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IMPLICATIONAL CONVERSES

LLOYD HUMBERSTONE

Abstract
We look for, and in several cases find, informative characterizations
of the deductive relations between formulas ϕ and ψ necessary and
sufficient for them to be respectively equivalent to an implication
and its converse in various logics.

1. Characterizing Converses in Intuitionistic and Classical Logic

Suppose we have a consequence relation ` over some language supporting
a binary connective → we call implication. Then formulas of this language
ϕ and ψ are explicit implicational converses if there are formulas χ0, χ1,
for which ϕ is the formula χ0 → χ1 and ψ is the formula χ1 → χ0; we
say that ϕ and ψ are implicit implicational converses according to ` when
ϕ and ψ are (according to `) equivalent respectively to formulas which are
explicit implicational converses. We usually drop the words “implicit” and
“implicational”. Thus for ϕ and ψ to be converses according to ` is for there
to exist formulas χ0, χ1, in the language of ` for which ϕ a` χ0 → χ1

and ψ a` χ1 → χ0. (Here, “ϕ a` χ0 → χ1” means {ϕ} ` χ0 → χ1 and
{χ0 → χ1} ` ϕ. Similar notational liberties such as those illustrated here
will be taken without special mention below.)1

We will look for simple conditions which do not involve the existential
quantification over formulas (χ0, χ1 above) of this definition but are nec-
essary and sufficient for formulas ϕ and ψ to be implicational converses
according to various logics, here identified with consequence relations. In
particular, we treat in this section the cases of intuitionistic and classical

1 If, as is frequently done, we identify the proposition expressed by ϕ (relative to some
fixed `) as the set of all ϕ′ such that ϕ′ a` ϕ, then because the various converses (according
to `) are not in general equivalent (a`) to each other, there is no such thing as “the” converse
of the proposition expressed by χ0 → χ1. This point is well known in philosophical circles
— cf. note 3 on p. 268 of [Ur]. We might call the occasionally encountered assumption of
uniqueness here the Converse Proposition Fallacy.
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62 LLOYD HUMBERSTONE

logic, taken as the consequence relations (assumed familiar) `IL and `CL
usually associated with those logics. For the latter case, we know that since
`CL (χ0 → χ1)∨ (χ1 → χ0), the disjunction of any implicational converses
will be classically provable (a consequence of the empty set, that is). As a
corollary to our treatment of the former case, we shall see that this condi-
tion is not only necessary but also sufficient also for a pair of formulas to
be implicational converses. Many further such characterizations of special
relations between formulas may be found in [Hu4], and some also in [Hu2].
The notion of a “special relation” will be defined in Section 2 below, where
we also give (following Proposition 2.2) a general definition of what we have
in mind under the heading of “characterizing consequences”, after we have
familiarized ourselves with some examples.

Proposition 1.1 : Formulas ϕ and ψ are implicational converses according
to `IL if and only if ϕ→ ψ `IL ψ and ψ → ϕ `IL ϕ.

Proof. ‘If’: Here we write `IL as `. Suppose ϕ → ψ ` ψ and ψ → ϕ ` ϕ.
Then by well known properties of intuitionistic logic we have ϕ → ψ a` ψ
and ψ → ϕ a` ϕ, so ϕ and ψ are implicational converses, taking χ0, χ1,
as ϕ, ψ. ‘Only if’: Suppose that there are χ0, χ1, with ϕ a` χ0 → χ1 and
ψ a` χ1 → χ0. Using the fact that (regardless of the choice of χ0, χ1) we
have (i) (χ0 → χ1) → (χ1 → χ0) a` χ1 → χ0 and (ii) (χ1 → χ0) →
(χ0 → χ1) a` χ0 → χ1 we get ϕ→ ψ `IL ψ and ψ → ϕ `IL ϕ.

In the terminology of [Hu2], the condition given here for ϕ and ψ to be
implicational converses in intuitionistic logic would be expressed by saying
that each of these formulas ‘anticipates’ the other (according to `IL).

Since the properties of intuitionistic logic alluded to or stated in the above
proof are all properties of classical logic, we get

Corollary 1.2 : Formulas ϕ and ψ are implicational converses according to
`CL if and only if `CL ϕ ∨ ψ.

Proof. Directly copying the proof of Proposition 1.1, we get as a necessary
and sufficient condition that ϕ → ψ `CL ψ and ψ → ϕ `CL ϕ, but the two
parts here are equivalent to each other and to the condition mentioned in the
Corollary (that `CL ϕ ∨ ψ).

Letting `LC be the consequence relation of the intermediate logic LC (see
[Du]) we have the same characterization here also, which is not surprising
in view of the fact that not only for `=`CL but also for `=`LC, we have
` (χ0 → χ1) ∨ (χ1 → χ0).



“06humberstone”
2004/3/16
page 63

i

i

i

i

i

i

i

i

IMPLICATIONAL CONVERSES 63

Corollary 1.3 : Formulas ϕ and ψ are implicational converses according to
`LC if and only if `LC ϕ ∨ ψ.

Proof. The argument given for Corollary 1.2 works equally well here, in
view of the LC-equivalence of ϕ ∨ ψ with ((ϕ→ ψ) → ψ) ∧ ((ψ → ϕ) →
ϕ).

