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FOUR KINDS OF SUBMINIMAL NEGATION WITHIN THE
CONTEXT OF THE BASIC POSITIVE LOGIC B+

JOSE M. MENDEZ, FRANCISCO SALTO AND PEDRO MENDEZ R.

Abstract

Four subminimal negation completions of the basic positive rele-
vance logic are defined, isolating weak negative principles of con-
traposition, double negation and reductio by means of weak con-
structive falsity constants.

1. Introduction

The divergence between semantical and proof-theoretical definitions of (sen-
tential) negation can be exploited to obtain positive logics for various kinds
of negations, that is, formal systems lacking explicit negation but able to
codify patterns of deductive inference involving negation. Results concern-
ing strong negation in positive logics with a constructible falsity constant
abound in the literature (see [6] for a general review).

However, a natural point of departure for a general study of positive logics
for varieties of negation is in fact minimal negation as historically defined by
Johansson ([2]) by means of a weak constructive falsity constant. Minimal
negation is a “positive” negation in the sense that all its theorems are in-
stances of positive intuitionistic logic (I+). Generally speaking, a logic with
minimal negation is a logic including weak double negation, weak contrapo-
sition and weak reductio [i.e., A — —-—A, (A — B) — (=B — —A) and
(A — =A) — —A]. We call “subminimal” any negation strictly included in
minimal negation (see [1]).

Now, positive propositional logics significantly weaker than I+ can still de-
fine minimal negation. In [5], we have shown how to introduce minimal
negation in such a weak system as the basic positive logic B4, which is
the basic relevance logic and only includes as theorems those required for a
logic to be complete with respect to the ternary relational semantics (see, for
example, [4]). This paper improves that previous result in [5] inasmuch as
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four fine-grained varieties of negation are defined in the context of B+ at a
subminimal level.

Notice that an additional source of interest in defining negations in weak
positive logics is the axiomatical and semantical isolation of negative prin-
ciples within positive logics. In this paper, given B+, we define the logic
B+,F (B+ with a falsity constant F added to the sentential language), offer-
ing weak contraposition as a rule, to wit:
(i) If A — B, then -B — —A

Next, we define the logic Bdn (B+,F with double negation) by means of the
rule

(ll) IfA — —B, then B — —A
or, equivalently, the axiom

(iii)) A — —-—A
The logics Bdnrl and Bdnr2 are two extensions of Bdn with two versions of
the reductio rule, to wit:

(iv) If A — B and A — —B, then —A
for Bdnrl, and

(v) If A — B, then (A — —B) — —A
for Bdnr2.
It will be shown that (i), (ii) [or (iii)], (iv) and (v) are isolable given B+ with
their corresponding different logics B4-F, Bdn, Bdnr1, Bdnr2 containing dif-
ferent kinds of subminimal negation.

2. The logic BT

BT is axiomatized with

Al.A— A
A2. (ANB)— A (ANB) — B
A3. ((A— B) ) (BAQ))

A4. A—>(A\/B)( B—)(1(4\/B)
A5 (A—-C)N(B—C))— ((AVB)—>C)
(A/\(BVC)) ((AAB) (ANC))

The rules of derivation being
Modus ponens: - A, A — B =+ B
Adjunction: H A, B=FAAB
Suffixing: - A —- B=F(B—-C) - (4A— ()
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Prefixing: - B — C =+ (A — B) - (A — C)

The following formulas are B+ theorems useful in the proof of the com-
pleteness theorem:
Tl. (AANB) — (BAA)
T2. (AVB)A(CAD))— (ANC)V (BAD))
T3. (A—=C)Vv(B— D)) — (( ) — (C'V D))
T4. (A—C)AN(B— D)) — (AANB) — (C AD))
T5. (A= C)AN(B— D)) — (( ) — (C'Vv D))

3. Semantics for BT

A BT model is a quadruple <O,K,R,=> where K is a set, O a non-empty
subset of K and R a ternary relation on K subject to the following definitions
and postulates for all a,b,c,d € K with quantifiers ranging over K:

dl a < b =g Ix(x € O and Rxab)

d2 R?abed =g Ix(Rabx and Rxcd)

