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IMAGINARY LOGIC-2: FORMAL RECONSTRUCTION OF THE
UNNOTICED NIKOLAI VASILIEV’S LOGICAL SYSTEM∗

VLADIMIR MARKIN AND DMITRY ZAITSEV

1. Introduction

One of the founders of non-classical logic Nikolai Vasiliev made the first
attempt in the history of logic to set out a consistent logical system related
to a contradictory ontology. That is why he is often considered to be a pre-
decessor of paraconsistent logic. Vasiliev named his system ‘imaginary non-
Aristotelian logic’ because it was conceived as an alternative to Aristotelian
logic.

Since the pioneer V.A. Smirnov’s paper [4] and D. Comey’s review on
it in The Journal of Symbolic Logic [1], logical ideas of Nikolai Vasiliev
have been in focus of attention in contemporary logic. They have become a
source of some new non-classical systems. Among the significant samples
are propositional paraconsistent systems of A. Arruda and V.A. Smirnov’s
[5],[6] combined logic of propositions and situations with two levels: met-
alogical level of Assertion and internal level of Predication. At the same
time genuine Vasiliev’s logical systems were not investigated properly. Only
V.A. Smirnov [7] made the first attempt to reconstruct them.

Originally, Vasiliev himself proposed the ideas of several logical systems.
In his first article “About Particular Statements, Triangle of Oppositions
and the Law of Excluded Forth”, he presented the logic of syllogistic type
founded on the ground of three kinds of propositions: universal affirmative,
universal negative and the so called accidental (that is definite particular)
propositions ‘Only some (not every) S is P ’. This system was formalized
by V.A. Smirnov [7].

The most talked about Vasiliev’s system is his ‘imaginary non-Aristotelian
logic’, which contains not only affirmative and negative statements but also

∗The research has been partially supported by Russian State Humanities Foundation
(grant 97-03-04352) and INTAS (grant 95-0365). This paper is a revised and extended
English version of the paper published in the Online Journal ‘Logical Studies’ in Russian
(http://www.logic.ru/LogStud, no. 2, 1999).
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40 VLADIMIR MARKIN AND DMITRY ZAITSEV

contradictory (‘indifferent’) statements with the copula ‘is and isn’t simul-
taneously’1 . According to Vasiliev, these indifferent statements are false in
‘our’ world but can be true in some imaginary world, while the logic of this
world — imaginary logic — will be a consistent theory. Vasiliev investi-
gated the main version of imaginary logic in detail as well as gave a brief
sketch of other three variations on the same theme (Vasiliev called them
‘interpretations of imaginary logic’). The aim of this paper is to present a
reconstruction of certain variant of imaginary logic which we call ‘Logic of
Concepts’ or ‘Imaginary Logic-2’.

2. ‘Logic of Concepts’: A Brief History

In the final part of his paper “Imaginary (non-Aristotelian) logic” Vasiliev
compares imaginary logic with non-Euclidean geometry of N. Lobachevsky,
and raises a question about possible interpretation of imaginary logic in
terms of ‘our’, ‘terrestrial’ logic:

“We can propose a real interpretation of non-Euclidean geometry,
we can find in our Euclidean space the essences with non-Euclidean
geometry ... A real interpretation of Lobachevsky’s geometry is a
geometry of a surface with constant negative curvature, of so called
pseudo-sphere ... In exactly the same way it is possible to find in
our world the essences with the logic analogous to imaginary logic”
[8, p. 81].

Vasiliev proposed three ‘terrestrial’ interpretations of imaginary logic.
According to the first interpretation [8, pp. 81–82], categorical statements

of his system are treated as modal: affirmative as containing modality of
necessary inherence of a property to an individual, negative as containing
modality of necessary lack (of impossibility for an individual to have a prop-
erty), and indifferent as containing modality of contingency2 .

The second interpretation [8, p. 87] is based on the idea to explicate affir-
mative, negative and indifferent statements via relations of absolute likeness
(coincidence), absolute difference, and partial likeness and difference be-
tween phenomena, correspondingly.

1 A complete axiomatization of this theory as well as an adequate semantics was proposed
by T.P. Kostyuk and V.I. Markin in [2].

2 The formal explication of modal interpretation of imaginary logic by means of logic
with de re modalities was proposed by V.I. Markin in [3].
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IMAGINARY LOGIC-2 41

The core idea of the third interpretation of imaginary logic [8, p. 87–88]
is to associate with each term of a categorical statement not a set of individ-
uals but a concept considered as a set of characters and to treat syllogistic
constants as denoting intensional relations between concepts. According to
this approach, ‘Every S is P ’ means that S contains all characters from P .
The interpretation of two other universal statements is based on the differ-
ence between absolute (strong) negation and weak negation: ‘Every S is not
(absolutely) P ’ means that, for an arbitrary character from P , the concept S
contains contradictory one, ‘Every S is not (in a weak sense) P ’ means that
S contains some characters from P as well as characters which contradict to
some others.

Vasiliev considered the weak negation to be close to ordinary negative cop-
ula of Aristotelian syllogistic. Indeed, if two concepts contain at least two
contradictory characters their extensions have no common elements. Never-
theless, it is natural to interpret statements with absolute negation as analo-
gous to negative statements of imaginary logic. Both of them presuppose ex-
clusively negative predication. Then indifferent statements, which combine
assertion with negation, should be treated as statements with weak negation.

