of a triangle is well defined and that it is a plane
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figure composed of exactly three sides and three angles. Is this arbitrary
triangle equilateral? Is it isosceles? The answer must be no, as these are
properties that aren’t shared by all triangles. But, as soon as we have a given
triangle, it will be either equilateral or not. Thus, there can’t be an arbitrary
triangle, as any given triangle will have special properties.9 The special
properties are those that aren’t shared by all of the members of the class of
triangles.

Instead of attributing all the properties of the intended representative class
to the arbitrary objects, we should instead let them represent their class by
not appealing to any of their special properties when we deploy them in
reasoning.

(AO) An individual representation is arbitrary if none of its special
features are used in drawing an inference from the object.

From this we will make a principle for drawing general conclusions.
(PP) If a conclusion is reached on the basis of an arbitrary repre-
sentation, that result obtains for all individuals in the representative
class.

This will be easier to see by comparing two examples. In the first example, a
figure will be used that seems to be arbitrary, but upon scrutiny it is seen not
to be arbitrary. Against this another example is given in which the figure is
used as an arbitrary representation. First, consider the following procedure
for demonstrating that all triangles have interior angles that sum to 180°.
First, take a triangle, 4ABC. Cut off each of its vertices. Arrange the
vertices on a plane so that each vertex coincides with a given point P , and
the adjoining sides overlap.

This isn’t a proof, however. Nor is it a correct generalization, though what
it purports to show is a geometrical fact. However, it is difficult to see at
which step the procedure fails. On the one hand 4ABC is meant to be an
arbitrary triangle. But, 4ABC does have some special properties.

And we don’t want to appeal to any of these properties in drawing our con-
clusion. To see that we have appealed to some special features of 4ABC
we must consider precisely what the procedure requires. In this case the
procedure is equivalent to measuring the angles and adding them together.
The fact that we don’t determine the particular measurements isn’t impor-
tant. What is important is that when the angles are summed (or arranged on
a plane), they total 180°(i.e., they fit together nicely by forming a straight

9 A similar argument is given by Fine (Fine 1985, 9) who attributes it to Berkeley. Fine’s
reply to the argument is to reject the notion that arbitrary objects must have all and only the
properties of their intended representative class. He claims that this argument depends on a
false principle of generic attribution.
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B

C A
B
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Figure 6a Figure 6b Figure 6c

line). And measuring, regardless of how it is accomplished, depends on the
particular (viz. special) features of the given triangle. Thus, the procedure
fails the intuitive or pre-formal generalization principle.

The usual Euclidean proof, on the other hand, makes essential use of an
arbitrary triangle. This use doesn’t appeal to the actual measures of the given
angles in the representative figure. Take an arbitrary triangle (Figure 7a).
Then extend the base. Construct a line parallel to one side adjacent to the
extended base (Figure 7b). In this case we have labeled the angles to make
the relations clear. To arrive at these angles one appeals to the rules for
alternate interior angles for the summit angle and its mirror, and to adjacent
angles to for the left-hand base angle. Clearly, the right-hand base angle is
equal to itself. The conclusion is drawn when one notices that the sum of
the interior angles is equivalent to the sum of the newly constructed angles.
Furthermore, the sum of the newly created angles (plus the right-hand base
angle) is the angle of a straight line, i.e. 180°. Since the proof doesn’t
depend on the angles having any particular measurement, one is correct is
generalizing this procedure to any triangle whatsoever. Thus, the sum of the
interior angles of any (Euclidean) triangle is 180°.

Figure 7a Figure 7b
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The proof is better than the measurement procedure because the proof isn’t
inductive.10 So, though by cutting and arranging a variety of differently an-
gled triangles one may improve one’s subjective confidence in the proposi-
tion that all (Euclidean) triangles have interior angles that sum to 180°, this is
simply subjective confidence not proof. The proof on the other hand doesn’t
depend on the particular measure of any of the angles. Instead, it made use
of the fact that the triangle had three angles as well as some auxiliary geo-
metrical notions. The triangle had special characteristics, but none of these
played a role in the subsequent proof. Thus we are justified in drawing the
general conclusion because we could have applied the same procedure to any
such triangle.

