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SELF-REFERENCE IN FINITE AND INFINITE PARADOXES

TJEERD B. JONGELING, TEUN KOETSIER AND EVERT WATTEL

Introduction

The paradoxical character of logical paradoxes has often been ascribed to
self-reference. In its starkest form the traditional liar paradox reads: This
sentence is not true. The fact that no consistent truth value can be ascribed
to the sentence seems to arise from its referring to itself. Other paradoxes
have been assumed to arise from self-reference as well. In recent years, how-
ever, it has been argued by Sorensen and Yablo that self-reference does not
play an essential role in liar paradoxes or paradoxes in general. The most
convincing form of this argument is based on infinite paradoxes (paradoxes
consisting of an enumerable number of sentences) of the type discovered
by Yablo. On the other hand Priest has argued that even in Yablo’s para-
dox there is a hidden element of self-reference. Priest proceeds by turning
the infinite Yablo paradox into a corresponding finite paradox and indicat-
ing where the self-reference arises. Sorensen shows that with every finite
liar paradox there corresponds an infinite Yablo-type paradox, in which self-
reference is absent.

In this paper we present a mathematical proof that for a certain class of
paradoxes the following result holds: if the paradox is finite (consists of
a finite number of sentences), self-reference is necessarily involved, while
if the paradox is infinite, no self-reference need be involved. This result
suggests how the viewpoints of those who see self-reference as essential and
those who see it as inessential can be combined. Priest shows that self-
reference is essential by transforming an infinite paradox into a finite one.
The advocates of the opposite view show that self-reference is not essential
by transforming finite paradoxes into infinite ones.

1. Sorensen: Self-reference not essential

That paradoxes arise from self-reference or circularity has long seemed a
natural idea. Bertrand Russell designed his theory of types so as to make cir-
cularity impossible in the formation of sets. Sorensen has argued for some
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time that self-reference is not essential for paradoxes to arise. In a number
of publications (1982, 1984, 1988) he has presented the concept of blindspot
as the key to the solution to the so-called prediction paradox. The prediction
paradox concerns an unpleasant event that will be unexpected to those to
whom it is announced. In the case of the surprise examination, a teacher an-
nounces an unexpected examination before the end of the week. The students
reason that the exam cannot be given on Saturday, as that would make the
exam expected by Friday night. Once Saturday has been eliminated, Friday
becomes effectively the last day of the week, so that on Thursday night the
exam will be expected on Friday. This means that Friday can be eliminated.
In the same way the other days can be eliminated one by one. The reason-
ing shows that the announcement is inconsistent and the students conclude
that an unexpected exam cannot be given. The paradox arises because, when
the teacher gives the exam on, say, Tuesday, it is completely unexpected. In
other words, the teacher’s statement is first shown to be inconsistent and is
then made true.

Sorensen’s solution is based on the notion of blindspot, which is defined as
follows. A proposition p is an epistemic blindspot for person A if and only
if p is consistent, while the statement ‘A knows p’ is inconsistent. An ex-
ample of an epistemic blindspot is ‘It is raining but Bob doesn’t know this.’
This is an epistemic blindspot for Bob, but not for others. A proposition is
called a conditional blindspot if it is equivalent to a conditional whose con-
sequent is an epistemic blindspot. Sorensen now claims that if a proposition
is a conditional blindspot for a person A, then it is possible for A to know
the proposition and it is possible for A to know the antecedent, but it is not
possible for A to know both the proposition and the antecedent. Blindspots
and conditional blindspots are statements with a special status. When some-
body is informed of a statement that is a blindspot for him, he will have to
recognize it as a blindspot and conclude that it is unknowable for him, not
that it is false. Similarly, a conditional blindspot may become unknowable
when somebody knowing it is informed of the antecedent.

The teacher’s announcement is a conditional blindspot for the students.
Once they know that the exam has not been held on Friday, their knowledge
turns into a blindspot: they know that the exam will be held on Saturday
and that they cannot know this. According to Sorensen’s rule the announce-
ment becomes unknowable for them once the exam has not been held on
Friday. This means that the students cannot reason backwards. They cannot
conclude that the assumption that the exam has not yet been held on Friday
leads to a contradiction. It only leads them to conclude that they are saddled
with a blindspot, which is unknowable for them.