Vasiliev emphasized that the logic of concepts differs from the main ver-
sion of imaginary logic as well as from the standard syllogistic. For example,
some first figure syllogisms with minor negative (in a strong sense) premise
are valid: ‘Every M is P . Every S is not M . Hence, every S is not P ’.

So, Vasiliev not only was one of the founders of non-classical logic, but
as well he showed the manifold of non-classical logical systems, which are
formulated in the same language and differ from each other in sets of laws.
This is his indubitable contribution to logic, which as far as we know stays
unnoticed up to now.

3. Semantics for Imaginary Logic-2

We present a semantics of logic of concepts based on the preformal intuitions
underlying Vasiliev’s system. Let L be a set of literals — positive and neg-
ative characters — p1, ∼p1, p2, ∼p2, ... Then a concept α is, by definition,
an arbitrary non-empty and consistent subset of L, i.e. α satisfies conditions

(i) α 6= ∅; (ii) for every literal pi ∈ L, pi /∈ α or ∼pi /∈ α.

Let M be the set of all concepts. We define a function ∗ on concepts, which
assigns to every concept α a contrary concept α∗:

pi ∈ α∗ ⇔ ∼pi ∈ α and ∼pi ∈ α∗ ⇔ pi ∈ α.
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42 VLADIMIR MARKIN AND DMITRY ZAITSEV

Vasiliev writes about this operation:

“If the concept A consists of characters p, q, r, s, ..., then the con-
cept non-A must consist of characters non-p, non-q, non-r, non-s,
and so on.” [Vasiliev 1989, p. 88].

It can be easily shown that function ∗ has the following properties:

(a) α ∩ α∗ = ∅, (b) α ∗ ∗ = α, (c) α ⊆ β ⇒ α∗ ⊆ β ∗ .

Let d be a function assigning arbitrary concepts to terms: d(P ) ∈ M.
Vasiliev himself proposed semantical definitions only for universal state-
ments. Let A1SP be the form of universal affirmative statements ‘Every S is
P ’, A2SP — the form of universal absolutely negative statements ‘Every S
is not P ’, and A3SP — the form of universal indifferent (weakly negative)
statements ‘Every S is and is not P ’.

Define a valuation ||d associated with d:

| A1SP |d= 1 iff d(P ) ⊆ d(S);
| A2SP |d= 1 iff d(P )∗ ⊆ d(S);
| A3SP |d= 1 iff d(P ) ∩ d(S) 6= ∅ and d(P ) ∗ ∩d(S) 6= ∅.

However to formulate complete system of imaginary logic one needs more
then just universal statements. In main version of this logic Vasiliev uses as
well particular statements:

– definite-particular statements ‘Some S is P , and each of the rest S is not
P ’ (let it be denoted as T1SP ), ‘Some S is P , and each of the rest S is and
is not P ’ (T2SP ), ‘Some S is not P , and each of the rest S is and is not P ’
(T3SP ), ‘Some S is P , another S is not P , and each of the rest S is and is
not P ’ (T4SP );

– indefinite particular statements “Some S is P ” (I1SP ), “Some S is not
P ” (I2SP ), “Some S is and is not P ” (I3SP ).

All kinds of definite particular statements can be expressed with the help
of indefinite particular ones:

T1SP ⇔ I1SP & I2SP & ¬I3SP , T2SP ⇔ I1SP & ¬I2SP & I3SP ,
T3SP ⇔ ¬I1SP & I2SP & I3SP , T4SP ⇔ I1SP & I2SP & I3SP .

To set out appropriate truth definitions for particular statements it is possi-
ble to reformulate the semantics of general statements as follows:

| A1SP |d= 1 iff ∀α ∈ M[d(S) ⊆ α ⇒ d(P ) ⊆ α];
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IMAGINARY LOGIC-2 43

| A2SP |d= 1 iff ∀α ∈ M[d(S) ⊆ α ⇒ d(P )∗ ⊆ α];
| A3SP |d= 1 iff ∀α ∈ M[d(S) ⊆ α ⇒ d(P ) ∩ α 6= ∅ and d(P ) ∗ ∩α 6=

∅].

Proposition 1. The conditions d(P ) ⊆ d(S) and ∀α ∈ M[d(S) ⊆ α ⇒
d(P ) ⊆ α] are equivalent.

Proof. The implication from left to right is straightforward using transitiv-
ity of ⊆.

In order to prove the statement from right to the left one should assume
∀α ∈ M[d(S) ⊆ α ⇒ d(P ) ⊆ α] and the negation of d(P ) ⊆ d(S). Then
there is a literal in d(P ), which does not belong to d(S).

Let it be a positive literal pi: pi ∈ d(P ) and pi /∈ d(S). Consider the literal
∼pi, contradicting to pi. It is evident that ∼pi ∈ d(S) or ∼pi /∈ d(S). If
∼pi ∈ d(S) then applying ∀e to initial assumption one gets d(S) ⊆ d(S) ⇒
d(P ) ⊆ d(S), and hence d(P ) ⊆ d(S), which leads to a contradiction.
If ∼pi /∈ d(S) then the set d(S) ∪ {∼pi} satisfies conditions (i) and (ii),
which makes it possible to eliminate the universal quantifier in the following
way: d(S) ⊆ d(S) ∪ {∼pi} ⇒ d(P ) ⊆ d(S) ∪ {∼pi}. So, d(P ) ⊆
d(S) ∪ {∼pi}, and since pi ∈ d(P ), the concept d(S) ∪ {∼pi} contains
contradictory literals ∼pi and pi, but this is impossible.