It is tempting to think that the pre-formal principle regarding generaliza-
tion depends on its formal counterpart for its validity. However, it is clear
that as far back as Proclus, who died in 485, that the principle was explicitly
used to justify general claims.

[M]athematicians are accustomed to draw what is in a way a double
conclusion. For when they have shown something to be true of the
given figure, they infer that it is true in general, going from the
particular to the universal conclusion. Because they do not make use
of the particular qualities of the subjects ... they consider that what
they infer about the given angle or straight line can be identically
asserted for every similar case. (Proclus 1970, 162)

He goes on to explain that the figures set out in the proof aren’t really indi-
viduals. Instead, they are representatives of the class to which they belong
(Loc. Cit.). As representatives we must ignore any of their special proper-
ties in drawing a conclusion from them, as this would negate their status as
arbitrary or representative figures. The fact that Proclus explicitly gives this
principle suggests that such conclusions are not as mysterious as Mueller be-
lieved (see above). That formal presentations of geometry (and logic for that
matter) incorporate formal analogs of the principle (PP) suggests that the
principle is both plausible and true. Thus, it seems that we have answered
the first problem regarding the employment of diagrams in proofs, viz. we
have shown how to draw general conclusions from the use of specific of
individual diagrams.

On the other hand, there seem to be cases where the reasoning is cor-
rectly general at least in terms of our pre-formal principle (PP), but fallacious
nonetheless. E. A. Maxwell (Maxwell 1959, 13–14) gives a standard exam-
ple purporting to show this is more than a mere possibility. Maxwell gives
a proof that every triangle is isosceles. Furthermore, his reasoning seems to

10 Nor is the proof an empirical method, though we will have more to say about this below.
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accord with the canons of rigor established in this section. Start with a trian-
gle, 4ABC (see Figure 8). This is supposed to be an arbitrary triangle. To
show that this triangle is isosceles we must show that the sides AB = AC.
To do this we will make some auxiliary constructions as well as appealing to
auxiliary geometrical notions. Construct the bisector of ∠A so that it meets
the perpendicular bisector of BC at a point O. Construct the perpendicular
bisectors of AB and AC so that they meet at point O. Construct the bisector
of ∠B to point O and the bisector of ∠C to O.

A

B C

R

Q
O

Figure 8

D

The proof proceeds by showing that the internal constitutive triangles are
congruent. From this we can conclude that the sides AB = AC. Start with
the base triangles BDO and CDO. We can show that they are congruent.
First, OD = OD. This is a side of both triangles. Secondly, ∠ODC =
∠ODB because OD is the perpendicular bisector of BC. Thirdly, the sides
BD = DC because point D bisects BC. Thus, from the side-angle-side
property (SAS), 4ODB = 4ODC. Next we need to show that summit tri-
angles are congruent, 4AOR = 4AOQ. First, OA = OA and the triangles
share that side. Secondly, ∠OAR = ∠OAQ because AO bisects ∠A. Next,
∠ORA = ∠OQA because both of these angles are the result of constructing
the perpendicular bisectors of the given sides. So, by the angle-angle-side
property (AAS), 4AOR = 4AOQ. Next we need to show that the interior
triangles are congruent, 4BRO = 4CQO. We know that BO = CO from
the congruence of the base triangles. And we know that RO = QO by the
congruence of the summit triangles. And we know that ∠OQC = ∠ORB
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because both are right angles (by construction). So, the interior triangles
are congruent. So, AC = AB. So 4ABC is isosceles. We know that the
conclusion is false, so we know that something is wrong with the proof. The
question is whether what is wrong with the proof is the geometrical method
we are using or something else.

