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MATHEMATICAL PRACTICE AS A GUIDE TO ONTOLOGY:
EVALUATING QUINEAN PLATONISM BY ITS CONSEQUENCES

FOR THEORY CHOICE

MARY LENG

1. Introduction

An assumption that lies behind the central project of this paper is that our
philosophical account of mathematics should be able to account for actual
mathematical practices in a way that recognizes their value. While this may,
in the current philosophical climate, seem too obvious to state explicitly, the
philosophy of mathematics has not always proceeded with this ‘naturalis-
tic’ assumption in mind. Accounts of the nature of mathematics have been
given which suggest that mathematical practices should be revised to reflect
this true nature. However, once we have rejected the idea that philosophical
accounts of mathematics may advocate large scale revision to mathematical
practices, this naturalistic stance can be used as a bottom line against which
to evaluate philosophical claims about mathematics. If the pictures of ide-
alized mathematical practice that these philosophical views present diverge
too far from the often more messy realities of actual mathematical practices,
then this should count as evidence against these philosophical views.

When it comes to ontological claims made by philosophers it is not at all
obvious that the naturalistic assumption will help us very much — it is not
immediately clear that the claims philosophers make about the existence of
mathematical objects will have any consequences regarding the way mathe-
matics should be done. In order, then, to evaluate accounts of the ontology of
mathematics in the light of mathematical practices, we first need to find out
whether any of these accounts have anything to say about these practices.

I shall argue that a variety of different ontological accounts do have (at
least apparent) consequences for mathematical practice, to the extent that
anyone who denies these consequences has some work to do explaining why
they don’t follow from the ontological picture they favour. Furthermore, I
shall argue that Quine’s realist account of mathematics has consequences
that receive no positive support from, and are even contradicted by, our cur-
rent mathematical practices. This rather negative conclusion masks a more
positive flip side, which I won’t have the time to defend here. While I think
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that ontological accounts such as Quine’s that distinguish between literally
true and merely consistent theories cannot account for current mathematical
practices, I would like to suggest that theories that do not draw this distinc-
tion (between merely consistent theories and really true ones) can provide
such an account.

I would like to start, then, by considering four different accounts of the ex-
istence — or otherwise — of mathematical objects. These are by no means
exhaustive, but they do represent the spectrum of attitudes one could have to
mathematical statements taken at face value. I claim that all of these theories
carry with them an attitude to consistent candidates for mathematical theo-
ries, and as a result of this attitude they have consequences regarding which
theories mathematicians should choose to work on.

Consider, then, the following four ontological theories: fictionalism, Quin-
ean Platonism, Gödelian Platonism and Full-Blooded Platonism. Fictional-
ism says that no mathematical objects exist, whereas Full-Blooded Platon-
ism says that all possible ones do, but their implications for mathematical
practice turn out to be the same. Since both theories claim that all con-
sistent mathematical theories are on a par from an ontological perspective,
they both see mathematical theory choice as proceeding for reasons that bear
no relation to the truth values of the theories under consideration. When a
mathematician chooses to work on one consistent theory amongst the many
potentially available, this choice will be a practical matter, based on values
that are independent of the truth values of the claims of the theory.

The two other accounts under consideration — Quinean Platonism and
Gödelian Platonism — differ from this first pair in that they both claim that
some, but not all, of the objects referred to in consistent candidates for math-
ematical theories really exist. Quine’s ontological approach is to look to
natural science to decide what there is. Taking quantifier commitment as in-
dicative of ontological commitment (since “to be is to be the value of a vari-
able” [14, pp. 1–19]), Quine argues that we are committed to precisely those
mathematical entities that are quantified over in theories used in our best
science. That means that we have a distinction between merely consistent
theories and actually true ones. Amongst consistent candidates for mathe-
matical theories, the theories that are confirmed as really true are those that
are indispensable for our current best science. If mathematicians care about
the truth of their theories, then, if the Quinean picture is right, they should
pay close attention to the use of mathematics in natural science. In particular,
according to Quine’s account of the scientific confirmation of mathematical
theories, we should see mathematicians as choosing which theories to work
on based on their application or potential application in natural science.