The case with the negative literal is similar. �

Proposition 2. The conditions d(P )∗ ⊆ d(S) and ∀α ∈ M[d(S) ⊆ α ⇒
d(P )∗ ⊆ α] are equivalent.

The proof is analogous to the previous one.

Proposition 3. The conditions [d(P ) ∩ d(S) 6= ∅ and d(P ) ∗ ∩d(S) 6= ∅]
and ∀α ∈ M[d(S) ⊆ α ⇒ d(P )∩α 6= ∅ and d(P )∗∩α 6= ∅] are equivalent.

Proof. From left to the right the proof is trivial by the properties of ⊆ and
∩.

To prove the converse assume ∀α ∈ M[d(S) ⊆ α ⇒ d(P ) ∩ α 6=
∅ and d(P ) ∗ ∩α 6= ∅], as well as d(P ) ∩ d(S) = ∅ or d(P ) ∗ ∩d(S) = ∅.

If d(P ) ∩ d(S) = ∅, then the set d(P ) ∗ ∪d(S) is a concept, and an
application of ∀e to initial assumption gives d(S) ⊆ d(P )∗∪d(S) ⇒ d(P )∩
(d(P ) ∗ ∪d(S)) 6= ∅ and d(P ) ∗ ∩(d(P ) ∗ ∪d(S)) 6= ∅. It leads to (d(P ) ∩
d(P )∗) ∪ (d(P ) ∩ d(S)) 6= ∅. By the property (a) of ∗-function, d(P ) ∩
d(S) 6= ∅, which contradicts the assumption.

If d(P ) ∗ ∩d(S) = ∅ then the set d(P ) ∪ d(S) is a concept, and the uni-
versal quantifier can be eliminated as follows: d(S) ⊆ d(P ) ∪ d(S) ⇒
d(P ) ∩ (d(P ) ∪ d(S)) 6= ∅ and d(P ) ∗ ∩(d(P ) ∪ d(S)) 6= ∅. And the
second member of this conjunction gives d(P )∗∩d(S) 6= ∅, i.e. leads to the
contradiction again. �



“04markin”
2004/3/16
page 44

i

i

i

i

i

i

i

i

44 VLADIMIR MARKIN AND DMITRY ZAITSEV

Proceeding from the modified interpretation of universal statements it is
natural to treat indefinite particular statements as follows:

| I1SP |d= 1 iff ∃α ∈ M[d(S) ⊆ α and d(P ) ⊆ α],
| I2SP |d= 1 iff ∃α ∈ M[d(S) ⊆ α and d(P )∗ ⊆ α],
| I3SP |d= 1 iff ∃α ∈ M[d(S) ⊆ α and d(P ) ∩ α 6= ∅ and d(P ) ∗ ∩α 6=

∅].

These definitions in return can be simplified:

| I1SP |d= 1 iff d(P ) ∗ ∩d(S) = ∅;
| I2SP |d= 1 iff d(P ) ∩ d(S) = ∅;
| I3SP |d= 1 iff d(P )\d(S) 6= ∅ and d(P ) ∗ \d(S) 6= ∅.

Proposition 4. The conditions ∃α ∈ M[d(S) ⊆ α and d(P ) ⊆ α] and
d(P ) ∗ ∩d(S) = ∅ are equivalent.

Proof. Assume ∃α ∈ M[d(S) ⊆ α and d(P ) ⊆ α], and d(P ) ∗ ∩d(S) 6=
∅. The latter means that there is a literal, which belongs to both d(P )∗
and d(S). Let it be a positive literal pi (the case with negative literal is
similar): pi ∈ d(P )∗ and pi ∈ d(S). By the definition of ∗, it implies that
∼pi ∈ d(P ). From this and the initial assumption we infer the existence of
a concept α containing pi and ∼pi, that is impossible.

Now assume d(P ) ∗ ∩d(S) = ∅. It means that d(P ) ∪ d(S) is a concept,
and d(S) and d(P ) are subsets of it. Hence, ∃α ∈ M[d(S) ⊆ α and d(P ) ⊆
α]. �

Proposition 5. The conditions ∃α ∈ M[d(S) ⊆ α and d(P )∗ ⊆ α] and
d(P ) ∩ d(S) = ∅ are equivalent.

The proof is analogous to the previous one.

Proposition 6. The conditions ∃α ∈ M[d(S) ⊆ α and d(P ) ∩ α 6= ∅ and
d(P )∗∩α 6= ∅] and [d(P )\d(S) 6= ∅ and d(P )∗\d(S) 6= ∅] are equivalent.

Proof. Assume there is a concept α such that d(S) ⊆ α and d(P )∩α 6= ∅
and d(P ) ∗ ∩α 6= ∅. To get a contradiction assume d(P )\d(S) = ∅ or
d(P ) ∗ \d(S) = ∅.