Sorensen (1988, p. 298) claims that the self-referential approach to the
solution of the paradox is mistaken. Although he does not explicitly say
so, it is clear that he assumes that his blindspot solution does not involve
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SELF-REFERENCE IN FINITE AND INFINITE PARADOXES 17

self-reference. In a trivial way this is indeed the case. Sorensen is of the
opinion that a genuine solution of a paradox should not only explain how
the problem arises, but also indicate how the problem is eliminated. He
achieves this by introducing his rule that blindspots are unknowable. As
long as this rule applies, the paradox does not arise, and obviously there
is no self-reference. The cause of the original paradox is simply taken to
be the violation of this rule. Sorensen’s solution involves a modification of
the rules of logic (it could even be claimed that the introduction of the rule
that blindspots are unknowable is ad hoc: its only function is to eliminate
the paradoxes arising from blindspots). The question of how the paradox
arises when the generally accepted rules of logic apply and blindspots are
taken to be knowable is not discussed by Sorensen. (Later in the same book
Sorensen abandons his solution and comes up with a completely different
one; we have shown elsewhere (Jongeling & Koetsier 2001) that his reasons
for abandoning the blindspot solution are flawed and we will ignore this
alternative approach.)

We have shown earlier (Jongeling & Koetsier 1993) that when the paradox
is analysed in terms of the received, unmodified rules of logical reasoning it
is seen to be self-referential. The phrase ‘unexpected’ can be taken to mean
‘not derivable from the available information’. At any moment the students
have a ‘store of information’, and anything that cannot be derived from the
store of information is unexpected if it happens. According to this interpreta-
tion the teacher’s statement refers to the students’ store of knowledge (‘there
will be an exam, and you cannot derive this from the content of your store of
knowledge’). This means that, as soon as the students accept the statement
and add it to their store of knowledge, a certain kind of self-reference is in-
troduced: the statement now refers to a set, the students’ store of knowledge,
of which the statement itself is an element. A blindspot S of the form ‘p & A
does not know p’ figuring in Sorensen’s solution can be taken to say ‘p & p is
not in A’s store of knowledge’. When S is accepted by A, it enters A’s store
of knowledge. However, p can be derived from S and enters A’s store of
knowledge as well. The contradiction that arises now involves self-reference
because S refers to A’s store of knowledge and is itself part of A’s store of
knowledge. (That the announcement can be made true results from the fact
that the term ‘unexpected’ refers to the store of knowledge of the students
before the exam takes place; in Sorensen’s terms we can say that after the
event the announcement is no longer a blindspot for the students.) From this
analysis it is clear that Sorensen’s claim that self-reference is not involved in
the prediction paradox is incorrect. Sorensen manages to ignore the under-
lying cause of the paradox, because he concentrates on how to prevent the
paradox from arising. If the rule that blindspots are unknowable is followed
no paradox arises, and there is no self-reference. The kind of self-reference
that plays a role in the prediction paradox is obviously different in character
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18 TJEERD B. JONGELING, TEUN KOETSIER AND EVERT WATTEL

from that involved in the liar. In the liar a statement refers directly to itself;
in the prediction paradox a statement refers to a set of statements of which it
is itself an element.

Sorensen has also argued that self-reference is not a necessary condition
for paradox to arise on the basis of an infinite paradox discovered by Yablo
(1985) in which no self-reference is apparent. Yablo’s paradox can be repre-
sented as follows in the form of infinitely many statements:

S(1) For all y > 1: non- S(y)
S(2) For all y > 2: non- S(y)
S(3) For all y > 3: non- S(y)
. . . .
Etc.

Each sentence only refers to sentences later in the sequence, so that none
refers directly or indirectly (via a loop) to itself. If the first statement is
assumed to be false, at least one of the following statements is true. Call this
statement N . As N is true, N + 1 is false. This means that at least one of
the statements following N is true, contrary to N . If S(1) is assumed to be
true, take S(1) to be N . No consistent ascription of truth values is possible.