The view that I am calling ‘Gödelian Platonism’ is the more traditional
version of Platonism that says that there is an independent mathematical
realm of objects about which we can make discoveries. According to this
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view, we can discover what objects there are through intuition, and through
quasi-empirical methods. (That is to say, on this view, to the extent that an
axiomatic system has consequences that are intuitive, that axiomatic system
gets intuitive confirmation.) Like Quine’s version of Platonism, according to
the Gödelian account, not all consistent candidates for mathematical theories
pick out a piece of mathematical reality. This is why Gödel was so keen to
get the right answer to the continuum hypothesis rather than sanction all
consistent theories as on a par (see [7]). Mathematical theory choice, on this
Gödelian view, reflects an assessment of which theories are likely to be true,
based on intuition. Thus the Quinean and Gödelian versions of Platonism
share the thought that mere consistency is not enough for the actual truth
of a mathematical theory, but differ in their assessment of how a consistent
theory becomes confirmed as literally true.

In what follows I shall concentrate on the Quinean picture, which says
that theories are confirmed by their indispensable use in natural science. Ac-
cording to the Quinean view, we should expect mathematicians to choose
between rival theories on the basis of their applicability, and to reject as false
those theories that have been superseded in scientific applications. In order
to assess this ontological picture against the backdrop of mathematical prac-
tices, I will consider first of all some examples of cases where mathematical
theories have been abandoned. We will see that, in these cases where we
might hope to find support for the Quinean picture, the reasons for abandon-
ing the theories in question have not in fact been due to their perceived lack
of confirmation in the light of failed applications. Thus the Quinean picture
receives no support from these high profile cases of abandoned mathematical
theories. Furthermore, and even more problematic for the Quinean view, we
will consider a case where Quinean doctrine would predict the abandonment
of a mathematical theory, and where the theory in question has remained an
important part of mathematics.

2. Abandoned Theory 1: The Infinitesimal Calculus

One clear case of mathematical theory choice that might provide support for
the Quinean view is the choice of the rigorized calculus, with the Weier-
strassian notion of continuity, over the earlier infinitesimal calculus. Since
in this example, the immensely successful application of the calculus was
the driving force in the move towards rigorization, we might expect that we
have a case here of mathematicians taking their cue from natural science
when it comes to theory choice.1 The move from a notion of the continuum

1 It would, incidentally, be a cheap shot against Quine to note that talk of infinitesimals by
mathematicians was abandoned despite its successful use in natural science — presumably
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that included infinitesimals to our current Weierstrassian conception of the
real line, with the epsilon-delta account of continuity, does seem to display
the sort of close interrelation between mathematical and scientific reasons
for theory choice that would be expected on the Quinean account.

What is important in this case, however, is the difference that the introduc-
tion of non-standard analysis by Abraham Robinson makes for our evalua-
tion of the fate of the theory of infinitesimals. Robinson’s non-standard anal-
ysis revives infinitesimal theory in a rigorous manner, and has been accepted
as an important branch of mathematics. The acceptance of non-standard
analysis apparently causes problems for the Quinean picture, because on the
view of mathematics as continuous with natural science, it would seem that
Robinson’s work should be seen as the redevelopment of a theory in competi-
tion with standard analysis. The continuum of non-standard analysis and the
continuum of standard analysis are different, and according to the Quinean
view the continuum to survive should be the one that is used as part of our
best scientific theory. However, while scientists continue to make successful
use of standard analysis, without assuming the existence of infinitesimals,
this does not devalue the mathematical importance of non-standard analy-
sis. In modern mathematics, with rigorous theories of both available, there
is no real fight between the continua of standard and non-standard analysis.
The results of each theory are valid, and true of their intended models. In
Robinson’s words,

. . . it appears to us today that the infinitely small and infinitely large
numbers of a non-standard model of Analysis are neither more nor
less real than, for example, the standard irrational numbers. [16,
p. 282]

The acceptance of the non-standard continuum alongside the notion of the
continuum appealed to in physics thus causes difficulties for Quine’s picture
of mathematics as continuous with, and subject to the evaluative methods of,
natural science.