If d(P )\d(S) = ∅ then d(P ) ⊆ d(S), and (by the transitivity of ⊆)
d(P ) ⊆ α. From this and d(P ) ∗ ∩α 6= ∅ one can derive that α contains
contradictory literals, that is impossible. If d(P )∗\d(S) = ∅, then d(P )∗ ⊆
d(S), and hence, d(P )∗ ⊆ α. Taking into account d(P ) ∩ α 6= ∅, it leads to
a contradiction again.

Now assume d(P )\d(S) 6= ∅ and d(P ) ∗ \d(S) 6= ∅. The former pre-
supposes the existence of a literal l1 (positive or negative), which belongs to
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IMAGINARY LOGIC-2 45

d(P ) and does not belong to d(S). The latter means that there is a literal l2
(positive or negative), which is present in d(P )∗ and absent in d(S). Let l′

1

and l′
2

represent literals contradicting to l1 and l2, correspondingly. Neither
l1, nor l2 belong to d(S), so the set d(S) ∪ {l′

1
, l′

2
} turns out to be a concept

α, which satisfies the condition: d(S) ⊆ α and d(P ) ∩ α 6= ∅ (where l′
2

is common for d(P ) and α) and d(P ) ∗ ∩α 6= ∅ (where l′
1

belongs to both
d(P )∗ and α). �

It should be stated that Vasiliev realized his innovative ideas in tradi-
tional old-fashioned form. He presented all his systems as the syllogistic
type theories. So, in order to reconstruct Vasiliev’s systems we will fol-
low Łukasiewicz in his formalization of Aristotelian syllogistic and choose
classical propositional logic to be the ground for the reconstruction below
presented. In so doing, the standard truth definitions for complex formulas
will hold.

A formula is valid (in imaginary logic-2) iff it takes value “1” under any
assignment d.

4. Axiomatization of Imaginary Logic-2

The set of valid formulas is axiomatized by the calculus IL2 containing
propositional tautologies, and axiom schemes:

A1. (A1MP & A1SM) ⊃ A1SP , A10. ¬(A1SP & I2SP ),
A2. (A1MP & A2SM) ⊃ A2SP , A11. ¬(A2SP & I1SP ),
A3. (A2MP & A1SM) ⊃ A2SP , A12. I1SP ⊃ I1PS,
A4. (A2MP & A2SM) ⊃ A1SP , A13. I2SP ⊃ I2PS,
A5. (A1MP & I1SM) ⊃ I1SP , A14. A1SP ⊃ I1SP ,
A6. (A1MP & I2SM) ⊃ I2SP , A15. A2SP ⊃ I2SP ,
A7. (A2MP & I1SM) ⊃ I2SP , A16. A3SP ≡ ¬I1SP & ¬I2SP ,
A8. (A2MP & I2SM) ⊃ I1SP , A17. I3SP ≡ ¬A1SP & ¬A2SP .
A9. A1SS,

The only rule is modus ponens.

There is a huge number of strange theorems in IL2. They are neither laws
of Aristotelian syllogistic, nor laws of the imaginary logic main version.
For instance, scheme A2 is a formal equivalent to above mentioned first
figure syllogism with minor negative premise. A similar deductive principle
is expressed by A6. Schemes A4 and A8 are also non-trivial examples of
first figure syllogisms with two absolutely negative premises and affirmative
conclusion.
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46 VLADIMIR MARKIN AND DMITRY ZAITSEV

The conversion principles, formalized by IL2, also differ from standard
syllogistic ones. The simple conversion of the universal absolutely nega-
tive statements is not provable in IL2, there is only restricted conversion for
them (the law A2SP ⊃ I2PS is derivable from A15 and A13). Particular
absolutely negative statements convert simply (scheme A13). The simple
conversion law for the universal indifferent (weekly negative) statements —
A3SP ⊃ A3PS — is derivable from A16, A12 and A13, but there is no
such a law for the particular indifferent statements. It should be mentioned
that in the main version of imaginary logic neither negative, nor indifferent
statements convert into the statements of standard types.3

In IL2 unlike in imaginary logic particular indifferent statements can be
expressed via universal (affirmative and absolutely negative), the fact is es-
tablished by A17.

Observe some IL2 theorems, which will be used later.

T1. ¬I2SS
Proof is by A9 and A10.

T2. ¬(A2SP & A1SP )
Proof is by A10 and A15.

T3. ¬(A1MP & A1MS & ¬I1SP )
1. A1MS ⊃ I1MS A14
2. I1MS ⊃ I1SM A12
3. (A1MP & I1SM) ⊃ I1SP A5
4. (A1MP & A1MS) ⊃ I1SP 1, 2, 3
5. ¬(A1MP & A1MS & ¬I1SP ) 4

T4. ¬(A2MP & A2MS & ¬I1SP )
Proof is analogous to T3 using A15, A13, and A8.

T5. ¬(A2MP & A1MS & ¬I2SP )
Proof is analogous to T3 using A14, A12, and A7.

T6. ¬(A1MP & A2MS & ¬I2SP )
Proof is analogous to T3 using A15, A13, and A6.