Sorensen (1998) reasons that Yablo’s paradox is simply a liar paradox
smeared out into infinity. He argues that not only liar paradoxes, but also
many other paradoxes, such as Russell’s paradox, have infinitary counter-
parts that do not involve self-reference. He claims this suggests that para-
doxes in general do not essentially involve self-reference, as it seems likely
that with any paradox there corresponds a Yabloesque version that is self-
reference free.

2. Priest: Self-reference essential

While both Yablo and Sorensen argue that Yablo’s paradox demonstrates
that self-reference is not essential for paradox, Priest (1997) claims that even
in Yablo’s paradox there is a hidden form of self-reference. We shall give
the argument in the form presented by Hardy (1995), which brings out the
role of finitary and infinitary procedures. If Yablo’s paradox is formulated
in the form of an infinite sequence of sentences in a formal system of first
order logic, attempts to consistently ascribe truth values to all statements do
not lead to a contradiction. This is virtually self-evident, as a formal proof
that no consistent ascription of truth values is possible would have to be of
finite length. Only a finite number of the sentences S(n) can figure in a finite
derivation. But a finite subset of the sentences S(n) is not paradoxical and
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SELF-REFERENCE IN FINITE AND INFINITE PARADOXES 19

can be ascribed truth values consistently. Therefore no contradiction can be
formally derived.

In order to derive a contradiction from the ascription of truth values the
paradox has to be formulated in a finite form, says Priest. This is easy, as
all the statements have the same form. The sequence of statements can be
replaced by

For all n : S(n) ⇔ For all k > n : non-S(k, S)

in which S is the two-place satisfaction relation between numbers and predi-
cates. The paradoxical character of this statement can be derived easily. The
predicate S, however, is defined as S(n) = For all k > n : non-S(k). This
means that a form of self-reference has returned, as the predicate is defined
in terms of itself. (It should be noted that this is again a different form of
self-reference, viz. a predicate that is defined in terms of itself, instead of
a statement that refers to itself or to a set of which it is itself an element.
It could be argued that here we have to do with a more dilute form of self-
reference than in the other cases. No reference is involved in the strict sense
of a sentence that refers to itself or to a sentence involving itself.)

Priest claims that, as the impossibility of consistently ascribing truth val-
ues to the statements of Yablo’s paradox cannot be formally derived, the
paradox has to be formulated differently, in finite terms. However, in phras-
ing Yablo’s paradox not in the form of infinitely many sentences but in the
form of one sentence, he changes the character of the paradox. As formu-
lated by Yablo the paradox is ω inconsistent. A system is called ω inconsis-
tent if not only the statements S(1), S(2), S(3) . . . but the statement ‘non-
[For all n : S(n)]’ as well can all be proved. A system in which an inconsis-
tency can be derived is called simply inconsistent. In a system that is simply
consistent but ω inconsistent, formally no inconsistent statement can be de-
rived, but an infinite set of statements can be derived that intuitively seems
inconsistent. Strictly reasoning on the basis of simple consistency, as Priest
seems to advocate, one would have to conclude that Yablo’s paradox is not a
paradox at all, because its paradoxical character cannot be derived in a finite
number of steps. What Priest does is something quite different. What he
says is basically: Yablo’s paradox is obviously paradoxical, and as we can’t
demonstrate this in the form in which it is presented, we have to formulate it
differently, so that the impossibility of consistently ascribing truth values can
be derived in a finite number of steps. But this means that he replaces a set
of statements that is simply consistent but ω inconsistent by a single state-
ment that is simply inconsistent. This new, finite paradox involves a form
of self-reference. Contrary to what Priest suggests, this does not imply that
the original infinite Yablo paradox involves self-reference. The original infi-
nite paradox is different in structure from the finite paradox by which Priest
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20 TJEERD B. JONGELING, TEUN KOETSIER AND EVERT WATTEL

replaces it. Priest also claims that the sequence of statements constituting
Yablo’s paradox can only be generated with the help of a predicate that is
self-referential. We think this is irrelevant. Once the sequence has been gen-
erated, it has a certain structure which is not self-referential, and that is what
matters.