Corollary 1.4 : For any `⊇`IL, for any formulas ϕ, ψ, we have: ψ is an
implicational converse of an implicational converse of ϕ, according to `.

Proof. We use the notation > here for a truth constant, which, if not prim-
itive, may be taken as abbreviating p → p (p some sentence letter). Since
> → ϕ `IL ϕ and ϕ → > `IL >, > is an implicational converse of ϕ.
Similarly in the case of ψ.

As the proof shows, writing C(ϕ,ψ) for “ϕ is an implicational converse of
ψ”, we have not just ∀ϕ∀ψ∃δ(C(ϕ, δ) ∧ C(δ, ψ)) or even just the ∀∃∀ ver-
sion of this, but the still stronger ∃∀∀ form (taking > as the promised δ once
and for all).

Some aspects of the discussion to this point echo observations in [MM].
Specifically, the `-direction of the equivalence

(χ0 → χ1) → (χ1 → χ0) a` χ1 → χ0

appearing as (i) in the proof of the ‘only if’ half of Proposition 1.1 attracts
Meyer and Martin’s critical attention, as an example of an intuitively im-
plausible principle in an implicational logic, and they note its presence in
intuitionistic and classical logic. We need not go into their objections to the
principle, which are of some interest but are not pertinent to our own rather
different theme — that of finding necessary and sufficient conditions stated
in terms of the logical relations that ϕ and ψ must exhibit for them to be
implicational converses. However, two points made in [MM] bear directly
on the further development of this theme. Specifically, they note that the
implicational formula encoding the `-direction of the above equivalence:
L ((q → p) → (p→ q)) → (p→ q)

is respectively provable and unprovable in the logics RM and R.2 (L was
used in Łukasiewicz’s axiomatization of his infinite-valued logic and ap-
pears under the name (L) in such places as [BF1], [BF2], q.v. for further
details — details which permit one to think of “L” as standing for “linear”

2 See §8.15 and §29.3 (by Meyer) of [AB] for the details of RM.
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64 LLOYD HUMBERSTONE

— i.e. total — ordering, rather than as a corrupted version of “Ł”.) Let
us write “ϕ1, . . . , ϕn `R ψ” to mean that the implication ϕ1 → (ϕ2 →
. . . → (ϕn → ψ) . . .) is provable in R, with an analogous understand-
ing in the case of RM. We do so for visual convenience, notwithstanding
the fact that, so defined, `R and `RM are not consequence relations. In
the case of `R, this is because the correctness of a claim to the effect that,
ϕ1, . . . , ϕn `R ψ, does not guarantee that of the claim that χ1, . . . , χm `R ψ
whenever {ϕ1, . . . , ϕn} = {χ1, . . . , χm}: so here we are using the “`” no-
tation for something which is not even a relation between sets of formulas
and formulas. (As is well known, we need to think of the left-hand side here
as representing not a set but a multiset of formulas.) This point does not
arise in the case of `RM, which is still not a consequence relation, however,
since, ϕ1, . . . , ϕn `RM ψ does not imply ϕ1, . . . , ϕn, ϕn+1 `RM ψ. Now
the RM-provability of L may seem to take us not very far in the direction
of replicating Proposition 1.1 for this logic, since we also need its converse,
which is a special case (proper substitution instance) of the RM-unprovable
K p→ (q → p)

As is remarked several times in [AB], as well as in [MM], however, this
special case is already provable even in R:
Special K (p→ q) → ((q → p) → (p→ q))

so in fact the same reasoning as given in the proof of Proposition 1.1 estab-
lishes

Proposition 1.5 : Formulas ϕ and ψ are implicational converses according
to RM if and only if ϕ→ ψ `RM ψ and ψ → ϕ `RM ϕ.

We recall that the implicational fragments of intuitionistic and relevant logic
are, in C.A. Meredith’s terminology, BCKW logic and BCIW logic, and that
logics lacking either the ‘thinning’ principle K (as above) or the contraction
schema W (below) are known as substructural logics.
W (p→ (p→ q)) → (p→ q)

Although we have characterized converses for one logic — RM — which
(or whose implicational fragment) is substructural in this sense, we devote
a separate section to a consideration of some other such logics. Since the
Meredith labels indicate axiom sets for there logics when the rules of Uni-
form Substitution and Modus Ponens are employed as rules — and all logics
to be considered here are assumed to be closed under these rules, as well
as to contain the formula I below — to keep the discussion relatively self-
contained we list the remaining candidate axioms here also:
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IMPLICATIONAL CONVERSES 65

B (q → r) → ((p→ q) → (p→ r))
C (p→ (q → r)) → (q → (p→ r))
I p→ p

2. Characterizing Converses in Some Substructural Logics

Returning to the case of R, in which we did not have L provable, and so
could not duplicate the proof of Proposition 1.1 for that case, let us begin by
backing up and looking at a more general version of the strategy of proof. Let
α be any formula constructed from p→ q and q → p with the aid of →, and
let α∗ be the result of interchanging p→ q and q → p in α (equivalently: the
result of simultaneously substituting p for q and q for p in α). Then if a logic
` provides any equivalence of the form α → α∗ a` p → q we can pursue
the style of proof employed for Proposition 1.1 to obtain a characterization
of converses according to `. We illustrate this with a representative example.
(In the case of Proposition 1.1 α and α∗ were respectively just p → q and
q → p.) Suppose that for a given ` we have α as the following (= the formula
Special K above):