T7. ¬(A1PM & A2SM & I1SP )

3 In the system IL [2] formalizing the main version of imaginary logic only the following
“quasi-conversion” principles for negative and indifferent statements are provable: A2SP ⊃

¬I1PS, I2SP ⊃ ¬A1PS, A3SP ⊃ ¬I1PS, I3SP ⊃ ¬A1PS.
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1. (A1PM & I1SP ) ⊃ I1SM A5
2. ¬(A2SM & I1SM) A11
3. ¬(A1PM & A2SM & I1SP ) 1,2

T8. ¬(A2PM & A1SM & I1SP )
Proof is analogous to T7 using A7 and A10.

T9. ¬(A1PM & A1SM & I2SP )
Proof is analogous to T7 using A6 and A10.

T10. ¬(A2PM & A2SM & I2SP )
Proof is analogous to T7 using A8 and A11.

T11. ¬(¬I1QR & A1PQ & A1SR & I1SP )
1. (A1PQ & I1SP ) ⊃ I1SQ A5
2. I1SQ ⊃ I1QS A12
3. (A1SR & I1QS) ⊃ I1QR A5
4. (A1PQ & A1SR & I1SP ) ⊃ I1QR 1, 2, 3
5. ¬(¬I1QR & A1PQ & A1SR & I1SP ) 4

T12. ¬(¬I1QR & A1PR & A1SQ & I1SP )
Derived from T11 using A12.

T13. ¬(¬I1QR & A2PQ & A2SR & I1SP )
Proof is analogous to T11 using A7, A13, and A8.

T14. ¬(¬I1QR & A2PR & A2SQ & I1SP )
Derived from T13 using A12.

T15. ¬(¬I2QR & A2PQ & A1SR & I1SP )
Proof is analogous to T11 using A7, A13, and A6.

T16. ¬(¬I2QR & A2PR & A1SQ & I1SP )
Derived from T15 using A13.

T17. ¬(¬I2QR & A1PQ & A2SR & I1SP )
Proof is analogous to T11 using A5, A12, and A7.

T18. ¬(¬I2QR & A1PR & A2SQ & I1SP )
Derived from T17 using A13.
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48 VLADIMIR MARKIN AND DMITRY ZAITSEV

T19. ¬(¬I2QR & A1PQ & A1SR & I2SP )
Proof is analogous to T11 using A6, A13, and A6.

T20. ¬(¬I2QR & A1PR & A1SQ & I2SP )
Derived from T19 using A13.

T21. ¬(¬I2QR & A2PQ & A2SR & I2SP )
Proof is analogous to T11 using A8, A12, and A7.

T22. ¬(¬I2QR & A2PR & A2SQ & I2SP )
Derived from T21 using A13.

T23. ¬(¬I1QR & A1PQ & A2SR & I2SP )
Proof is analogous to T11 using A6, A13, and A8.

T24. ¬(¬I1QR & A1PR & A2SQ & I2SP )
Derived from T23 using A12.

T25. ¬(¬I1QR & A2PQ & A1SR & I2SP )
Proof is analogous to T11 using A8, A12, and A5.

T26. ¬(¬I1QR & A2PR & A1SQ & I2SP )
Derived from T25 using A12.

5. Soundness and Completeness

The aim of this section is to demonstrate that the calculus IL2 is an adequate
formalization of the semantics of Section 3.

It can be easily shown that all axioms of IL2 are valid and modus ponens
preserves validity, it allows to assert IL2 soundness:

Soundness Theorem. Every IL2-provable formula is valid.

The converse metatheorem (Completeness theorem) will be proved in a
Henkin-style manner.

A set Γ of formulas of the language of IL2 is IL2-consistent iff there are
no formulas B1, B2, ..., Bk such that the formula ¬(B1 & B2 & . . . & Bk)
be provable in IL2. A set ∆ is IL2-maximal iff it is IL2-consistent and for
any formula A of the language of IL2, A ∈ ∆ or ¬A ∈ ∆.

There is a number of important characteristics of IL2-maximal set ∆:

(m1) ∆ contains all theorems of IL2,



“04markin”
2004/3/16
page 49

i

i

i

i

i

i

i

i

IMAGINARY LOGIC-2 49

(m2) ∆ is closed under modus ponens,
(m3) ¬A ∈ ∆, iff A /∈ ∆,
(m4) A & B ∈ ∆, iff A ∈ ∆ and B ∈ ∆,
(m5) A ∨ B ∈ ∆, iff A ∈ ∆ or B ∈ ∆,
(m6) A ⊃ B ∈ ∆, iff A ∈ ∆ ⇒ B ∈ ∆.

Extension Lemma. An arbitrary IL2-consistent set has at least one IL2-
maximal extension.

Proof is in a usual way.

Now we need some preliminaries to associate canonical assignment d∆

with every IL2-maximal set ∆. Consider an ordered list C1, C2, ... of all the
formulas from ∆ which are of the form ¬I1QR or ¬I2QR. This list is non-
empty, because all the formulas of the type ¬I2SS are the theorems (T1) of
IL2, and hence they belong to every IL2-maximal set (m1).

