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EXPLANATORY PROOFS IN MATHEMATICS

ERIK WEBER AND LIZA VERHOEVEN∗

1. Introduction

1.1. Steiner

Mark Steiner (1978, p. 143) uses the concept of characterizing property to
draw a distinction between explanatory and non-explanatory proofs. A char-
acterizing property is a property unique to a given entity or structure within
a family or domain of such entities or structures. The concept of a family
is left undefined. According to Steiner, an explanatory proof always makes
reference to a characterizing property of an entity or structure mentioned in
the theorem. Furthermore, it must be evident that the result depends on the
property (if we substitute the entity for another entity in the family which
does not have the property, the proof fails to go through) and that by suitably
‘deforming’ the proof while holding the ‘proof-idea’ constant, we can get a
proof of a related theorem. Though many of Steiner’s concepts (family, de-
formation, proof-idea) are vague, we can construct examples which beyond
any doubt would classify as explanatory proofs by his criterion. Take the
following proof of the Pythagorean Theorem:

PROOF T1
(1) For every triangle ABC: c2 = a2 + b2 − 2ab. cos(a, b). PREM
(2) For every angle θ: cos(θ) = 0 if θ = 90o. PREM
(3) For every right-angled triangle ABC with hypotenuse
c: (a, b) = 90o. PREM
(4) For every right-angled triangle ABC with hypotenuse
c: c2 = a2 + b2. 1,2,3
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300 ERIK WEBER AND LIZA VERHOEVEN

This proof makes reference to characterizing properties of right-angled tri-
angles with hypotenuse c, namely that (a, b) = 90o. It is evident that the
proof fails to go through if another kind of triangle is considered, since (3)
is false for all other types of triangles. Furthermore, we can easily imagine
similar proofs of related theorems. E.g., obtuse triangles contain exactly one
angle θ > 90o. Because cos(θ) < 0 if 90o< θ < 180o, we can derive that
for all obtuse triangles, c2 > a2 + b2.

1.2. Resnik & Kushner

According to Michael Resnik and David Kushner (1987, p. 153–154), there
is no objective distinction between explanatory and non-explanatory proofs.
Every proof allows us to answer at least one why-question (the question why
the proven theorem is true). However, some proofs contain more informa-
tion: they allow us to answer more why-questions; the more why-questions
a proof can help to answer, the more explanatory it is. A why-question that
is often asked is: why is this theorem true for this class of objects, but not for
other classes of objects in the same larger family of objects? They agree that
Steiner’s proofs that use a characterizing property are ideally suited to pre-
senting the information for answering this kind of why-questions. However,
Resnik and Kushner say, there may be other why-questions, for which ex-
planatory proofs in Steiner’s sense are not well suited, because they provide
the wrong kind of additional information.

1.3. Aim of this paper

We agree with Resnik & Kushner that Steiner’s account is too narrow, be-
cause it is confined to questions of the form:

(C) Why do mathematical objects of class X have property Q, while those
of class Y have property Q′?

However, we think that even within this restricted domain, Steiner’s theory
must be corrected and completed. This brings us to the first two aims of this
article:
(1) Steiner assumes that proofs that satisfy his criterion are explanatory in
their own virtue: by giving the proof, we automatically answer a question
of type (C). In Section 2 we show that this assumption is wrong: proofs can
become parts of answers, but they don’t answer the question in their own
right.
(2) Why is it important to answer questions of type (C)? What’s the benefit?
Steiner does not consider these questions. In Section 3 we try to complete
his theory by answering these questions.
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The “refined Steiner theory” that results from Sections 2 and 3 still faces
the problem pointed out by Resnik & Kushner: not all explanatory questions
have form (C). In Section 4 we will take a first step in developing a more
complete theory by discussing questions of the form:

(P) Why do mathematical objects of class X have property Q, but not prop-
erty Q′?

In this question it is assumed that Q′ implies Q. Note that in questions of
type (C) we only assume that there is some connection between Q and Q′:
no specific relation is required.