3. The Golden Mean

The positions about paradoxes of Sorensen and Priest seem totally contradic-
tory. Sorensen claims that self-reference is never essentially involved, Priest
claims that self-reference is always involved. As we have shown, Sorensen’s
claim is incorrect for the finite situation of the prediction paradox, but it
seems quite convincing for the infinite situation of Yablo’s paradox. Priest
proves his case by arguing that Yablo’s paradox should properly be formu-
lated in finite form, but it is clear that the resulting finite paradox is differ-
ent in structure from the original infinite paradox. We shall demonstrate a
result that suggests that the two viewpoints can be combined, and that self-
reference is necessarily involved in finite paradoxes, but not in infinite ones.

Our result is based on the following intuitive idea. If a statement S1 refers
to one or more other statements Si and ascribes a certain truth value to some
function of the Si, the truth value of S1 itself depends on the truth values of
the Si. The truth values of the Si may in turn depend on other statements.
The relations between the statements form a graph. If the graph is finite and
contains no self-referential loops, it is possible, starting at S1, to move down
along the graph to the ends of the branches, to establish the truth values at
the end nodes, and working one’s way backward to the origin, to determine
unambiguously the truth values at the nodes and finally S1. No contradic-
tion, no paradox can arise. (The graph need not be a tree, as there may be
what we define further down as ‘double-referential cycles’.) If the graph is
infinite, we cannot do this; at least along some branches there are no end
nodes that we can reach. In a finite graph with self-referential loops the situ-
ation is similar. Not all branches terminate in an end node. This suggests that
nothing can go wrong in finite sets of statements without self-reference, but
that contradictions may arise both in sets of statements with self-reference
(loops) and in infinite sets (whether they contain loops or not).

In this context a paradox is a set of statements to which no truth values
can be assigned consistently. This implies that we do not consider paradoxes
like Buridan’s Sophism 8 (Goldstein 1999, p. 286), which has the form: S1

says S2 is false, and S2 says S1 is false. These statements are ‘paradoxical’
in the sense that truth values can be assigned in two different ways (S1 is
true and S2 is false, and the other way round) and that there is no reason to
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SELF-REFERENCE IN FINITE AND INFINITE PARADOXES 21

prefer either. This is of course a curious situation, but it is not a paradox in
the sense in which we use the term in this paper.

4. Finite liars require self-reference

We use a language suitable to handle classical propositional logic. We re-
strict ourselves to propositions that are either finite or infinite conjunctions or
disjunctions of finite expressions. First we will consider finite propositions.
In Section 5 we will also consider infinite propositions. A graphical repre-
sentation of the referential pattern sometimes facilitates its understanding.
Let us consider an example.

Example 1
(S1) non-S2

(S2) S3 & S4

(S3) non-S5

(S4) non-S6

(S5) S7 & S8

(S6)
(S7) non-S8

(S8)
Example 1 can be graphically represented as follows.
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Example 1
(To the right of each node the type of proposition is indicated)
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22 TJEERD B. JONGELING, TEUN KOETSIER AND EVERT WATTEL

If, as in Example 1, there is no self-reference, we can name the proposi-
tions in such a way that, for all n, Sn only refers to propositions Sk with
k > n. It is often convenient to distinguish, within the sequence, levels 0, 1,
2, 3, etc. Sentences that are not referred to by other propositions constitute
level 0. Sentences that are only referred to from level 0 constitute level 1.
In general: propositions that are referred to from level n propositions and
not from propositions that do not belong to the levels 0 through n, constitute
level (n + 1). This means that if there is no self-reference and the levels
are defined in this way, the propositions at a particular level only refer to
higher-level propositions. (NB Note that higher-level propositions are fur-
ther downward in the graphical representations.) If there is self-reference
in a sequence of propositions the notion of level is no longer meaningful,
although we can still use graphical representations. In general, if there is no
self-reference, the truth value of a proposition is determined by the truth val-
ues of all higher-level propositions. This yields the following general result:
If we have a finite sequence of finite propositions without (direct or indirect)
self-reference,