3. Abandoned Theory 2: Quaternions

A second example of a theory that has been abandoned in natural science
in favour of a simpler alternative is Hamilton’s theory of the quaternions.
The initial development of the system of quaternions was much heralded,

Quine can see the rigorized calculus as an improved candidate for a scientific theory, chosen
for reasons of simplicity, etc.
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with contemporaries drawing analogies with the development of the calcu-
lus. Thus in a review of Hamilton’s book on quaternions, Thomas Hill writes
excitedly of the practical promise of the theory:

The discoveries of Newton had done more for England and for the
race, than has been done by the whole dynasties of British monar-
chs; and we doubt not that in the great mathematical birth of 1843,
the Quaternions of Hamilton, there is as much real promise of ben-
efit to mankind as in any event of Victoria’s reign. (From Thomas
Hill’s review of Hamilton’s book on quaternions, quoted in [4, p. 37])

But although they were of great historical importance, not least for the devel-
opment of abstract algebra, the quaternions ultimately faltered when it came
to applications because, as Morris Kline explains, they

were not quite what the physicists wanted. They sought a concept
that was not divorced from but more closely associated with Carte-
sian coordinates than quaternions were. [8, p. 785]

As an applied theory, after a short battle for prominence, the quaternions
were quickly replaced by quaternion-inspired vector analysis. Indeed, Mor-
ris Kline’s discussion of this battle suggests just the sort of practical reasons
for theory choice that are prominent in Quine’s discussions of theory choice
in natural science:

While vector analysis was being created and afterward there was
much controversy between the proponents of quaternions and the
proponents of vectors as to which was more useful. The quater-
nionists were fanatical about the value of quaternions but the pro-
ponents of vector analysis were equally partisan. On one side were
aligned the leading supporters of quaternions such as Tait and, on
the other, Gibbs and Heaviside. Apropos of the controversy, Heav-
iside remarked sarcastically that for the treatment of quaternions,
quaternions are the best instrument. On the other hand Tait de-
scribed Heaviside’s vector algebra as “a sort of hermaphrodite mon-
ster, compounded of the notations of Grassmann and Hamilton.” . . .

The issue was finally decided in favor of vectors. Engineers wel-
comed Gibbs’s and Heaviside’s vector analysis, though the math-
ematicians did not. By the beginning of the present century the
physicists too were quite convinced that vector analysis was what
they wanted. Textbooks on the subject soon appeared in all coun-
tries and are now standard. The mathematicians finally followed
suit and introduced vector methods in analytic and differential ge-
ometry. [8, p. 791]

In Michael Crowe’s A History of Vector Analysis, the current value of the
quaternions as an applied system is reported as minimal:
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. . . the consensus now is that the quaternion system is but one of
many comparable mathematical systems, and though it is interesting
as a rather special system, it offers little value for application. [4,
p. 18]

Here we have the choice between two theories being adjudicated by empir-
ical considerations: the theory favoured by physicists and engineers gained
prominence, even amongst mathematicians, and the quaternions fell by the
wayside. However, the fact that this practical choice in no way affects the
evaluation of the quaternions as a mathematical theory is apparent given that
Hamilton’s achievement is in no way devalued in historical accounts. While
in Michael Crowe’s A History of Vector Analysis, the current value of the
quaternions as an applied system is reported as minimal, there is clearly no
suggestion that the theory as a pure mathematical system is in any way defi-
cient.

. . . the consensus now is that the quaternion system is but one of
many comparable mathematical systems, and though it is interesting
as a rather special system, it offers little value for application. [4,
p. 18]

Contrary to the Quinean picture, in historical accounts of Hamilton’s de-
velopment of the quaternions, Hamilton’s work is not presented as the formal
development of a theory which turned out to be false (since empirical results
use, and therefore ‘confirm’, vector methods over quaternions), but rather as
the ingenious solution to a mathematical problem culminating in the intro-
duction of a system of numbers whose results are as true now as they were
when Hamilton first presented them.