(p→ q) → ((q → p) → (p→ q)). (1)

Then the hypothesis concerning α→ α∗ takes the following form, in which
to save space we have omitted all but the main “→” in favour of simple
concatenation:

((pq)((qp)(pq))) → ((qp)((pq)(qp))) a` p→ q (2)

We can then say:
Any formulas ϕ, ψ, are converses according to ` if and only if (again omit-
ting subordinate →’s)

(ϕ(ψϕ)) → (ψ(ϕψ)) a` ϕ and (ψ(ϕψ)) → (ϕ(ψϕ)) a` ψ (3)

The “if” part of this claim is clear, since (3) exhibits ϕ and ψ as equivalent to
formulas (on the left hand sides) which are explicit converses. For the “only
if” part, suppose that ϕ and ψ are converses according to `, i.e., that there
exist χ0, χ1, with ϕ a` χ0 → χ1 and ψ a` χ1 → χ0. Then substituting
χ0, χ1, for p, q, respectively, and then for q, p, respectively, in (2), we get
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66 LLOYD HUMBERSTONE

(4) and then (5):

((χ0χ1)((χ1χ0)(χ0χ1))) → ((χ1χ0)((χ0χ1)(χ1χ0))) a` χ0 → χ1 (4)
((χ1χ0)((χ0χ1)(χ1χ0))) → ((χ0χ1)((χ1χ0)(χ0χ1))) a` χ1 → χ0 (5)

which is to say, given the equivalences ϕ a` χ0 → χ1 and ψ a` χ1 → χ0,
that we have (3), as was to be shown.

The general situation illustrated by this example and by Proposition 1.1 is
best described by isolating a formula of which α and α∗ are both substitution
instances. We shall call such a formula β. That is, β is any implicational
formula constructed from two propositional variables, and α is the result
of substituting p → q and q → p for those two variables, while α∗ is the
result of substituting for them (in the same order) q → p and p → q. Thus
β in the our representative example just worked through may be taken as
r → (s → r), for example or indeed as p → (q → p)). For definiteness, let
us stipulate that the variables in β are to be r and s, and we write β(ϕ,ψ)
for the result of substituting ϕ for r and ψ for s in β. Then the general
method we have been describing can be summarised as follows, and the
proof is simply a matter of following the steps we have just gone through
using schematic rather than specific formulas.

Proposition 2.1 : Given ` and β a two-variable formula as above, with α =
β(p → q, q → p) and α∗ = β(q → p, p → q), suppose that α → α∗ a`
p → q. Then a necessary and sufficient condition for arbitrary formulas ϕ
and ψ to be converses according to ` is that β(ϕ,ψ) a` ϕ and β(ψ,ϕ) a`
ψ.

We are now in a position to ask about the existence of an implication of
the form α → α∗ of the above form, provably equivalent in R to p → q.
By Proposition 2.1, such an implication would yield a characterization of
converses for R. Meyer shows in [M2], however, that no such implication
can be found. The proof uses the four-element matrix for the implicational
fragment of R appearing on the left of the figure on p. 450 of [M1]; here we
simply state the result:

Proposition 2.2 : (Meyer) For no formula α constructed from p → q and
q → p using →, with α∗ constructed similarly from q → p and p → q, do
we have α→ α∗ and p→ q provably equivalent in R.

Since the implicational fragment of R is BCIW logic, we note that a fortiori
the still weaker BCI logic certainly affords no α constructed from p → q,



“06humberstone”
2004/3/16
page 67

i

i

i

i

i

i

i

i

IMPLICATIONAL CONVERSES 67

q → p, with α → α∗ provably equivalent to p → q. In fact, using a differ-
ent consideration, we can see that no such α → α∗ provably implies or is
provably implied by p → q in BCI logic, since the provable formulas of the
latter logic all become two-valued tautologies when the → is interpreted as
↔, whereas this is not so for either of
(p→ q) → (α→ α∗) or (α→ α∗) → (p→ q)