Pla<a

P2 a < b and Rbcd = Racd

Finally, I is a valuation relation from K to the sentences of BT satisfying the
following conditions for all wffs p,A,B and a,b,c € K:
(i) aFpanda<b=D>bFp
(ii) aFAVBiffaF AoraFB
(iii) aFAABiffaF AandaF B
(iv) aF A — Biffforallb,c € K, RabcandbF A= cF B

A is valid in BT [|:143r Al iff a F A for all a € O in all models. The general
strategy shown in [3] or [5] proves:

Theorem 3.1: (Semantic consistency of B+) If g A, then FpA.

4. Completeness for BT

Let us first record some basic definitions. A theory is a set of formulas of
BT closed under adjunction and provable entailment. A theory a is prime if
whenever A V B € a, then A € aor B € a. We shall call any theory a regular
if all theorems of B belong to a.
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Now we define the BT canonical model. Let KT be the set of all theories
and RT be defined on KT as follows: for all formulas A,B and a,b,c € KT,
RTabc justin case if A — B € aand A € b, then B € c. Further, let K€
be the set of all prime theories, O the set of all regular prime theories and
RC the restriction of RT to K€. Finally, let E€ be defined as follows: for
any wff A and a € K€, a EC A iff A € a. Then, the BT canonical model
is the quadruple <OC€,KC€:RC EC>. In what follows in this section we sketch
a proof of the completeness theorem. We list a series of lemmas proof of
which can be found either in [5] or (though not necessarily stated in the way
we have formulated them) in [3].

Lemma 4.1: Let A be a wff, a € K" and A ¢ a. Then, A ¢ x for some x €
K€ such that a C x.

Lemma 4.2: Let RTabe, ab € KT, ¢ € K€. Then, RTxbc for some x € K€
such that a C x.

Lemma 4.3: Let RTabe, ab € KT, ¢ € K€. Then, RTaxc for some X € K€
such that b C x.

Lemma 4.4: If¥p A, there is some x € OC such that A ¢ x.

Lemma 4.5: Letab € K. The setx = {B: JA(A — B € aand A € b)} is
a theory such that RTabx.

Lemma 4.6: a < b iffaCh.
Lemma 4.7 Postulates P1, P2 hold in the BT canonical model.

Lemma 4.8: The canonical E€ is a valuation relation satisfying conditions

(i)—(iv) of §3.
Lemma 4.9: The BT canonical model is in fact a BT model.
Now, from Lemmas 4.4 and 4.9 we have:

Theorem 4.1: (Completeness of BT) If Fg A, then g A.
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5. The logic BT,F

The logic BT,F is defined by adding to the sentential language of BT the
propositional falsity constant F together with the definition: —A =g A —
F. Note that, for example, the following are provable in B™,F:

T6. - (A — B) =F (-B — —A)

T7.+-B =+ (A —B) - -A

T8. =(AVB) — (-A A —B)

T9. (-AV —B) — —(A AB)

6. Semantics for BT ,F

A BT.F model is a quintuple <O,K,S,R,F> where <O,K,R,=> is a BT model
and S is a subset of K such that S N O # (). The clause:

(v) aEFiffa¢ S
is satisfied in all models.

Aisvalidin BT,F [FerA]iff a= A for all a € O in all models. We note that
Fis not valid: leta € SN O. Then, a # F. But a € O. So, ¥4 pF.

Theorem 6.1: (Semantic consistency of B™,F) If - pA, then Fp pA.
Proof. Theorem 4.1.

7. Completeness for BT ,F

We define the B*,F canonical model as the quintuple <O€ KC€,S€ RC EC>
where <O€,KC€ RC EC> is the BT canonical model and S€ is interpreted as
the set of all consistent theories. A theory a is consistent iff F ¢ a. Now we
need to prove:

Lemma 7.1: S€ N O€ is not empty.

Proof. Given that g gF [see §6], we have, by theorem 6.1, g fF, i.e.,
F ¢ BT,F. As Bt Fis a theory, Lemma 4.1 applies and there is some x € K¢
such thaéB*,F C x and F ¢ x. Obviously, x € O€ [since B¥,F C x]. AsF ¢
X, X € S*.