A canonical assignment d∆ can be defined in a following way:
(1) if Ci is ¬I1QR, then
– the literal pi is included in d∆(T ), for any term T such that A1TQ ∈ ∆

or A2TR ∈ ∆,
– the literal ∼pi is included in d∆(T ), for any term T such that A1TR ∈ ∆

or A2TQ ∈ ∆;
(2) if Ci is ¬I2QR, then
– the literal pi is included in d∆(T ), for any term T such that A1TQ ∈ ∆

or A1TR ∈ ∆,
– the literal ∼pi is included in d∆(T ), for any term T such that A2TR ∈ ∆

or A2TQ ∈ ∆.
Thus,

d∆(T ) = {pi : Ci is ¬I1QR and [A1TQ ∈ ∆ or A2TR ∈ ∆]}∪
{∼pi : Ci is ¬I1QR and [A1TR ∈ ∆ or A2TQ ∈ ∆]}∪
{pi : Ci is ¬I2QR and [A1TQ ∈ ∆ or A1TR ∈ ∆]}∪
{∼pi : Ci is ¬I2QR and [A2TQ ∈ ∆ or A2TR ∈ ∆]}.

Now it is necessary to show that, for arbitrary term T , d∆(T ) is a concept,
i.e. it satisfies conditions (i) and (ii).

(i). ¬I2TT is a theorem of IL2 (T1), and hence belongs to ∆ and to the
list C1, C2, ... . Let it be i-th formula in the list. Then, by the definition of
d∆, there is the literal pi in d∆(M), for all M such that A1MT ∈ ∆. At the
same time A1TT ∈ ∆, because A1TT is an axiom (A9) and by (m1). Thus
pi ∈ d∆(T ), i.e. d∆(T ) 6= ∅.

(ii). Assume, on the contrary, there is a pi such that pi ∈ d∆(T ) and
∼pi ∈ d∆(T ). Then, one needs to consider two cases: (ii-1) when Ci is
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¬I1QR, and (ii-2) when Ci is ¬I2QR.
(ii-1). Assumption and definition of d∆ implies ¬I1QR ∈ ∆, A1TQ ∈ ∆
or A2TR ∈ ∆, A1TR ∈ ∆ or A2TQ ∈ ∆. By characteristic (m4) of
IL2-maximal set it means that ∆ contains at least one of these conjunc-
tions: (A1TR & A1TQ & ¬I1QR), (A2TQ & A1TQ), (A2TR & A1TR),
(A2TR & A2TQ & ¬I1QR). It is impossible, because the negations of all
of them are IL2-provable (T3, T2, T2, T4, correspondingly), i.e. ∆ contains
them, that contradicts to IL2-consistency.
(ii-2). In this case we have ¬I2QR ∈ ∆, A1TQ ∈ ∆ or A1TR ∈ ∆,
A2TQ ∈ ∆ or A2TR ∈ ∆. Then ∆ contains at least one of the following
conjunctions: (A2TR & A1TQ & ¬I2QR), (A2TQ & A1TQ), (A2TR &
A1TR), (A1TR & A2TQ & ¬I2QR). It is also impossible. The negations
of all these formulas are theorems of IL2 (T5, T2, T2, T6).

Therefore, d∆(T ) satisfies the condition (ii).
Now we are in a position to prove the main lemma by induction on the

length of a formula A:

Main Lemma. For arbitrary IL2-maximal set ∆ and arbitrary formula A,
A ∈ ∆ iff | A |= 1 under d∆.

Proof. Basis presupposes six cases.
(1). A is A1SP .
First prove that A1SP ∈ ∆ ⇒| A1SP |= 1 under d∆.
Assume A1SP ∈ ∆. Required is that, for every literal (positive or nega-

tive) from d∆(P ), it is contained in d∆(S).
Consider an arbitrary positive literal pi ∈ d∆(P ). By the definition of d∆,

it means that either Ci is ¬I1QR and [A1PQ ∈ ∆ or A2PR ∈ ∆], or Ci is
¬I2QR and [A1PQ ∈ ∆ or A1PR ∈ ∆]. Using axioms (A1PQ & A1SP ) ⊃
A1SQ (A1), (A2PR & A1SP ) ⊃ A2SR (A3) and (A1PR & A1SP ) ⊃
A1SR (A1), and by (m2), it follows that either Ci is ¬I1QR and [A1SQ ∈ ∆
or A2SR ∈ ∆], or Ci is ¬I2QR and [A1SQ ∈ ∆ or A1SR ∈ ∆]. According
to the definition of d∆ it means that pi ∈ d∆(S).

For an arbitrary negative literal ∼pi ∈ d∆(P ), either Ci is ¬I1QR and
[A1PR ∈ ∆ or A2PQ ∈ ∆], or Ci is ¬I2QR and [A2PQ ∈ ∆ or A2PR ∈
∆]. By (m1), (m2) and axioms (A1PR & A1SP ) ⊃ A1SR (A1), (A2PQ
& A1SP ) ⊃ A2SQ (A3) and (A2PR & A1SP ) ⊃ A2SR (A3), it leads to
either Ci is ¬I1QR and [A1SR ∈ ∆ or A2SQ ∈ ∆], or Ci is ¬I2QR and
[A2SQ ∈ ∆ or A2SR ∈ ∆], that is ∼pi ∈ d∆(S).

To prove the converse, assume | A1SP |= 1 under d∆, i.e. d∆(P ) ⊆
d∆(S). Then formula ¬I2PP (T1) is provable in IL2, and by (m1) belongs
to ∆. Therefore it is a member of the list C1, C2, ..., and let its number be i.
There is also an axiom A1PP (A9) in ∆. So Ci is ¬I2PP and A1PP ∈ ∆.
Hence, by the definition of d∆, pi ∈ d∆(P ). Thus, pi ∈ d∆(S). From the
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fact that Ci is ¬I2PP and by the definition of d∆ we come to the desidera-
tum: A1SP ∈ ∆.