since in view of the way α and α∗ are constructed, α → α∗ has an even
number of occurrences of p in it and an even number of occurrences of q,
giving the above formulas altogether an odd number of occurrences of these
variables and so violating — twice over — a well-known condition (due
to Leśniewski) of provability for purely equivalential formulas of classical
logic. (See [AB], p. 84.) This last fact shows that Proposition 2.2 by it-
self does not tell us that there is no characterization of converses available
for R, or by the same reasoning there would be no such characterization for
classical equivalential logic. The talk of there being no characterization of
converses available for a given logic S is meant simply as denying the ex-
istence of a set of formulas Σ(p, q) in at least the two variables indicated,
for which it holds that for all formulas ϕ, ψ : ϕ and ψ are converses ac-
cording to S iff Σ(ϕ,ψ) ⊆ S, where Σ(ϕ,ψ) is the set of formulas resulting
from substituting ϕ and ψ respectively for p and q in the formulas in Σ(p, q).
(Thus in Proposition 1.1, where S is intuitionistic logic, converses are char-
acterized by supplying Σ(p, q) as {(p → q) → q, (q → p) → p}. We are
here retrospectively interpreting the “`” notation with formulas on the left as
purely abbreviatory; if one does not wish to do this, Σ(p, q) should be taken
as a collection of sequents rather than of formulas — and likewise for the
logics themselves.) In the equivalential fragment of classical logic (though
we continue to write → for the sole binary connective) such a characteriza-
tion is available, in effect supplying Σ(p, q) as {p → q, q → p}, or indeed
more simply as just {p → q}, as we see in Proposition 2.3 below. For this
logic the abbreviative use of the “`” notation is potentially confusing, since
it clashes with the use of this notation for the consequence relation of classi-
cal equivalential logic, so we avoid it here. The clash arises because on the
abbreviative use of “`”, the claim that ϕ ` ψ (abbreviating “` ϕ → ψ”,
understood as “` ϕ ↔ ψ”) implies that ψ ` ϕ, whereas on the classical
equivalential consequence relation understanding, ϕ ` ψ implies only that
either ψ ` ϕ or else ` ψ. (More generally — as shown in [Hu1] — for this
understanding, whenever ϕ1, . . . , ϕn ` ψ, we have either ϕ1, . . . , ϕn−1 ` ψ
or else ϕ1, . . . , ϕn−1, ψ ` ϕn.3 )

3 Added in press: since this was written, the author has discovered that this result ap-
peared already in §11 of [Su].
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68 LLOYD HUMBERSTONE

Proposition 2.3 : Where ` is the consequence relation of classical equiv-
alential logic, formulas ϕ and ψ are converses according to ` if and only if
` ϕ→ ψ.

Proof. If ϕ and ψ are converses, there are χ0, χ1, with ` ϕ → (χ0 → χ1)
as well as conversely, and ` ψ → (χ1 → χ0), as well as conversely. Since
in the present case, for any formulas playing the roles of χ0, χ1, we have
` (χ0 → χ1) → (χ1 → χ0), we get ` ϕ → ψ. Conversely, if ` ϕ → ψ,
then we can write ϕ in the equivalent form ψ → (ψ → ψ) (recalling that
“→” here would usually appear as “↔”), whose converse is equivalent to ψ.

Thus the inapplicability of Proposition 2.1 in the case of classical equivalen-
tial logic does not rule out the existence of a characterization of converses
for that case. The following problem remains open, then, in spite of Propo-
sition 2.2:

PROBLEM Is there a set of formulas Σ(p, q) such that for arbitrary formu-
las ϕ,ψ : Σ(ϕ,ψ) ⊆ R if and only if ϕ and ψ are converses according to R?

The implicit converse relation is certainly a special relation in R in the
sense of [Hu4], meaning that Σ(p, q) can be found for which (i) whenever
ϕ and ψ are converses according to R, Σ(ϕ,ψ) ⊆ R and (ii) it is not the
case that for arbitrary ϕ, ψ, we have Σ(ϕ,ψ) ⊆ R. We know this al-
ready from Section 1 and the formula SpecialK there mentioned. This gives
Σ(p, q) = {p → (q → p)} satisfying (i) and (ii). What would be needed
for an affirmative solution to the above Problem would be a strengthening
of (i) so that we had all and only pairs of converses, rather than simply all
pairs of converses, yield theorems when substituted for p and q in Σ(p, q).4

This is clearly not satisfied for the choice of Σ just mentioned, in view of
Proposition 1.1 and the fact that BCKW logic is stronger than BCIW logic
— the respective implicational fragments of intuitionistic logic and R.

We shall discuss that most famous of all substructural logics, BCK logic,
in the following section, along with Abelian BCI logic, which is intermediate
between BCI logic and the extension of the latter to the equivalential frag-
ment of classical logic touched on in Proposition 2.3. We close the present

4 In the version of this paper accepted for publication, there appears at this point the fol-
lowing parenthetical remark: “This is clearly not satisfied for the choice of Σ just mentioned,
in view of Proposition 1.1 and the fact that BCKW logic is stronger than BCIW logic — the
respective implicational fragments of intuitionistic logic and R.” However, while the claim
that the given Σ cannot work (i.e. characterize converses) for the BCKW case is straightfor-
ward enough, the author cannot now reconstruct any justification for the suggestion that this
implies it cannot work for the weaker BCIW case.
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IMPLICATIONAL CONVERSES 69

section with the observation that although the pure equivalential fragment
of intuitionistic logic is very different from that of classical logic (see the
discussion and references provided by [KW]), Proposition 2.3 and its proof
transfer to this weaker setting — the only logic considered here which is not
an extension of BCI logic5 :

Proposition 2.4 : Where ` is the consequence relation of intuitionistic equiv-
alential logic, formulas ϕ and ψ are converses according to ` if and only if
` ϕ→ ψ.

Proof. The proof of Proposition 2.3 applies verbatim here.