Lemma 7.2: Clause (v) holds in the canonical model.
Proof. Lemma 7.1 and definition of S€.
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Lemma 7.3: The B ,F canonical model is in fact a B*,F model.
Proof. Lemmas 4.7, 4.8, 4.9 and 7.2.

Finally, we prove

Theorem 7.1: (Completeness of BT,F) If Ep pA, then -4 pA.
Proof. Analogues of Lemmas 4.4 and 7.3.

8. Adding weak double negation to BT the logic Bdn

Bdn is the result of adding the double negation axiom:
A7T.A— (A—F) —F

To B™,F. We remark that, together with T6-T9, the following are exemplar
Bdn theorems:

T10. A — ——A

T11l. =—A — -A

TI2.FA— -B=FB — -A

T13. (A AN —B) — =(AV B)
Note: Bdn can be axiomatized with

AT .FA—- B —-F) =FB —(A—F)
instead of A7, as the reader can verify.

9. Semantics for Bdn

A Bdn model is a B™,F model but with the addition of the postulate:
P3. Rabc and ¢ € S = 3Jx[x € S and Rbax]
FpanA iff a F A for all a € O in all models. Hence,

Theorem 9.1: (Semantic consistency of Bdn) IfFganA, then FpgnA.
Proof. It must only be proved that A7 is valid. Use P3.

10. Adding reductio to Bdn: the logic Bdnrl

We add to Bdn the rule:

A8. FA —-Band+FA — —-B=F -A
Noting that, in addition to T6-T13, the following, for example, are provable
in Bdnrl

T14. =(A N —A)
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T15. =—(A V —A)
T16. FA = (B — —A) — —B

Note: Bdnrl can be alternatively axiomatized with T14 instead of A8. We
leave to the reader the proof of this fact.

11. Semantics for Bdnrl

Models for Bdnr1 are defined similarly as those for Bdn but with the addition
of the postulate:

P4. a € S = 3Ix(x € S and Raax)
Note: In [1] it is shown that P4 is equivalent to
P4'. Rabc and c € S = Ix(Rcbx and x € S)

Given intuitionistic propositional logic without contraction but with weak
double negation, weak contraposition and reductio. Here this equivalence
does not hold: P4 is weaker (see [3]).

Theorem 11.1: (Semantic consistency of Bdnrl) If Fganr1 A, then Fganr1 A.
Proof. Use P4 to show the validity of AS8.

12. Adding a stronger version of reductio to Bdn: the logic Bdnr2

We add to Bdn the rule

A9.FA —-B=FA — -B) — -A
Note that, in addition to T6-T16, the following, for example, are provable in
Bdnr2:

T17.FA —- -B=HFA — B) —» —-A

T18. (A — =A) — -A

T19. (A — —-B) — —=(A A B)

T20. (A — B) — -(A A =B)
Note: Bdnr2 can be axiomatized with T17, T18, T19 or T20 instead of AS,
among other possibilities.

13. Semantics for Bdnr2

Models for Bdnr2 are defined similarly as those for Bdn but with the addition
of the postulate

P5. Rabc and ¢ € S = JIxJdy(Rabx and Rxby and y € S)
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which can be used to prove:

Theorem 13.1: (Semantic consistency of Bdnr2) If F-panr2A, FBdnr2A.

14. Completeness for Bdn, Bdnr1 and Bdnr2

Given that Bdn, Bdnrl and Bdnr2 share the same definition of consistency
(and a different one to that of B+,F) we do a completeness proof for these
three logics. We define the Bdn (Bdnrl, Bdnr2) canonical model exactly
as the B+,F canonical model but with this difference: now any theory a is
consistent iff the negation of a theorem does not belong to a.

To begin with, clearly an analogue of Lemma 7.1 for Bdn (Bdnrl1, Bdnr2) is
immediate. Next, we prove:

Lemma 14.1: F € aiff a is inconsistent.

Proof. Suppose F € a. By A7, (F — F) — F € a. Thus, a is inconsistent.
Assume now a is inconsistent. Then, A — F € a for Bdn theorem A. By A7
and Modus Ponens, (A — F) — F is a theorem. So, F € a.