(S1)E1(S2, S3, S4, . . .)
(S2)E2(S3, S4, S5, . . .)
.
(Sn−1)En−1(Sn)
(Sn),

no paradox can arise. Here Ei(Sj , . . . Sj+k) denotes a proposition defined
in terms of the propositions Sj through Sj+k.
Proof. Because the number of propositions is finite, the number of levels
will be finite. This means that we can assign arbitrary truth values to all
atomic propositions, including the propositions at the highest level, which
are necessarily all atomic. By moving along the levels from the highest to
level 0, we establish that the sequence S1 through Sn can be satisfied and
cannot be paradoxical.

From this we conclude by contraposition: Liar-paradoxes consisting of a
finite number of finite propositions must necessarily contain direct or indirect
self-reference.

In the next section we will generalize this result.

5. Infinite liars without self-reference

We will consider infinite sequences of propositions without self-reference
and we will derive four necessary conditions for paradox. First of all, from
the result of Section 4 we can immediately draw the conclusion that
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(i) a necessary condition for a paradox without self-reference is that the se-
quence of propositions is infinite.
(ii) a necessary condition for a paradox without self-reference is that the
sequence of propositions is such that if we remove for arbitrary k all propo-
sitions belonging to the levels 0 through k from the sequence, the remaining
sequence is still paradoxical.
The proof is easy. Suppose after such a removal the remaining sequence can
be satisfied. Then the original sequence can also be satisfied, because the
truth value assignment for the reduced sequence can be extended to a truth
value assignment for the whole sequence by ‘moving upwards in the graph’.
(iii) a necessary condition for a paradox without self-reference is that there
exists in the sequence of propositions an infinite referential path. This means
that in the graphical representation there exists an infinite path starting at
level 0 and reaching, for all levels k, levels lower in the graph.
Proof. Suppose we have a paradox without self-reference and all paths start-
ing at level 0 are finite. Then they all end in atomic statements. By system-
atically assigning arbitrary truth values to all atomic statements, the truth
values of all the other propositions are uniquely determined. Contradiction.
So at least one path must be infinite.
(iv) a necessary condition for a paradox without self-reference is that the
sequence of propositions contains, for all levels k, infinitely many infinite
propositions on levels lower in the graph.
We first prove a lemma: an infinite sequence of finite propositions without
self-reference can never be paradoxical. The proof can also be given by
means of the compactness theorem for propositional logic.
Consider an infinite sequence of finite propositions that starts as follows:

(S1) non-S2

(S2) S3 & S4

(S3) non-S4

(S4) non-S5

(S5) S6 & S7 & S8

Etc.

Let Vn be the set of all possible truth value assignments that satisfy S1

through Sk, where k is the largest index that occurs in the definitions of
S1 through Sn. This means that, for n = 1, we consider the definitions
of the propositions S1 and S2. In the example V2 is the set of all possible
truth value assignments that satisfy S1 through S4, because S1 refers to S2

while S2 refers to S3 and S4, so that the largest index that is referred to is
4. In the example we have V1 = {01, 10}, V2 = {1001, 1010, 1000, 0111},
V3 = {1001, 1010}, V4 = {10010, 10101}, etc. (The elements of Vn are
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represented as binary sequences; so 10010 in V4 corresponds to the assign-
ment true, not true, not true, true, not true to respectively the propositions
S1 through S5.) The sets Vn are all non-empty (because of the result of
Section 4) and they are finite (because the propositions are finite). More-
over, clearly all elements of a set Vn are extensions of, or equal to, certain
elements of Vn−1.