Maxwell’s own analysis of what has gone wrong in this proof is illumi-
nating though complex. The first thing to note about the proof regards the
accuracy of the figure. This is precisely why Felix Klein (Quoted in Mueller
1981, 5) thought that such “geometrical sophisms” were real dangers to
learning geometry. We shall have more to say about how figures represent
mathematical concepts below. For now we should focus on the notion of an
internal bisector to ∠A and the perpendicular bisector to BC. Where will
these two lines meet? In the proof above these lines met inside 4ABC at
point O. This fact is essential for the proof to work. For, if point O were to
lie outside of 4ABC, we wouldn’t be able to construct the component tri-
angles. And, if we can’t construct the component triangles, we won’t be able
to establish their congruence. Furthermore, without the congruence relations
between the components, we won’t be able to establish the equality of the
sides AB and AC. To see that point O need not occur inside of the triangle
let us construct a different triangle (Figure 9) to demonstrate this. This is
sufficient to show that the previous proof depended upon a special property
of 4ABC. Thus, 4ABC isn’t arbitrary (at least it wasn’t deployed in an ar-
bitrary or representative way). Hence, we cannot draw a general conclusion
on the basis of this reasoning.

A

B C

D

O

Figure 9



“06dove”
2004/6/16
page 327

i

i

i

i

i

i

i

i

CAN PICTURES PROVE? 327

4. Taking Vision out of Visual Methods

Maxwell, on the other hand, thinks that the flaw could not be discovered
by purely geometrical considerations. This is so, according to Maxwell, be-
cause the concept, “inside figure F ,” isn’t defined in geometry. To discover
the position of a given point relative to a given figure, one simply looks.
Such empirical considerations are too unreliable to be mathematical, or so
Maxwell complains. Against this view, let us review how we determined
that the former proof depended on a special property of a given figure. We
didn’t just look at the figure. Instead, we considered possible permutations
of the figure to see whether the necessary auxiliary constructions were in fact
possible. They weren’t, so the proof failed.

This isn’t enough for Maxwell, however, as he thinks other proofs rely on
the kinds of empirical considerations he questions regarding inside/outside
figures. If we can’t rely on purely geometrical considerations in drawing our
conclusions, then the results will not be necessary. Consider the proof of the
theorem that the exterior angle of a triangle is greater than the interior oppo-
site angle (Maxwell 1959, 20ff.). Start with an arbitrary triangle, 4ABC.
Extend the base, BC to a point P (see Figure 10). To prove the theorem
we must show that ∠PCA > ∠BAC. Let O be the midpoint of AC and
construct BD through O so that OD = BO. By stipulation, AO = OC
and OB = OD. Thus, ∠AOB = ∠COD because they are vertically oppo-
site. Hence, 4AOB ≡ 4COD (SAS). Thus, ∠BAO = ∠DCO because
they are relevant angles of congruent triangles. So, ∠BAC = ∠DCA.
But, since ∠DCA is a component of ∠PCA, ∠PCA > ∠DCA. But, if
∠DCA = ∠BAC and ∠PCA > ∠DCA, then ∠PCA > ∠BAC. Thus,
∠PCA > ∠BAC.

A

B C P

D

O

Figure 10

Maxwell finds fault in the proof because there is no geometrical way of
determining which of ∠PCA and ∠DCA is the component and which is
the whole.



“06dove”
2004/6/16
page 328

i

i

i

i

i

i

i

i

328 IAN DOVE

The only reason for selecting ∠PCA as the whole is that it ‘looks
like it’; but whether it would continue to do so for a triangle of
atomic or astronomic dimensions is a very different matter. (Maxwell
1959, 22)

This calls into question the arbitrariness of 4ABC. And since Maxwell
understands the phrase “it looks like it,” as an empirical method, he thinks
that the proof fails. But this is simply to misunderstand what it means for
the triangle to be arbitrary. That is, an arbitrary figure will represent the
structural relations generically. And as a generic representation, the relations
are necessary and could not be determined empirically. One doesn’t inspect
the figure empirically to determine its properties.

We have already seen that Brown, Hall, and Giaquinto all find the visual
proof of the Intermediate Zero Theorem flawed. The problem, recall, was
that when the mathematical concept that is represented in the figure deals
explicitly or implicitly with the concept of infinity, our human perceptual
abilities are not up to the task of visual discrimination. Thus, the concept
of continuity is beyond our abilities to discriminate. As such, this objection
is unobjectionable. That is, it is true that if a person is given two curves,
one which is really continuous (as defined on the real numbers), and another
which is merely dense (as defined of just the rational numbers), such a person
would not be able to discover which curve was which.