Lemma 14.2: Let a,b,c € KT with consistent ¢ and RYabc. Then, there is
some x € S€ such that ¢ C x and RTbax.

Proof. Suppose RTabc; a,b,c € KT and ¢ consistent. Define (Cfr. Lemma
4.5) the theory y = {B : JA(A — B € band A € a)} such that RTbay. We
first prove that y is consistent. Suppose it is not. Then, (cfr. Lemma 10.1)
F € y. By definitionof y A = Feb,Aca. ByA7, (A—F) —Fca
Given RTabc, F € ¢, which is impossible ¢ being consistent. So, we have a
consistent theory y such that RTbay, F ¢ y, whence Lemma 4.1 applies and
there is some x € K€ such that y C xand F ¢ x. So, x is consistent, i.e., X
e SC. Given that y C x and RTbay, we conclude RTbax, which was to be
proved.

Lemma 14.3: The canonical P3, i.e., RCabc and ¢ € S€ = Ix(x € S€ and
RCbax) holds in the Bdn canonical model.
Proof. Lemma 10.2.

Lemma 14.4: Let a € S€. Then, there is some x € S€ such that RCaax.
Proof. Suppose a € SC. Define (cfr. Lemma 4.5) the theory y = {B :
JA(A — B € aand A € a)} such that RTaay. We first prove that y is con-
sistent. If by reductio hypothesis it were not, then —=A € y (A a theorem). By
definition of y, B — —A € aand B € a. Now, by T16, —B € a. Thus, B A =B

f
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€ a and, by double negation, =——(B A —B) € a. But -—(B A —B) is the nega-
tion of a theorem (T14) and in consequence a is inconsistent contradicting
the reductio hypothesis.

Therefore, we have a consistent y in KT such that RTaay. Since Lemma
4.1 applies, we have some x € K€ such that y C x and F ¢ x. Given RTaay,
y C x and definitions, we deduce RTaax with x € S€, as required.

So, the canonical P4 holds in the canonical model.

Lemma 14.5: Let a,b,c € KT with ¢ consistent and RYabc. Then, there is
some x € KT and some y € SC such that RTabx and RTxby.

Proof. Grant the premisses of the theorem and define (cfr. Lemma 4.5)
the theory u = {B : JA(A — B € aand A € b)} satisfying RTabu. Define
also the theory w = {B : JA(A — B) € uand A € b)} such that RTubw.
Next, we prove w consistent. Suppose it is not, then F ¢ w (Lemma 10.1).
By definition of w, B — F € u, B € b. By definition of u, AA (B — F) € a,
A €b. By TI19, (A AB) — F € a. Given that RTabc and A A B € b (since A,
B € b), F € c. This contradicts the hypothesis. Therefore, u, w € KT, w is
consistent, RTabu and RTubw. As F ¢ w, Lemma 4.1 is applicable and there
is some y in SC such that w C y and RTuby. Now, by Lemma 4.2, there is
some x in K€ such that u C x and RTxby. As RTabu, RTabx as required.

Lemma 14.6: The canonical P5 holds in the Bdnr2 canonical model.
Proof. Lemma 14.5.

Lemma 14.7: Clause (v) holds in the Bdn canonical model.
Proof. Lemma 10.1.

Lemma 14.8: The Bdn (Bdnrl, Bdnr2) canonical model is indeed a Bdn
(Bdnrl, Bdnr2) model.

Proof. Lemmas 4.9, 14.3 and 14.7 (14.3, 14.4 and 14.7; and 14.3, 14.6 and
14.7).

Finally,
Theorem 14.1: (Completeness of Bdn, Bdnrl, Bdnr2) IfFpgnA, then FpgnA

(If EBdnr1 A, then Fpanr1 A, if FBdnr2A, then Fpanr2A).
Proof. An analogue of lemma 4.4 and 14.8.
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15. Final remark

Bdn, Bdnrl and Bdnr2 can be defined with a negation connective instead of
the falsity constant F. See [3] for a general strategy.
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