3. Converses in Abelian Logic and in BCK Logic

The “Abelian Logic” of [MS] adds to the BCI axioms the following
A ((p→ q) → q) → p

We shall call the resulting pure implicational logic Abelian BCI logic. Meyer
and Slaney consider also the extension of this logic by suitable principles
governing conjunction, negation, disjunction and other connectives. The
pure implicational fragment is presented in algebraic form in [Da] — i.e.,
as a variety of BCI-algebras term equivalent to the variety of Abelian groups
(see below).6 The implicational fragment behaves very differently, as [MS]
notes, from the full logic, especially as regards converses: whenever a for-
mula is provable in the fragment, so is its converse — though this is not so
for implicational formulas in the full logic. (Note that we do not say pure
implicational formulas.) We will not exploit any such features in our discus-
sion, so nothing hangs on the fact that we are discussing the implicational
fragment. However, this fact does immediately yield the “`” direction of the

5 The formula C, for example, rewritten here with “→” replaced by “↔”, as (p ↔

(q ↔ r)) ↔ (q ↔ (p ↔ r)), is not intuitionistically provable, as one sees most easily
by substituting ⊥ for p and r, giving a left-hand side equivalent to ¬¬q and right-hand side
equivalent to q.

6 This logic was first studied by Meredith in the 1950s; see [MP], p. 221. That discus-
sion is followed up in [Kal1], [Kal2] — see the sections on the left-subtraction connective L.
[Kab3] discusses a consequence operation he callsCBCII (the second “I” being intended to re-
call Roman Suszko’s identity connective) whose set of ‘tautologies’ (i.e. CBCII(∅)) coincides
with the set of Abelian BCI-theorems, and rediscovers the connection with Abelian groups.
In 2000 the present author learnt (from Su Rogerson and Bob Meyer) that Branden Fitelson
had shown the axiomatization of this logic with B, C, I , and A (using Modus Ponens) was
not independent, C and I being derivable from B and A.
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70 LLOYD HUMBERSTONE

following lemma from the “a” direction, which we have preferred to argue
from scratch:

Lemma 3.1 : With ` indicating provability in Abelian BCI logic, we have

(p→ q) → (q → q) a` q → p

Proof. The “a” direction holds even for `=`BCI. For the “`” direction we
reason as follows, using some self-explanatory annotations (cf. [AB]):
(i) (p→ q) → q ` p by A
(ii) q → ((p→ q) → q) ` q → p from (i), prefixing
(iii) (p→ q) → (q → q) ` q → p permuting antecedents on the left

This is quite promising for the project of characterizing converses in Abelian
BCI logic, since we will be able to think of converses ϕ, ψ, respectively as
χ0 → χ1 and χ1 → χ0, for which by this Lemma we have (χ0 → χ1) →
(χ1 → χ1) a` χ1 → χ0. The trouble is that we want to obtain such
an equivalence just using χ0 → χ1 and its (explicit) converse, so that we
can write the equivalence in terms of ϕ and ψ, whereas here the χ1 → χ1

is neither of these. However, as Meyer and Slaney remark ([MS], p. 256),
in contrast with the case of BCIW (and a fortiori BCI) logic, in Abelian
BCI logic any two formulas of the form χ → χ are equivalent. (Recall
that for logics not extending BCK logic, i.e. — approximately7 — relevant
logics, the provability of two formulas does not suffice for their provable
equivalence — though the later does suffice for their interreplaceability salva
provabilitate in all contexts. In fact in Abelian BCI logic we have not only
all “self-implications” thus equivalent, but all provable formulas.8 Though
we do not need this for our discussion, it is worth noting that it means that
the mismatch between BCI logic and the class of BCI-algebras mentioned in
note 14 below disappears when we come to consider Abelian BCI logic and
the class of Abelian BCI-algebras, as defined in note 10.). In case this point

7 This is only approximate if one’s notion of relevance is given by Belnap’s criterion,
viz.: that no implicational should be provable (at least in the absence of sentential constants)
unless the antecedent and consequent share a variable — for, as is noted in [MS], Lemma 3.2
below shows this condition to be violated in the case of Abelian BCI logic, even though this
is not an extension of BCK logic.

8 Clearly it suffices to show that whenever ϕ and ψ are provable (in Abelian BCI logic)
so is ϕ → ψ. But the provability of ϕ yields that of (ϕ → ψ) → ψ (whether or not ψ is
provable), and so — this time appealing to the fact that for the current logic the converse of
any provable implication is also provable — ψ → (ϕ → ψ) is provable, whence by Modus
Ponens given the provability of ψ, we have ϕ→ ψ as promised.
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of Meyer and Slaney may seem to depend on a detour through the part of
Abelian logic involving the boolean connectives — or even the Ackermann-
style truth constant t9 — we give here a simple syntactic proof.

Lemma 3.2 : With ` indicating provability in Abelian BCI logic, we have
p→ p a` q → q.

Proof. Clearly it suffices to do the ` direction.
(i) p→ p ` q → ((q → p) → p) Already in BCI logic
(ii) (q → p) → p ` q A
(iii) q → ((q → p) → p) ` q → q (ii), prefixing
(iv) p→ p ` q → q (i), (iii), transitivity

Thus the “q → q” in Lemma 3.1 can be replaced by any other χ → χ
formula (and we could now safely introduce t to abbreviate any such formula
if we wanted); for our characterization we have chosen ϕ→ ϕ:

Proposition 3.3 : Formulas ϕ and ψ are implicational converses according
to Abelian BCI logic, here indicated by `, if and only if ϕ→ (ϕ→ ϕ) a` ψ.