The problem for the criticism is that it doesn’t seem to make sense of the
actual practice of proof. It is not as if one has, as it were, a box full of curves
from which a particular curve is picked out and deployed in a proof. For,
if this were the case, then there would be real danger that the proof relied
on the special, but indiscernible, features of the curve. But this is not how
representations are given in proofs. If a figure is given, its properties are
initially drawn from the concept of which it is meant to be an instance. So,
e.g., if the figure under consideration is a triangle, we give a triangle by giv-
ing a figure within which the structural features of a triangle are represented.
This is a process that is very similar to the logical process of Universal In-
stantiation (UI). In a standard employment of the UI rule, one goes from
a universal proposition to a particular proposition. For example, from the
proposition, “All swans descended from dinosaurs,” one could draw the con-
clusion, “Bill’s swan ‘Daffy’ descended from dinosaurs.” Yet, the rule UI
is not a perfect analog of the initial representation of a concept in a figure.
The problem is that the figure is in many cases not really an instance of the
concept it represents. Take the simple instance of a straight line. If Euclid’s
definition is considered the concept of a straight line, then any line drawn on
paper, or even imagined in thought, will fail to have some of the properties
of a straight line, e.g., the property of being a breadthless width. But this
doesn’t matter for the representation. For, in cases where the representation
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isn’t really an instance of the concept, we can stipulate the properties of the
figure. And in the process of stipulation, we put the properties into the fig-
ures. So there are two ways that the figures are given their properties. First,
they instantiate or represent a given mathematical concept. Secondly, the
properties are stipulated. This is reminiscent of Kant’s view of mathematical
method.

The true method, so he found, was not to inspect what he discerned
either in the figures or in the bare concept of it, and from this, as it
were, to read off its properties; but to bring out what was necessarily
implied in the concepts that he had himself formed a priori, and had
put into the figure in the construction by which he presented it to
himself. (Kant, bxii)

For Kant, of course, the figures amplified the concepts as they facilitated
inferences that could not be made without the aid of the figures. We won’t
pursue this use of figures here. Instead, insofar as the figures are constructed
in accordance with mathematical concepts, we will assert that they play a
role similar to verbal/symbolic elements.

Even if we are correct about the use of diagrams, it isn’t clear how this
view will make sense of the use of diagrams in proofs. In a well-received
book on Kant and the philosophy of mathematics, Michael Friedman argues
that Kant’s figurative geometrical methods were open to a variety of modern
objections. One of the more curious objections concerns the very first propo-
sition of the first book of Euclid’s Elements. And this objection is relevant
to, and indeed is similar to a number of objections raised against the use of
diagrams in proofs. Euclid’s first proposition states that from any given line
it is possible to construct an equilateral triangle that has that line as its base.
The proof is fairly easy. Start with a line, AB. Then, construct a circle with
radius AB centered at A, call this circle A. Then construct a circle with
radius BA centered at B, call this circle B. Where circle A intersects with
circle B, label that point C. Finally construct lines AC and BC.

Figure 11

A B

C

This figure is an equilateral triangle because line AC is the same length as
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line AB because they are both radii of circle A. Likewise, line BC is the
same length as line AB because both are radii of circle B. The problem, ac-
cording to Friedman, is that it is possible to interpret this proof along with its
associated diagram on a plane constituted solely of rational numbers. Why
would this be a problem? If AB is a unit length, then point C could be irra-
tional. This would mean that circles A and B wouldn’t really intersect even
though they look as if they do. And, what else do we have to go on?

The problem is analogous to an earlier criticism of the visual proof of the
Intermediate Zero Theorem (See Figure 5 above). Recall that Tall and Gi-
aquinto argued against the visual route to the theorem because of the possi-
bility that a given curve may be dense, but not continuous. Furthermore, the
difference between these possibilities cannot be determined visually. But,
as was stated above, the curves aren’t entities in their own right. Instead,
they are mediated objects whose properties are stipulated or constructed in
accordance with mathematical concepts. And this negates the worry that
something is wrong with the visual proof of IZT. The very statement of the
theorem tells us that the only functions we are going to consider in the proof
are continuous ones. Thus, a merely dense curve isn’t even in the purview
of the theorem, and we simply stipulate that the curve we use is continuous.
This is roughly the same answer that should be given to Friedman’s objec-
tion, though in the case of Euclidean geometry the assumption of continuity
was tacit for much of its history. But, once the assumption is made clear,
then the counterexample fails.