4. Abandoned Theory 3: Catastrophe Theory

My third example is of a theory that was not so much replaced by a competi-
tor, but rather simply abandoned by mathematicians and scientists. Catas-
trophe Theory, developed during the late 1960s and early 1970s initially as
a “mathematical language for biology” [21, p. 32], received a great deal of
media attention in the mid-70s. René Thom published his Structural Sta-
bility and Morphogenesis in 1972, introducing Catastrophe Theory to the
mathematical community, and, only four years later, Newsweek reported
that Catastrophe Theory was being “hailed as an “intellectual revolution”
in mathematics, the most important development since calculus”. However,
in 1976 Science ran the headline, “CATASTROPHE THEORY: THE EM-
PEROR HAS NO CLOTHES”, and by 1977 the Smithsonian reported “the
death of a theory” [21, p. 72], claiming that Catastrophe Theory was some-
thing that could safely be dismissed as unimportant.
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The fate of Catastrophe Theory seems initially promising as an illustration
of the Quinean thesis of the continuity of mathematics with natural science.
I have claimed that Quine’s thesis suggests a picture of theory choice where
theories die out when they fail to be of use to scientists. In the case of Catas-
trophe Theory, its fall from grace was indeed due to a lack of important
applications. Does the rise and fall of Catastrophe Theory, then, count as ev-
idence for the Quinean thesis that mathematical theories are to be evaluated
as a part of natural science? To discover this, we need to take a detailed look
at the reasons for the abandonment of this part of mathematics.

Warwick mathematician E. Christopher Zeeman contributed greatly to the
perception of Catastrophe Theory as an important and wide-ranging mathe-
matical tool by developing catastrophe theoretic explanations of phenomena
ranging from the heartbeat and the nerve impulse to animal aggression and
prison riots. However, just as the theory’s promise of wide-ranging appli-
cations led to its high profile entrance into the public consciousness, it also
led to its downfall, as mathematicians began to question the scientific worth
of a theory that seemed to explain too much. Catastrophe Theory’s most
vocal critic, Hector J. Sussmann, began by questioning Zeeman’s models
in the social sciences, for stock market crashes, prison riots and the effect
of public opinion on military policy. Sussmann concluded that these mod-
els were “vaguely formulated, . . . based on false hypotheses, . . . [and] lead
to few non-trivial predictions” ([18], quoted in [21, p. 72]). Furthermore,
what predictions these models did make more often than not failed to agree
with reality. In a more extended critique of the applications of Catastrophe
Theory, written with Raphael S. Zahler [19], more of Zeeman’s models were
criticized, along with the methodology of applied Catastrophe Theory gen-
erally. The conclusion most drew from this was that Catastrophe Theory was
a flash in the pan, and, save the efforts of a few passionate defenders,2 the
theory has largely died out as an area of serious research.

Since the death of Catastrophe Theory was largely due to a failure in ap-
plications, it would seem an excellent example in support of the Quinean
picture of mathematics, according to which mathematical theories are con-
firmed by their empirical successes. Quine’s view would certainly predict
the death of Catastrophe Theory. A theory that has no applications, or that
fails to provide insight into another theory that does have applications, has no
empirical confirmation and should be dismissed. However, the story is not

2 A recent defence of Catastrophe Theory attempted by Alain Boutot [2] is unlikely to
win over many new disciples. Insensitive to the precarious position of the evangelical faced
with the cynical, Boutot fails miserably in his attempt at a modern, sober and considered look
at the virtues of Catastrophe Theory: “Catastrophe theory,” he tells us, “does not enable us to
escape our fate, but, if it is contemplative, it is enough to assure happiness” [2, p. 195].



“01leng”
2004/6/16
page 242

i

i

i

i

i

i

i

i

242 MARY LENG

as clear cut as it at first seems, for recall that for Quine it is successful ap-
plications that confirm the truth of a mathematical theory. Yet, despite their
damning criticism of the empirical virtues of Catastrophe Theory, Sussmann
and Zahler do not see this as speaking in any way against the mathematical
worth of the theory, considered apart from its applications. It is Zeeman’s at-
tempted applications that are dismissed as “vaguely formulated” and lacking
in predictive worth, and not the mathematical claims of Catastrophe Theory.
Indeed, while the authors viciously tear apart the claims of Catastrophe The-
orists to have found any plausible applications for their subject, they also
take pains to “emphasize that the validity or importance of CT from a math-
ematical standpoint is not at issue here”. The authors add that they “are
concerned only with evaluating the usefulness of CT for extra-mathematical
applications” [19, p. 118]. Clearly they feel that this evaluation should not
extend to the theory’s virtues as an area of pure mathematics.