Proof. “Only if”: Suppose ϕ and ψ are converses according to `. Then by
Lemma 3.1, taking ϕ and ψ are respectively equivalent to χ0 → χ1 and its
converse, we have

ϕ→ (χ1 → χ1) a` ψ

and so by the equivalence of different “self-implications” provided by Lemma
3.2:

ϕ→ (ϕ→ ϕ) a` ψ.

“If”: Suppose that ϕ → (ϕ → ϕ) a` ψ. Then to show that ϕ and ψ are
converses, it suffices to show that (ϕ → ϕ) → ϕ a` ϕ. But we have this
equivalence for any ϕ, even in BCI logic.

As one may glean from [MS], or more directly (though the notation has
to be dualized) from [Da], the element a → (a → a) (or a → 1) in an
Abelian group is the group-theoretic inverse of the element a, where the
group multiplication is obtained from →, the binary (fundamental) operation

9 Recall that the simple-minded > of intuitionistic and classical logic gives way in a
substructural context to a distinction between (and here we use the notation of [AB]) t, a left
identity for →, and T (a two-sided identity element for ∧ — or, to put it in terms of →: a
formula provably implied by every formula), sometimes called the Ackermann and Church
truth-constants, respectively.
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in an Abelian BCI-algebra,10 by setting

a · b = (a→ 1) → b.

Thus the appearance in Proposition 3.3 of “ϕ → (ϕ → ϕ)” (which, as al-
ready remarked, could be written as “ϕ→ t”) can be thought of as denoting
the ‘inverse’ of the formula ϕ, and Proposition 3.3 itself can be loosely sum-
marised as saying that in this logic, converses are inverses. (Going in the
other direction, any Abelian group gives rise to an Abelian BCI-algebra by
putting a → b = a−1 · b, and these two procedures applied in the appropri-
ate order to an Abelian BCI-algebra or an Abelian group lead us back to the
original structure.)

Abelian BCI logic presents in an interesting form a phenomenon we shall
call recoverability of converses. We say that a logic ` has recoverable con-
verses when the language of ` provides a formula γ(p) in one propositional
variable (as indicated) with γ(ϕ → ψ) a` ψ → ϕ. Here γ(ϕ → ψ) is
the result of substituting ϕ → ψ for p uniformly in γ(p). Thus γ(·) can be
thought of as the definiens for a defined 1-ary connective of the language
of ` which connective, when applied to an implicational formula, recovers
for us the converse of that formula (to within equivalence). Abelian BCI
logic provides recoverable converses in this sense because we may choose
γ(p) as p → (p → p) (or indeed, if the constant t is present, as p → t).
Converses are also recoverable, though in a less interesting way, in classical
and intuitionistic equivalential logics (notated, as above, with →), since here
we may simply select for γ(p) the formula p itself. We return to this con-
trast between less and more interesting manifestations of the recoverability
of converses below. First, we note another respect in which Abelian BCI
logic distinguishes itself, namely as the weakest extension of BCI logic to
have recoverable converses. For the proof, we need to allude to the following
formula, named after the way the variables p and q “pivot” around the fixed
r:
(Pivot) ((p→ r) → q) → ((q → r) → p)

and the following rule:

10 Assuming known the notion of a BCI-algebra, the Abelian such algebras are those sat-
isfying the (“Abelian”) identity (x→ y) → y ≈ x; they constitute a variety of BCI-algebras
because we can “de-quasify” the quasi-identity x → y ≈ y → x ≈ 1 ⇒ x ≈ y by the
following reasoning: x → y ≈ y → x implies (x → y) → y ≈ (y → x) → y, whose
l.h.s. reduces to x (by the Abelian identity) and whose r.h.s. reduces, since y → x ≈ 1, via
1 → y to y. This makes the Abelian identity what would be called by analogy of the talk of
BCK-varietizing identities in [Hu3], a BCI-varietizing identity. (It is well known that neither
the class of BCI-algebras nor the class of BCK-algebras is itself a variety.)
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(Converse Recovery Rule) From ϕ1 → ψ1 a` ϕ2 → ψ2 to ψ1 → ϕ1 a`
ψ2 → ϕ2.
Although we isolate this last rule here for application in the proof of Propo-
sition 3.4 below, we pause to notice that for ` closed under the rule, the
‘Converse Proposition Fallacy’ of note 1 above is not a fallacy after all.

Proposition 3.4 : Abelian BCI logic is the smallest logic with recoverable
converses extending BCI logic.

Proof. We note without proof that instead of using A as above to axiom-
atize Abelian BCI logic as an addendum to the axioms B, C, I , we could
equally well have used Pivot. Next, observe that any logic with recoverable
converses is closed under the Converse Recovery Rule — since we may ap-
ply γ(·) to both sides of the “premiss”. By C, for ` as BCI logic, we have
p→ (q → r) a` q → (p→ r), from which that rule delivers Pivot.