Giaquinto has another example that he finds troubling. Consider a figura-
tive proof of Rolle’s Theorem.

(RT) If f(x) is continuous on [a, b] and differentiable on (a, b) and
f(a) = f(b), then for some c between a and b, f ′(c) = 0.

The proof of the theorem begins with a representation of a curve.

Figure 12a Figure 12b Figure 12c

There are two cases that may be distinguished; though they make no differ-
ence for the proof. The function f(x) is either increasing or decreasing at a.
Since this makes no difference to the proof because the cases are relevantly
similar, we will only consider the case where f(x) is increasing at a. We
can represent this by a curve that has the shape of a hill. The derivative of
a function at a point is the slope of the tangent line at that point. Thus, the
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theorem states that there must be a point, c, at which the slope of the tangent
line is zero, i.e., it is a horizontal line at c. The proof works by considering
the tangent line at a and the tangent line at b (where the function is decreas-
ing), and seeing that there must be a point where the line becomes horizontal
as it “rolls” over the top of the hill.

According to Giaquinto this proof falls victim to a number of telling ob-
jections. The first is that the hilltop image may be seriously misleading.

From the supposition that the curve rises and smoothly falls again
over [a, b] it was inferred that the gradient of the tangent to the curve
must change gradually from positive to negative at least once, as
would happen if a segment of the curve had the shape of a path over
a smooth hilltop. The hilltop image is then relied on in the ensuing
instructions to visualize. But this overlooks the serious question.
How do we know that the hilltop image is not misleading? How
do we know that the curve has an upper bound? (Giaquinto 1994,
795–796)

The problem is that even if we can’t think of what a curve would look like
that was locally unbounded but continuous, that doesn’t guarantee that such a
curve is impossible. Giaquinto switches between talk of functions and talk of
curves without much bother, but this is where the crux of the argument lies.
For, in view of the fact that the theorem regards functions and not curves, the
only reason we consider a curve is as a (figurative) representation of a func-
tion. Now, can there be a continuous function that is locally unbounded? If
this is possible, it isn’t for the cases that are relevant to Rolle’s Theorem, as
the statement of Rolle’s Theorem tells us that the function is differentiable
over the interval. Since it is differentiable and the derivative on one side
of c is positive and on the other is negative, the only way to get from posi-
tive to negative is to pass through zero. Therefore, the hilltop image is not
misleading as regards local maximum (or minimum if f ′(a) < 0).

A second worry raised by Giaquinto is that the curve is misleading in
another way. To see what may be wrong consider a different curve.

The curve of a function is smooth and appears to have a single peak;
closer examination of the peak reveals a small shallow dip, so that
now this top segment of the curve appears to have two mounds sep-
arated by the little dip; yet closer examination of the tops of the
two mounds and the bottom of the dip reveals further fluctuation,
each mound again having a dip but shallower than before, and the
first dip having a gentle mound separating to very shallow dips; let
this be repeated unendingly, ever closer examination revealing ever
shallower dips in the new mounds, ever gentler mounds in the new
dips. (Giaquinto 1994, 796 emphasis added)
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Such a curve will fluctuate infinitely between positive an negative values,
but, since it is continuous and smooth it seems to accord with the conditions
of Rolle’s Theorem. But, we can’t visualize the infinite fluctuation. Note
that Giaquinto talks about “closer examination” of the figure. So, we can’t
be sure whether Rolle’s Theorem holds of such a function.