(2) A is A2SP .
First prove that A2SP ∈ ∆ ⇒| A2SP |= 1 under d∆.
Assume A2SP ∈ ∆ and show, for arbitrary positive (negative) literal pi

(∼pi) from d∆(P )∗, pi ∈ d∆(S)(∼pi ∈ d∆(S)).
Consider an arbitrary positive literal pi ∈ d∆(P )∗. By the definition of

∗, ∼pi ∈ d∆(P ). The latter is possible only if either Ci is ¬I1QR and
[A1PR ∈ ∆ or A2PQ ∈ ∆], or Ci is ¬I2QR and [A2PQ ∈ ∆ or A2PR ∈
∆]. Using axioms (A1PR & A2SP ) ⊃ A2SR (A2), (A2PQ & A2SP ) ⊃
A1SQ (A4) and (A2PR & A2SP ) ⊃ A1SR (A4), and by (m2), we con-
clude that either Ci is ¬I1QR and [A2SR ∈ ∆ or A1SQ ∈ ∆], or Ci is
¬I2QR and [A1SQ ∈ ∆ or A1SR ∈ ∆]. By the definition of d∆, it means
that pi ∈ d∆(S).

For an arbitrary negative literal ∼pi ∈ d∆(P )∗, pi ∈ d∆(P ). Then either
Ci is ¬I1QR and [A1PQ ∈ ∆ or A2PR ∈ ∆], or Ci is ¬I2QR and [A1PQ ∈
∆ or A1PR ∈ ∆]. By (m1) and (m2), using (A1PQ & A2SP ) ⊃ A2SQ
(A2), (A2PR & A2SP ) ⊃ A1SR (A4) and (A1PR & A2SP ) ⊃ A2SR
(A2), one gets either Ci is ¬I1QR and [A2SQ ∈ ∆ or A1SR ∈ ∆], or Ci is
¬I2QR and [A2SQ ∈ ∆ or A2SR ∈ ∆], i.e. ∼pi ∈ d∆(S).

To prove this case in the opposite direction, assume | A2SP |= 1 under
d∆, that is d∆(P )∗ ⊆ d∆(S). The theorem ¬I2PP (T1) belongs to ∆, and
therefore, it is a member of the ordered list (with a number i). ∆ contains
A1PP (A9), so Ci is ¬I2PP and A1PP ∈ ∆. Then pi ∈ d∆(P ), and
∼pi ∈ d∆(P )∗. Therefore, because d∆(P )∗ ⊆ d∆(S), ∼pi ∈ d∆(S).
Thus, by the definition of d∆, and from Ci, being ¬I2PP , A2SP ∈ ∆.

(3) A is I1SP .
I1SP ∈ ∆ ⇒| I1SP |= 1 under d∆.
Assume I1SP ∈ ∆, but | I1SP |= 0 under d∆. Since the latter means that

d(P ) ∗ ∩d(S) 6= ∅, there is a literal (positive or negative), which belongs to
both d(P )∗ and d(S).

Let’s treat the case with positive literal: pi ∈ d∆(P )∗ and pi ∈ d∆(S). By
the definition of ∗, ∼pi ∈ d∆(P ). By the definition of d∆, firstly, either Ci is
¬I1QR and [A1PR ∈ ∆ or A2PQ ∈ ∆], or Ci is ¬I2QR and [A2PQ ∈ ∆
or A2PR ∈ ∆], secondly, either Ci is ¬I1QR and [A2SR ∈ ∆ or A1SQ ∈
∆], or Ci is ¬I2QR and [A1SQ ∈ ∆ or A1SR ∈ ∆]. Then, by (m4) and
from the assumption I1SP ∈ ∆, it follows that ∆ contains at least one of the
conjunctions: A1PR & A2SR & I1SP , ¬I1QR & A1PR & A1SQ & I1SP ,
¬I1QR & A2PQ & A2SR & I1SP , A2PQ & A1SQ & I1SP , ¬I2QR & A2
PQ & A1SR & I1SP , ¬I2QR & A2PR & A1SQ & I1SP , A2PR & A1SR
& I1SP . But it is impossible, since the negations of these formulas are prov-
able in IL2 (T7, T12, T13, T8, T15, T16 and T8 correspondingly), and ∆,
being consistent, contains them.
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When d∆(P )∗ and d∆(S) contain negative literal ∼pi the proof is simi-
lar. Let ∼pi ∈ d∆(S) and ∼pi ∈ d∆(P )∗ i.e. pi ∈ d∆(P ). Then, firstly
either Ci is ¬I1QR and [A1PQ ∈ ∆ or A2PR ∈ ∆], or Ci is ¬I2QR and
[A1PQ ∈ ∆ or A1PR ∈ ∆], secondly, either Ci is ¬I1QR and [A2SQ ∈ ∆
or A1SR ∈ ∆], or Ci is ¬I2QR and [A2SQ ∈ ∆ or A2SR ∈ ∆]. It implies
that ∆ contains at least one of the conjunctions: A1PQ & A2SQ & I1SP ,
¬I1QR & A1PQ & A1SR & I1SP , ¬I1QR & A2PR & A2SQ & I1SP , A2
PR & A1SR & I1SP , ¬I2QR & A1PQ & A2SR & I1SP , ¬I2QR & A1PR
& A2SQ & I1SP , A1PR & A2SR & I1SP , but their negations belong to
∆, since they are provable in IL2 (T7, T11, T14, T8, T17, T18 and T7
correspondingly).