The Converse Recovery Rule is suggestive of the following quasi-identity
which may or may not be satisfied by a binary operation, here symbolized
by juxtaposition (and under which some set is presumed to be closed, over
whose elements the variables range):
(Proto-commutativity) xy ≈ uz ⇒ yx ≈ zu.
We call an operation satisfying this condition proto-commutative. The con-
dition has many interesting properties. For example, it suffices to deliver
left-cancellativity (for the operation concerned) from right-cancellativity, or
vice versa.11 Any proto-commutative semigroup (i.e., whose fundamental
binary operation is proto-commutative) with a left- or right-identity element
is commutative.12 On the other hand, it is clear that commutativity implies
proto-commutativity since the left-hand sides of the antecedent and conse-
quent of the latter condition are equal by commutativity, as are the right-hand
sides. The sense in which the equivalential logics mentioned provide recov-
erable converses in a less interesting manner than Abelian BCI logic does
is simply that the corresponding classes of algebras in the former case are

11 Suppose we have right cancellation, and ab = ac. For left cancellation, we want b = c.
We reason: given ab = ac, we have ba = ca by proto-commutativity, so b = c as desired:
left cancellation. (Mutatis mutandis for the converse direction.)

12 Proof: Suppose A = (A, ·, eL) is a semigroup with a left-identity element eL (i.e.
eLa = a, all a ∈ A), and A satisfies Proto-commutativity. Since for all a, b, c ∈ A, we
have (ab)c = a(bc), proto-commutativity gives c(ab) = (bc)a. Choose c = eL. Then
ab = eL(ab) = (beL)a = b(eLa) = ba. (A similar argument works in the presence of a
right-identity.)
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commutative and therefore automatically proto-commutative, while in the
latter case we have proto-commutativity without commutativity. Part (i) of
the following gives a fund of proto-commutative though not in general com-
mutative operations, subsuming the Abelian logic case via the connection
with groups noted above, though in fact we do not exploit much of the hy-
pothesis that we are dealing with a group — Part (i) works for any involuted
groupoid13 , and (ii) for any groupoid with a two-sided identity element:

Proposition 3.5 : Let A = (A, ·,−1 , 1) be a group. Then (i) the operations /
and \ defined by: a/b = a · b−1 and a\b = a−1 · b, are proto-commutative,
and (ii) the operation · is proto-commutative iff it is commutative (i.e., A is
abelian).

Proof. (i) Suppose a/b = c/d, i.e. (suppressing the “·”) ab−1 = cd−1. Then
(ab−1)−1 = (cd−1)−1, and thus ba−1 = dc−1, i.e. b/a = d/c. Similarly in
the case of \.
(ii) “If”: as already noted, commutative operations are always proto-commu-
tative. “Only if”: We are supposing that A satisfies the quasi-identity xy ≈
uz ⇒ yx ≈ zu, so when 1 is taken as the value of z, we get xy ≈ u ⇒
yx ≈ u, which is equivalent to the commutative law since we can substitute
xy for u.

Before returning to our sentential logic theme, we pause to note that the
relation between commutativity and proto-commutativity is a special case of
something more general. Given any identity (now in the sense of equation)
between terms t and u, we can consider the corresponding “proto” version,
namely the pair of quasi-identities

t ≈ t ′ ⇒ u ≈ u′,u ≈ u ′ ⇒ t ≈ t ′

where terms u and u ′ are obtained from t and u by relettering the vari-
ables in these terms to a disjoint set of variables. More precisely, if the
variables occurring in t are x1, . . . , xm and those in u are y1, . . . , yn, (where
we allow {x1, . . . , xm} ∩ {y1, . . . , yn} 6= ∅), so that the original identity
is t (x1, . . . , xm) ≈ u (y1, . . . , yn), then t ′ and u ′ are t (x′1, . . . , x

′

n
) and

u (y′1, . . . , y
′

n
), where this time we require that the variables x′1, . . . , x

′

m
are

disjoint from x1, . . . , xm and likewise in the case of the yi and y′
i
. Thus, for

13 By this is meant the class of algebras one obtains by removing the condition of associa-
tivity from the definition of an involuted semigroup in (e.g.) [Sch].
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example, proto-associativity is given by

x(yz) ≈ x′(y′z′) ⇒ (xy)z ≈ (x′y′)z′

(xy)z ≈ (x′y′)z′ ⇒ x(yz) ≈ x′(y′z′).

The “proto” quasi-identities all follow from the corresponding identities as
in the commutativity case, and for the same reason, but the author has lit-
tle general information on the subject, which would appear to merit further
investigation. The case of commutativity allowed the further simplification
that we only gave the single quasi-identity (re-written here with the “′” no-
tation) x1x2 ≈ x′1x

′

2 ⇒ x2x1 ≈ x′2x
′

1, since the converse quasi-identity
follows by re-lettering. A similar simplification is possible for a different
reason in the case of proto-idempotence, where the identity xx ≈ x (and we
omit any numerical subscripting here) gives rise to the two quasi-identities
xx ≈ x′x′ ⇒ x ≈ x′ and x ≈ x′ ⇒ xx ≈ x′x′, the second of which is
redundant since it is a free gift of equational logic.

We turn now to the case of BCK logic. It will be helpful to bear in mind
the following relation between BCK logic and BCK-algebras, which we rep-
resent here in the “→” notation (as in [BF1], [BF2]), rather than the dual
notation used in (e.g.) [Pa]: a formula α is provable in BCK logic just in
case the identity t α ≈ 1 holds in all BCK-algebras, where t α is the term
corresponding to the formula α, i.e., resulting from it by replacing propo-
sitional variables by individual variables.14 As Corollary 2 in [Pa], with
notation adjusted, we find:

Proposition 3.6 : (Pałasińska) Let s, t, be terms built up from variables x, y,
and the constant 1, by means of the operation symbol →, and s′, t′, be the
corresponding terms resulting from the substitution of x → y, y → x for x,
y in s and t respectively. Then the identity s ≈ t holds in all BCK algebras
if and only if the identity s′ ≈ t′ holds in all BCK-algebras.