This objection is easily met. There are two possibilities. First, the infinite
fluctuation may mean that the function is not differentiable at points within
the range. If this is the case, then the function doesn’t meet the criteria set for
Rolle’s Theorem. On the other hand, if the function is differentiable over the
range, even though it fluctuates infinitely, then we can represent the curve
with the hilltop image. This is so because, although it fluctuates infinitely,
there is a derivative at every point, so there is a tangent line at every point.
Thus, though we can’t see the tiny regions of fluctuations, we don’t need
to. Again, the point of the figure isn’t to give us an empirical object to
manipulate. Instead, we get a kind of conceptual object to manipulate, i.e.,
an arbitrary representative of the class.

Giaquinto’s third worry regards how we understand the visual proof in
cases where the hilltop image is appropriate. He worries that in seeing the
rod assume the horizontal position, we might not be able to discern the dif-
ference between a slope of zero and a slope that differs from zero by a tiny
amount. Again Giaquinto’s worry in unfounded as we don’t rely on visual
inspection to discover the properties of the figures involved. Instead, we have
already stipulated that the curves are both continuous and differentiable ev-
erywhere along a given interval. Since the curve is continuous on the inter-
val, there are no gaps. Since the curve is everywhere differentiable along the
interval, it has a tangent line. And, since the tangent is positive on one side
of a point c and negative on the other, the tangent has to have a zero slope at
some point. The only way for this to fail is for the curve to be discontinuous.
But this possibility is ruled out by the conditions of the theorem.

All of the worries are satisfied when we realize that vision doesn’t play
a role in the determination of the properties of the figures. At least vision
plays no more of a role than it does with wholly symbolic elements.

5. A Spurious Counterexample

Before the conclusion we must consider a purported example of how dia-
grams can lead to false theorems. Brown says that this worry is real.

Philosophers and mathematicians have long worried about diagrams
in mathematical reasoning — and rightly so, they can indeed be
highly misleading. Anyone who has studied mathematics in the
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usual way has seen lots of examples that fly in the face of reasonable
expectations. (Brown 1997, 178)

As an example of a “highly misleading” use of diagrams Brown gives the
following. Take four unit circles centered at (±1,±1). Construct a circle
centered at (0, 0) so that it touches each of the other circles just once. Now
construct a square around the unit circles. From this diagram we can see that
the interior circle is wholly contained by the square.

Figure 13a

y

x

(-1,1) (1,1)

(-1,-1) (-1,1)

Since the result holds in two dimensions, try it in three dimensions (see
Figure 13b). Take eight unit spheres centered at (±1,±1,±1). Construct
inner sphere centered at the origin. Draw a three dimensional box around the
eight unit spheres. You will see that the interior sphere is wholly contained
in the three-dimensional box. Brown continues:

Reflecting on these pictures, it would be perfectly reasonable to
jump to the ‘obvious’ conclusion that the result holds in higher di-
mensions. Amazingly, this is not so. At ten dimensions and higher,
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the central sphere breaks through the n-dimensional box. (Brown
1997, 178)

Small Interior Sphere

Figure 13b

This is hardly a failure of diagrammatic reasoning. For, in order to make
the leap to the false conclusion one must assume that what holds in two
and three dimensions will hold at all higher dimensions. This assumption
is clearly false. And that accounts for the error in this proof. Moreover, it
isn’t as if the figure was misleading at all. In each case where the figure was
given, the result did hold. The mistake was in thinking that we could extend
the figures to higher dimensions. The moral of the story is that we ought to
make our assumptions explicit, regardless of whether our proof techniques
are figurative or verbal/symbolic.

Hidden assumptions are important. We should make them explicit as a
false assumption can infect the reasoning making it unsound. Consider the
following figurative proof so that we can make tacit assumptions explicit
(Figure 14). We find this proof very convincing. But it depends on a number
of assumptions. One is that the figure is infinitely divisible. One may object
to this assumption, but that does not show a flaw in the reasoning.

Another assumption is what we might term a pre-formal limit axiom, per-
haps in the form of the Principle of Continuity. The idea is that if an error
measure can be made arbitrarily small, then the process will reach the limit.
This assumption depends on the process converging to a limit in the first
place. But, in this case it is clear that the smaller and smaller squares are
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1
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Figure 14
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2

1

4

1

8

getting closer and closer to filling in the unit square. A case where the con-
vergence is not as easy to discern, but can by discovered in the proof is the
following.