In Section 5 we will sketch some general characteristics of the theory pro-
posed in 2–4, while in Section 6 we give an overview of the research that
remains to be done.

2. How are contrasts between classes to be explained?

2.1. A criterion

Questions of the form (C) can be answered by means of a couple of two
proofs:

The couple (P1, P2) explains why mathematical objects of class X have
property Q, while those of class Y have property Q′ if and only if
(1) P1 is a proof for the theorem that mathematical objects of class X
have property Q;
(2) P2 is a proof for the theorem that mathematical objects of class Y
have property Q′;
(3) P1 and P2 use the same axioms and theorems as premises;
(4) P1 and P2 have the same logical rules;
(5) P1 uses a defining property of X, but not of Y, as premise; and
(6) P2 uses a defining property of Y, but not of Y, as premise.

According to this criterion proofs have explanatory power only if we put
them together in the right kind of couples. Furthermore, there is no objective
distinction between explanatory and non-explanatory proofs, only between
explanatory and non-explanatory couples of proofs. The reason is that con-
ditions (3) and (4) refer to relations between proofs, not to properties of
individual proofs.
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2.2. Examples

The proof T1 can be ‘deformed’ in Steiner’s way to proofs of related theo-
rems. An example of such a ‘deformed’ proof is the following.

PROOF T2
(1) For every triangle ABC: c2 = a2 + b2 − 2ab. cos(a, b). PREM
(2) For every angle θ: −1 < cos(θ) < 0 if 90o< θ < 180o. PREM
(3) For every obtuse-angled triangle ABC with obtuse angle
in C: 90o< (a, b) < 180o. PREM
(4) For every obtuse-angled triangle ABC with obtuse angle
in C: c2 > a2 + b2. 1,2,3

This proof makes reference to the characterizing property of obtuse-angled
triangles with obtuse angle in C, namely that 90o< (a, b) < 180o. It can
also be ‘deformed’ back to proof T1. The couple (T1,T2) obviously is an
explanatory couple of proofs according to our criterion. It answers a ques-
tion of the form (C): why does it hold for right-angled triangles ABC with
hypotenuse c that c2 = a2 +b2, while for obtuse-angled triangles ABC with
obtuse angle in C it holds that c2 > a2 + b2? It is also clear that both proofs
are individually explanatory according to Steiner’s criterion, though their ex-
planatory power depends on the possibility of ‘deforming’ the proofs, or in
practice on the existence of ‘deformed’ proofs.

The same theorems can also be proven by the following proofs.

PROOF T3
(1) For every n-tuple similar figures with corresponding
sides a1, . . . , an, there is a factor k 6= 0 for which the areas
of the figures can be represented as k.a2

1
, . . . , k.a2

n
. PREM

(2) For every triangle, the sum of its angles amounts to 180o. PREM
(3) For every right-angled triangle ABC with hypotenuse
c: (a, b) = 90o. PREM
(4) For every right-angled triangle ABC with hypotenuse
c: one can construct two similar triangles on the sides a and
b that cover together an area that equals the original triangle. 2,3
(5) For every right-angled triangle ABC with hypotenuse c,
there is a factor k 6= 0 such that k.a2 + k.b2 = k.c2. 1,4
(6) For every right-angled triangle ABC with hypotenuse c:
a2 + b2 = c2. 5
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PROOF T4
(1) For every n-tuple similar figures with corresponding
sides a1, . . . , an, there is a factor k 6= 0 for which the areas
of the figures can be represented as k.a2

1
, . . . , k.a2

n
. PREM

(2) For every triangle, the sum of its angles amounts to 180o. PREM
(3) For every obtuse-angled triangle ABC with obtuse angle
in C: 90o< (a, b) < 180o. PREM
(4) For every obtuse-angled triangle ABC with obtuse angle
in C: one can construct two similar triangles on the sides a
and b that cover together an area that is smaller than the
original triangle. 2,3
(5) For every obtuse-angled triangle ABC with obtuse angle
in C, there is a factor k 6= 0 such that k.a2 + k.b2 < k.c2. 1,4
(6) For every obtuse-angled triangle ABC with obtuse angle
in C: a2 + b2 < c2. 5