14 As was pointed out in [Bu] and [Kab1], there is no such correspondence in the case
of BCI-algebras and BCI logic; the correspondence here noted in the BCK case falls far
short of the claim that BCK algebras constitute an equivalent quasivariety semantics for BCK
logic in the sense of [BP]. See further, on this point, [Kab2]. As to how to respond to the
mismatch between BCI logic and the quasivariety of BCI algebras, Bunder (in [Bu]) suggests
strengthening the logic, while Meyer and Ono (in [MO]) suggest a different meaning for the
term ‘BCI algebras’. (However, it should be noted that BCI algebras in the newly proposed
sense are not strictly algebras, carrying an undefined partial order in their similarity types,
and nor — in the sketched completeness proof on p. 108 — is any indication given as to
what the “Lindenbaum algebra” of BCI logic is supposed to be: no equivalence class of
purely implicational formulas is specified as the element 1 of this (so-called) algebra, and
no relation is defined as the partial order. This is not meant as questioning the completeness
result — just the proposed proof.)
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The non-trivial (i.e., “if”) half of this result gives us a negative solution to
the problem of characterizing converses in BCK logic; we restate the content
for use in sentential logic:

Lemma 3.7 : Let β(p, q) be a formula constructed from the variables p, q
with the aid of →, and β(p→ q, q → p) be the result of substituting p→ q,
q → p, respectively, for p, q, in β(p, q). Then if β(p→ q, q → p) is provable
in BCK logic, so is β(p, q).

Proof. Let t and t′ be the BCK-algebraic terms corresponding to β(p, q) and
β(p → q, q → p). Then if β(p → q, q → p) is provable in BCK logic,
we have (by the correspondence mentioned) that t ′ ≈ 1 holds in all BCK-
algebras, whence by Proposition 3.6, the identity t ≈ 1 holds in all such
algebras, so β(p, q) is provable in BCK logic.

Notice that the principle we called Special K in Section 1 shows that BCIW
logic lacks Pałasińska’s property (in the sense that Lemma 3.7 does not hold
for that logic: cf. the notion of special relation defined in the preceding
section).

Proposition 3.8 : There is no set of formulas Σ(p, q) such that for arbitrary
formulas ϕ,ψ : Σ(ϕ,ψ) ⊆ BCK if and only if ϕ and ψ are converses ac-
cording to BCK logic.

Proof. Suppose there exists such a Σ(p, q). Then since p → q and q → p
are converses according to BCK logic (as are any explicit implicational con-
verses), we should have Σ(p→ q, q → p)(= {σ(p→ q, q → p) | σ(p, q) ∈
Σ(p, q)}) ⊆ BCK. By Lemma 3.7, this implies that Σ(p, q) ⊆ BCK, which
is impossible since p and q are not even converses according to (the stronger)
intuitionistic logic or classical logic (by Proposition 1.1 and Corollary 1.2).

This concludes our sample exploration of the properties of implicational
converses in various logics. Perhaps the cases covered will serve as a stimu-
lus for a more systematic study of the topic. Many cases of interest have not
been considered, such as “commutative” BCK logic, which adds the axiom
(here given the name — after Tanaka — its equational analogue customarily
receives in the BCK-algebraic tradition):
T ((p→ q) → q) → ((q → p) → p)

The connective on which commutativity is conferred by T is of course not
→ but rather the derived binary connective taking α and β to the formula
(α → β) → β, which then offers a fair simulation of the disjunction of α
with β. The basic Łukasiewicz implicational logic is given by adding as a
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further axiom the principle L from Section 1 above, which given the pres-
ence of T amounts to the disjunction of p→ q with q → p. (See [Ko] for the
justification of the adjective “basic” here.15 ) Thus by the method of proof of
Proposition 1.1, as summed up in Proposition 2.1, we have the same charac-
terization of converses for Łukasiewicz’s logic(s) as for intuitionistic logic.
We have not investigated the case of the weaker commutative BCK logic,
however. The same goes for many of the numerous relevant logics treated
in [AB] — for entailment, ticket entailment, etc. And of course when we
did consider the question of characterizing converses for the relevant logic
R, we left it open (with the Problem in Section 2). Another interesting class
of cases worthy of consideration would be the various strict implicational
logics, amongst with the strict implication fragment of S5 seems especially
interesting in view of its bearing on converses of universally quantified im-
plications — e.g., in the case of classical predicate logic, can a characteriza-
tion of the type sought above be found for the relation between formulas ϕ
and ψ which are “class inclusion” converses in the sense of being equivalent
respectively to formulas ∀x(χ0(x) → χ1(x)) and ∀x(χ1(x) → χ0(x)) for
some formulas χ0, χ1, in which at most the variable x is free? The same
question obviously arises in the more general case also in which instead of a
single initial ∀ we allow several (whose variables may appear in the χi). We
do not at present have any information on this topic, however.
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