To prove the converse assume | I1SP |= 1 under d∆, i.e. d∆(P ) ∗
∩d∆(S) = ∅, but at the same time I1SP /∈ ∆. The latter, by (m3), means
that ¬I1SP ∈ ∆. Let the number of ¬I1SP in the ordered list be i. Ax-
ioms A1SS and A1PP (A9) also belong to ∆. Hence, pi ∈ d∆(S) and
∼pi ∈ d∆(P ), that is, pi ∈ d∆(P )∗. Thus, an intersection of d∆(P )∗ and
d∆(S) is non-empty (it contains pi), which contradicts the initial assump-
tion.

(4) A is I2SP .
First prove that I2SP ∈ ∆ ⇒| I2SP |= 1 under d∆.
Assume I2SP ∈ ∆, but | I2SP |= 0 under d∆, i.e. d(P ) ∩ d(S) 6= ∅.

Therefore, there is a literal (positive or negative), which belongs to both
d(P ) and d(S).

For a positive literal pi where pi ∈ d∆(P ) and pi ∈ d∆(S), it holds,
by the definition of d∆, that, firstly, either Ci is ¬I1QR and [A1PQ ∈ ∆
or A2PR ∈ ∆], or Ci is ¬I2QR and [A1PQ ∈ ∆ or A1PR ∈ ∆], sec-
ondly, either Ci is ¬I1QR and [A2SR ∈ ∆ or A1SQ ∈ ∆], or Ci is ¬I2QR
and [A1SQ ∈ ∆ or A1SR ∈ ∆]. Then, by (m4) and from the assump-
tion I2SP ∈ ∆, it follows that ∆ contains at least one of the conjunctions:
¬I1QR & A1PQ & A2SR & I2SP , A1PQ & A1SQ & I2SP , A2PR & A2
SR & I2SP , ¬I1QR & A2PR & A1SQ & I2SP , ¬I2QR & A1PQ & A1SR
& I2SP , ¬I2QR & A1PR & A1SQ & I2SP , A1PR & A1SR & I2SP , that
is impossible, for the negations of these formulas are the theorems of IL2
(T23, T9, T10, T26, T19, T20 and T9 correspondingly), and, therefore
they are contained in ∆.

For a negative literal be in d(P ) and d(S), it holds, firstly, either Ci is
¬I1QR and [A1PR ∈ ∆ or A2PQ ∈ ∆], or Ci is ¬I2QR and [A2PQ ∈ ∆
or A2PR ∈ ∆], and secondly, either Ci is ¬I1QR and [A2SQ ∈ ∆ or
A1SR ∈ ∆], or Ci is ¬I2QR and [A2SQ ∈ ∆ or A2SR ∈ ∆]. Then ∆ con-
tains at least one of the conjunctions: ¬I1QR & A1PR & A2SQ & I2SP ,
A1PR & A1SR & I2SP , A2PQ & A2SQ & I2SP , ¬I1QR & A2PQ & A1
SR & I2SP , ¬I2QR & A2PQ & A2SR & I2SP , ¬I2QR & A2PR & A2SQ
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& I2SP , A2PR & A2SR & I2SP . And again, the negations of these formu-
las belong to ∆ (T24, T9, T10, T25, T21, T22, T10).

The proof from the right to the left is based on the assumptions | I2SP |=
1 under the canonical assignment, i.e. d∆(P )∩ d∆(S) = ∅, and I2SP /∈ ∆.
The latter, by (m3), means ¬I2SP ∈ ∆ and ¬I2SP belongs to the ordered
list (being Ci). Since axioms A1SS and A1PP (A9) also belong to ∆, pi ∈
d∆(P ) and pi ∈ d∆(S). Therefore, d∆(P ) ∩ d∆(S) 6= ∅, that contradicts
the assumption.

(5). A is A3SP .
The proof in this case can be reduced to the combination of those for (3)

and (4), because ∆ is maximal and contains formulas of the type A3SP ≡
¬I1SP & ¬I2SP (A16).

(6) A is I3SP .
In this case the proof reduces to (1) and (2). It follows from the fact that

∆ is maximal and contains formulas I3SP ≡ ¬A1SP & ¬A2SP (A17).
The proof of inductive step is trivial: it is based on the classical semantics

for propositional connectives and on the characteristics of IL2-maximal set
mentioned above. �

Now we have an opportunity to demonstrate completeness of IL2.

Completeness Theorem. Every valid formula is provable in IL2.
Proof. Consider an arbitrary valid formula A. Assume it is not provable in

IL2. Then the formula ¬¬A is not a theorem of IL2. Hence, by the defini-
tion of IL2-consistent set, the set {¬A} is IL2-consistent. By the Extension
Lemma, there is a IL2-maximal extension ∆ of this set. And by the Main
Lemma, | ¬A |= 1 under d∆. Hence, | A |= 0 under d∆, that contradicts
the initial assumption of its validity. �
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