The death of Catastrophe Theory was indeed due to its failure to live up
to its empirical promise, but in itself this failure was not enough to con-
vince the mathematical community to conclude that the theory was therefore
mathematically worthless, having failed to receive confirmation from its ap-
plications. Indeed, although the theory did eventually fizzle out without the
excitement of immediate applications, and without a solid pure research pro-
gramme following Thom’s classification of the elementary catastrophes, this
was clearly not because practitioners saw its failed applications as disconfir-
mation of its results. There is surely an easy sociological story behind the
abandonment of Catastrophe Theory as a field of pure research. As most
researchers went into the field keen to work on its potential applications,
once it was clear that the theory had little hope for useful immediate applica-
tions, those researchers moved away, leaving an underdeveloped and unfash-
ionable pure field of minor interest to potential new practitioners. Further-
more, set aside from its promised applications, its value as an area of pure
research looked meagre from a mathematical standpoint. Steven Smale, a
Fields medallist like Thom, criticized Catastrophe Theory as a mathematical
theory on purely mathematical, aesthetic grounds:

. . . as mathematics, it brings together two of the most basic ideas
in modern math: the study of dynamic systems and the study of
the singularities of maps. Together, they cover a very wide area
— but catastrophe theory brings them together in an arbitrary and
constrained way. (Quoted in [21, p. 75])

As an applied theory, Catastrophe Theory was abandoned because it failed
to come up with its promised goods. However, its death as an area of pure
research can be put down to mathematical and sociological reasons. Con-
trary to the Quinean picture, the lack of empirical confirmation spoke only
to the interest and value, and not to the truth or validity, of the theory.
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5. Euclidean Geometry

The cases I have presented so far are meant primarily to show that no positive
evidence for the Quinean view of theory choice in mathematics can be found
from some of the most likely candidates — in cases where mathematical
theories have been abandoned, this is not because they are seen as falsified
in the light of their empirical failures. As an aside, though, I should note
that, in favour of my stronger thesis to the effect that theories which put
all consistent theories on a par from an ontological perspective can account
for mathematical practice, the examples I have given are a good fit with
the view that consistency is enough for mathematical acceptability (and that
theory choice is then a purely practical matter). If we construe the previous
discussion as bearing on the choice between a Quinean versus a FBP-ist or
fictionalist view of mathematical theory choice, then it seems that the latter
would win support where the Quinean view has failed. The next example
I would like to consider is a case that, in my view, conclusively tips the
balance.

Historically, the Quinean picture of mathematical truth as essentially em-
pirical does fit somewhat nicely with the way that mathematicians saw Eu-
clidean geometry. Far from being exercises in the free creation of consistent
axiom systems, early attempts to derive consequences from the negation of
the parallel axiom were part of an attempt to prove its falsity by reductio ad
absurdum. Euclidean geometry was held to be evidently true of the world,
so that early investigations in non-Euclidean systems were part of standard
mathematical activity within an area of mathematics that was linked in math-
ematicians’ minds to a concrete physical interpretation. At this stage, in
Kline’s words,

. . . the problem of the parallel axiom was not only a genuine physi-
cal problem but as fundamental a physical problem as there can be.
[8, pp. 880–1]

Even when mathematicians began to suspect that the parallel axiom was
independent of the others, geometry was still so closely linked to its physical
interpretation that it could be argued that this axiom was known nevertheless
to be true, through our intuition of the physical world. Thus, realizing that
the axiom could not be proved to be true, in 1763 George S. Klügel (1739–
1812) observed that the certainty of the parallel axiom was based on experi-
ence [8, p. 867], a very Quinean outlook. This Quinean linkage between the
truth of a pure mathematical theory and the truth of its physical interpretation
is emphasized by Michael Scanlan when he says that,
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In the past, mathematical practice did not involve a distinction be-
tween theory and interpretation. In the eighteenth century, mathe-
matics was seen as the ‘abstract’ study of certain aspects of nature.
[17, p. 13]

Thus the Quinean picture of mathematics as answerable to, and alterable in
the light of, changes in our understanding of nature would seem to fit well
with this picture of eighteenth century mathematical activity.