1

4

1

16

1

64

1

256

1

3

Figure 15

...

...

To grasp that the sequence is converging in this case is a bit more difficult,
but one can see that each “L” of the unit square has 1/3 of its area shaded.
And we know that the “L’s” converge to 1. So, the shaded regions converge
to 1/3. An analogous process occurs in the traditional verbal symbolic proof
(Cf. Brown 1997, 171–172).

Theorem: 1

1
+ 1

4
+ 1

8
+ . . . = 1
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Proof (Traditional):

s1 =
1

2

s2 =
1

2
+

1

4
=

3

4

s3 =
1

2
+

1

4
+

1

8
=

7

8

s4 =
1

2
+

1

4
+

1

8
+

1

16
=

15

16

The Value of the Partial Sums (sn):

2n − 1

2n

The infinite sequence has limit 1, provided that for any number ε, no matter
how small, there is a number N(ε), such that n > N , the difference between
the general term of the sequence 2

n−1

2n
and 1 is less than ε.

Symbolically:

lim
n→∞

2n − 1

2n
= 1 iff

(∀ε)(∃N)n > N →









2n −
1

2n
− 1









< ε









2n − 1

2n
− 1









ε →









−1

2n









< ε

→ 2n ≥
1

ε

→ log2

1

ε
≤ n

Let N(ε) = log2

1

ε
Hence,

n > log2

1

ε
→









2n − 1

2n
− 1









< ε

So, the sum of the series is 1.

Notice that the pre-formal limit concept and the idea of convergence are both
included in a formal presentation of the proof of the theorem. Thus, insofar



“06dove”
2004/6/16
page 337

i

i

i

i

i

i

i

i

CAN PICTURES PROVE? 337

as those were the assumptions that allowed us to draw the conclusion in the
case of the diagrammatic proof, those assumptions were true. Ian Mueller
discusses a similar phenomenon as regards the assumptions Euclid made in
his proofs.

There are indeed many instances of tacit assumptions being made,
but these assumptions were always true. (Mueller 1981, 5)

This is clearly not true in all cases where reasoning involving figures relies
on tacit assumptions. But, if the assumptions are made explicit and they are
seen to be true, then the conclusion of an argument employing this kind of
reasoning is no less a guarantee of truth than a verbal/symbolic argument.

Finally, consider the following proof of the Pythagorean Theorem.

a

b

c
b

2

c
2

a
2

Figure 16a

Figure 16b

The proof works by showing that the squares associated with the sides of a
right triangle have the relation that the area of the square on the hypotenuse
is equal to the sum of the squares on the other two sides.

a b

a

b

a

a

b

b

Figure 16c Figure 16d
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The proof is usually given with the command: Behold! If you can’t draw
the conclusion, notice that the large squares have the same area, i.e. (a + b)
by (a + b). And, each of the larger squares contains four triangles of the
same size as well as either two squares in the case of Figure 16c or one
square in the case of 16d. Thus, subtracting the four triangles from each of
the squares will leave figures with the same areas. There are a couple of
things to notice about the proof. Is the figure arbitrary? Yes. We can thus
generalize the results. Did we rely on our perceptual faculties to determine
this conclusion? No more than if we had read a verbal/symbolic proof of
the same theorem. The conclusion is therefore necessary insofar as it can be
generalized to any such figure.

We conclude that implicit assumptions ought to be made explicit. And,
though we don’t share Mueller’s optimism for the correctness of the im-
plicit assumptions of figurative reasoning generally, this is not a problem
specific to using figures. Thus, insofar as the objects of mathematical figures
are arbitrary and that their properties are not discerned perceptually, then
if the assumptions can be made explicit, the diagrams have no pitfalls be-
yond those inherent in their verbal/symbolic cousins. Indeed, besides being
as well behaved as traditional verbal/symbolic elements of proofs, diagrams
and figures often have the added benefit of being intuitive. Thus, we should
feel no guilt in deploying diagrams in our mathematical proofs. Pictures can
prove!
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