The defining properties used here are the same as in T1 and T2. For the
couple (T3,T4) the same observations can be made. What we claimed is that
a proof cannot be explanatory in its own virtue. The reader can only accept a
proof as explanatory in Steiner’s sense after he has ‘deformed’ it into a proof
of a related theorem, i.e., from the moment he has in mind one other proof
that together with the original proof forms a couple that meets our criterion.
It is obvious that the couples (T1,T4) and (T2,T3) do not satisfy our criterion,
neither are they ‘deformable’ into each other; the theorems are related, but
their proofs are not.

3. Unification

One of the generally accepted aims of explanation in the natural and social
sciences is unification. Unifying events consists in showing that two or more
different events are instances of the same (set of) law(s) of nature. As an
example, assume that we have observed the following:

Pendulum a has a period in the interval [1.99s, 2.02s].
Pendulum b has a period in the interval [2.44s, 2.47s].

These events can be unified by deriving them from the pendulum law. The
first derivation is:

(1) For all pendulums P = 2π
√

L/g.
(2) a has a length in the interval [0.99m, 1.01m].
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(3) All pendulums that have a length in the interval [0.99m, 1.01m],
have a period in the interval [1.99s, 2.02s].
(4) Pendulum a has a period in the interval [1.99s, 2.02s].

(1) and (2) are premises. (3) is derived from (1), the explanandum (4) is
derived from (2) and (3). The second derivation is:

(1) For all pendulums: P = 2π
√

L/g.
(2′) b has a length in the interval [1.49m, 1.51m].
(3′) All pendulums that have a length in the interval [1.49m, 1.51m],
have a period in the interval [2.44s, 2.47s].
(4′) Pendulum b has a period in the interval [2.44s, 2.47s].

Note that the two derivations have the same structure, use the same law and
differ only in the “characterizing property” of each pendulum: its length.

A detailed analysis of unification in the empirical sciences, including a
criticism of Philip Kitcher’s influential views on unification (cf. his 1981
and 1989), can be found in Weber (1999). However, even without further
analysis it is clear that answers to questions of type (C) that satisfy our cri-
terion of adequacy, unify mathematical facts (in casu: theorems) in a similar
way as the couple of physical explanations unifies the two physical facts. So
answering questions of type (C) has at least one benefit: unification. Unifi-
cation can be considered an intrinsic value, but also has practical and ped-
agogical advantages (applying and teaching a unified system is easier than
applying and teaching a non-unified one).

4. Contrasts between properties

4.1. Proofs and ‘disproofs’

Now that we have refined Steiner’s theory we will take a step towards com-
pleting it. We discuss questions of the following form:

(P) Why do mathematical objects of class X have property Q, but not Q′?

As mentioned before, we assume that Q′ implies Q. Questions of type (P)
can be answered by a couple of proofs (P1,P2):

The couple (P1, P2) explains why mathematical objects of class X have
property Q, but not property Q′ if and only if:
(1) P1 is a proof for the theorem that mathematical objects of class X
have property Q, and
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(2) P2 is a proof for the theorem that not all mathematical objects of
class X have property Q′.

The proof P2 in this construction can have at least two different formats: (i) a
counterexample, (ii) a proof that a subclass of X does not have Q′. These
possible formats are clarified in the example we give in section 4.2.