Indeed, the Quinean picture has a reasonably easy task in accounting for
the history of the development of non-Euclidean geometries. As it became
realized that these alternatives existed, they were developed not on the grounds
of being internally consistent axiomatic systems, but rather, as Scanlan tells
us, as potentially competing descriptions of physical space:

The mathematicians who originally conceived of non-euclidean ge-
ometry, Bolyai, Lobachevsky and to some extent Gauss, seem all to
have conceived of the theory as one which is potentially applicable
to physical space. . . .

The original BL [Bolyai-Lobachevsky, or hyperbolic] geometers
saw their results as holding for the case of a single parallel or for
the case of multiple parallels. Because of this, the issue facing the
pioneers of BL geometry was not strictly speaking consistency but
truth. It was the question of whether the possibilities they envi-
sioned of multiple non-intersecting lines were ever realized. [17,
p. 15]

Thus, while Quine’s picture has difficulties in accounting for the long term
co-existence of mutually contradictory theories, the short term rise of non-
Euclidean geometries alongside standard Euclidean geometry can be under-
stood as the development of alternative possible theories of space, which
would then be tested against experience.

However, this comfortable Quinean position is quickly made difficult by
twentieth century developments, which would seem to force a choice be-
tween the various geometries. According to the General Theory of Rela-
tivity, astronomical space has positive curvature locally (i.e. wherever there
is matter). Thus the best geometry to deal with astronomical space is non-
Euclidean. Whether “absolute” (empty) space is Euclidean or not is un-
known, indeed, it is not at all clear how we might go about answering this
question. However, from the perspective of natural science, it is a non-
Euclidean geometry which has been shown to best describe the world with
which it is concerned.

According to Quine’s view of mathematics, then, current science con-
firms one version of non-Euclidean geometry over its (Euclidean and non-
Euclidean) rival theories of space. And as, according to Quine, the only
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confirmation possible is scientific confirmation, this means that from a math-
ematical perspective we should set aside the alternatives and stick with our
best confirmed geometry of space. However, this is clearly not the attitude
taken by modern geometers, whose attitude is typified by H. S. M. Coxeter’s
view that,

. . . although a geometry may seem more interesting if we can com-
pare it with the real world, its validity as a logical structure is not
affected, but depends only on its internal consistency. [3, p. 10]

Similarly, Yuxin Zheng contends that,
The essential characteristic of modern mathematics is that its ob-
jects are not only those forms and relations abstracted directly from
experience, but also other forms and relations, (mathematical struc-
tures) which are logically possible and are defined on the basis of
the forms and relations (structures) we already have. Geometry used
to be concerned with the study of the forms and relations of empir-
ical space (and only within the limitations of Euclidean geometry),
but now all other similar forms and relations have come within its
purview. [22, p. 176]

Although, during the development of non-Euclidean geometry, alternative
geometries were thought of as potential rival theories about physical space,
in modern mathematics these alternative theories are considered as on a par,
as equally separable from experience and as valuable taken alone, indepen-
dent of a physical interpretation. Clearly there has been a departure from the
Quine-friendly outlook prevalent during the early years of non-Euclidean
geometry.