4.2. The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra (Girard-d’Alembert-Gauss) states that
a non-constant complex polynomial P (z) = c0 + c1z + . . . + cnzn (all
ci complex numbers, n ≥ 1 and cn 6= 0) has at least one complex zero
point. A consequence is that a non-constant complex polynomial P (z) =
c0 + c1z + . . . + cnzn (all ci complex numbers, n ≥ 1 and cn 6= 0) can
be factorized as P (z) = cn(z − z1) . . . (z − zn) with all zi complex num-
bers. Hence, if we consider the class X of the non-constant real polynomials
R(z) = r0 + r1z + r2z

2 (all ri real numbers and r2 6= 0) of degree two, we
know from the factorization R(z) = r2(z− z1)(z− z2), with all zi complex
numbers, that all such polynomials have two complex zero points (property
Q). Call the proof of the latter fact F1. We can prove that not all such polyno-
mials have two real zero points (property Q′) by constructing counterexam-
ples as follows. If a real polynomial R(z) = r0 + r1z + r2z

2 has a complex
zero point a+ ib (a and b real numbers), then a− ib will also be a zero point,
because real polynomials map conjugate complex numbers onto conjugate
complex numbers. The factorized polynomial r2(z− (a+ ib))(z− (a− ib))
can be expanded to r2((z − a)2 + b2), which is a real polynomial for all
values of a and b. So we have found a range of examples of non-constant
real polynomials of degree two that have two complex zero points that are
not real (those for which b 6= 0). These are the desired counterexamples
that give us the proof F2. The couple (F1,F2) explains the contrast that non-
constant real polynomials of degree two have two complex zero points, but
do not all have two real zero points.

One can investigate further which polynomials do have two real zero points
and which do not. After some calculations, one finds that for the polynomial
R(z) = r0 + r1z + r2z

2 a simple characterisation can be made in terms of
∆ = r2

1
− 4r0r2. For ∆ ≥ 0, R(x) has two real zero points, whereas for

∆ < 0, R(x) has two complex zero points that are not real. By elaborating
on the contrast, we have found a subclass that corresponds with the property
Q′.
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4.3. Why explain contrasts between properties?

Asking question (P) is part of Lakatos’ method of proofs and refutations.
After exceptions to a primitive conjecture are found, the question why the
conjecture is not valid in those cases arises. Trying to answer that question
involves searching for hidden assumptions that have been made on the base
of wrong intuitions. Once these implicitly made assumptions are identified,
they can be incorporated into the formulation of the conjecture as an extra
condition. This means that answering questions of type (P) leads to the dis-
covery of new theorems. The process of improving the conjecture and its
proof may also give rise to the discovery of new concepts (proof-generated
concepts as Lakatos calls them) which means that so new fields of inquiry
are opened up.

5. Conclusions

In this paper we have refined Steiner’s theory with respect to questions of
type (C), and developed a criterion for identifying satisfactory answers to
questions of type (P). Two points of clarification are useful for preventing
misunderstanding:
(1) In our view, the way in which the theorems which are used as premises in
a proof are formulated, is important: in order to produce proofs that satisfy
our criteria, some formulation of a theorem may be better than a different
one which is logically equivalent.
(2) We have looked at explanation in the context of axiomatic mathemat-
ical theories: we have tried to find out how traditional formal proofs can
explain. Our criteria do not apply to non-traditional proofs (e.g. picture
proofs). However, this does not mean that we think that such proofs cannot
be explanatory. We are convinced that they can, but that the criteria will be
completely different.

6. Questions for future research

The theory of mathematical explanation that we have presented is far from
complete. The following list of types of explanation-seeking questions should
suffice to convince the reader that there is a lot of work to be done (even if
we confine ourselves to traditional proofs):
(1) There is an interesting variant of type (C): questions of the form “Why
do mathematical objects of class X have property Q, while those of class Y
do not have property Q?”. Our guess is that such questions can be answered
by giving the proof for class X and showing that an adapted proof for Y goes
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wrong somewhere.
(2) There are also interesting variants of (P): questions of the form “Why
do mathematical objects of class X have property Q, rather than property Q′

(where Q and Q′ are mutually exclusive)” and similar questions of with other
relations among Q and Q′.
(3) Explanation-seeking questions with respect to existence proofs.
(4) Explanation-seeking questions with respect to uniqueness proofs.
(5) Explanation-seeking questions with respect to identity proofs.
On top of that, there is also the question of how non-traditional proofs ex-
plain.
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