In fact, Kline, Zheng and Scanlan all see the history of non-Euclidean
geometry as prompting a change in the nature of mathematics. Kline tells us
that,

. . . the Greeks, Descartes, Newton, Euler, and many others believed
mathematics to be the accurate description of real phenomena and
that they regarded their work as the uncovering of the mathematical
design of the universe. Mathematicians did deal with abstractions,
but these were no more than the ideal forms of physical objects or
happenings. [8, p. 1028]

Prior to the mid-nineteenth century at least, the Quinean picture of math-
ematics as closely entwined with science does seem fairly accurate. But
developments since then have led to a change in the content of mathematics,
as well as in perceptions of its proper scope:

. . . gradually and unwittingly mathematicians began to introduce con-
cepts that had little or no direct physical meaning. Of these, nega-
tive and complex numbers were most troublesome. It was because
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these two types of numbers had no “reality” in nature that they were
still suspect at the beginning of the nineteenth century, even though
freely utilized by then. The geometrical representation of nega-
tive numbers as points or vectors in the complex plane, which, as
Gauss remarked of the latter, gave them intuitive meaning and so
made them admissible, may have delayed the realization that math-
ematics deals with man-made concepts. But then the introduction
of quaternions, non-Euclidean geometry, complex elements in ge-
ometry, n-dimensional geometry, bizarre functions, and transfinite
numbers forced the recognition of the artificiality of mathematics.
[8, p. 1029]

Whether or not Kline is right that the change led mathematicians to the “cor-
rect view of the relationship of mathematics to nature” [8, p. 1028], it is
clear that these new developments took mathematics beyond its previous
close connection with physical interpretations. Insofar as we are interested
in providing a philosophical account of mathematics as it exists today, the
Quinean view once again falls short.

6. Conclusion

In short, then, the Quinean picture of mathematics as confirmed by its phys-
ical applications suggests that mathematicians should be forced to choose
between alternative mathematical theories on the basis of their applicability
in natural science. While on occasions (in the case of Catastrophe Theory
for example) mathematicians have abandoned theories which have failed in
application, this is not enough to support the Quinean picture, since, in this
case, even the most vocal critics have not seen the failure of applications as
speaking against the truth of the theory. The death of Catastrophe Theory
can be understood purely in terms of a perceived lack of mathematical inter-
est. In general, the examples discussed all speak against the notion that there
is any need, beyond the practical, to choose between alternative consistent
(or consistent looking) theories. Mathematics can make room for all of them
— there is no need to battle for conceptual turf.

Is there any way to defend the Quinean ontological view against these
observations of apparently un-Quinean mathematical practices? Well, there
are certainly at least a couple of options. First, one could reject the method-
ological assumption that we started with, and argue that it is appropriate to
present a philosophical account of mathematics that is at odds with mathe-
matical practices. While this line of defence could well be attempted, anyone
tempted by this view would at the very least have to explain why the current,
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supposedly misguided, practice of treating consistent theory candidates as
ontologically on a par, is successful.

Alternatively, one could reject the claim that mathematicians should be
concerned about the literal truth of their theories. Thus, a Quinean might
argue that, although science confirms the literal truth of only some of our
consistent theory candidates, the property of ‘literal truth’ is not mathemat-
ically interesting – from the perspective of pure mathematics, theories are
valuable for reasons other than their genuine truth. In this case, we should
expect mathematicians to pay no attention to the question of which of their
theories are confirmed as literally true, since this is not a property that mat-
ters to them. Again, in this case, the Quinean still has work to do, first in
explaining how theories that are not literally true can still be mathemati-
cally important, and second in explaining how mathematical methods allow
mathematicians to stumble on ‘literally true’ theories even though they are
designed without this value in mind. Finally, the Quinean picture needs to
explain what is meant when mathematicians say that their claims are true, if
this is something different from the ‘literal truth’ that is confirmed by appli-
cations.

Either way, although there is room to build a defence of the distinction
between ‘merely consistent’ and ‘literally true’ theories from the Quinean
perspective (and the same could be said for the perspective of Gödelian Pla-
tonism), observations of mathematical practices suggest, as a default, that all
consistent theories are equally good from a mathematical perspective. Ex-
plaining this separation of the ‘good’ from the ‘true’ is thus vital to the sur-
vival of the Quinean programme — but once this distinction is understood,
one might be forgiven for wondering what is added by saying, of some math-
ematical theories, that these ones stand out as ‘literally true’ whereas their
equally good competitors are merely consistent shadows.

St John’s College, Cambridge
E-mail: mcl33@cam.ac.uk
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