For all k there is at least one element r in Vk that is such that for all n > k
this element is identical with the initial part of some element of Vn. In other
words: for all k there is at least one element r in Vk that can be extended
indefinitely far. Why? Suppose such an element does not exist. Then for all
elements ρ of the finite set Vk there would be a number h such that ρ can be
extended to an element of Vh, but not to an element of Vh+1. Because Vk

is finite this would imply that the elements of Vk would not allow extension
beyond a certain length, which would contradict the fact that arbitrary long
finite sequences of propositions possess truth value assignments.

We can now show that the sequence of propositions cannot be paradoxical.
We choose an element e1 from V1 that allows arbitrarily long extensions.
Then we choose from V2 an element e2 that is an extension of e1 and allows
infinitely long extensions. Then we choose from V3 an element e3 that is an
extension of e2 and allows infinitely long extensions, etc. Step by step we
extend the truth value assignment and because the process can be repeated
indefinitely this proves the existence of an infinite sequence of truth values
that satisfies the infinite sequence of propositions. N.B. In a formal treatment
we would need a weak axiom of choice.

This lemma actually generalises the result from Section 4. We now also
have: Liar-paradoxes consisting of a infinite number of finite propositions
necessarily contain direct or indirect self-reference.
Proof of condition (iv): From the lemma we can immediately draw the con-
clusion that if an infinite sequence without self-reference is a paradox it con-
tains at least one infinite proposition. Necessary condition (ii) implies that
the number of infinite propositions must be infinite.

The result we have derived applies only to a certain class of liar paradoxes,
viz paradoxes that can be formulated in terms of the restricted language of
propositional logic that we have used here. This means that it only concerns
the first type of self-reference we have come across, involving statements
that directly or indirectly refer to their own truth value. We should not be
surprised, however, if our result is valid more generally.

6. The flow of truth values and double references

In this section we consider a simplified language, in which all propositions
are either conjunctions of other propositions and contain no negations, or
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consist of a once-negated proposition. Self-reference in the graphs of Exam-
ples 2 and 3 corresponds to the occurrence of cycles that return to the starting
point when the direction of the arrows is followed. We will call them self-
referential cycles. Self-referential cycles with an odd number of negations
always limit the possible truth value assignments. It is clear that an isolated
cycle with an odd number of negations is necessarily paradoxical. However,
in Example 2 the result of the presence of the cycle is that S3 can only have
the truth value 0, and then S4 must necessarily have truth value 1. Example 3
shows there is another way to limit possible truth value assignments. There
is an (indirect) double reference from S4 to S6. The result is that S4 must
necessarily have truth value 0. This indirect double reference to a proposi-
tion from a higher-level proposition corresponds to a different type of cycle
in the graph, viz. one that leads to the same point via two different routes.
We will call such cycles double-referential cycles. Double-referential cycles
with an odd number of negations also limit the possible truth value assign-
ments. (We discuss double references only in the context of the simplified
language. In graphical representations of sequences of simplified-language
propositions double references appear as separate links. In more complex
languages a proposition may refer to another proposition in more than one
way, which does not show up in the corresponding graph.)

When we identify the S4 in Example 2 with the S4 in Example 3, that
is when we paste the two graphs together, the result is paradoxical. The
self-referential cycle forces S4 to possess truth value 1, while the double-
referential cycle forces that same truth value to be 0. Although it is not
difficult to construct finite liar paradoxes in this way, one has to be careful.
A paradoxical cycle does not necessarily remain paradoxical when another
graph is pasted on to it, if as a result of the pasting a new conjunction is
introduced.

This example shows that a paradox can be produced by splicing a self-
referential graph on to a double-referential graph. Is it also possible to pro-
duce a paradox by splicing two double-referential graphs? The answer is:
no. In a double-referential graph the element whose truth value is forced is
at (what is in the figure) the top of the graph. It is easily possible to con-
struct two double-referential graphs that have different truth values at their
top elements. However, by identifying these elements so as to paste the two
graphs, we change the character of the top element: we introduce a new
conjunction and as a result the expected paradox does not materialise. In
self-referential graphs, the element whose truth value is forced can be situ-
ated at the bottom, and in that case the graph can be pasted on to another
one without a change in the character of the linking element, and as a result
a combination of a self-referential graph with a double-referential graph or
of two self-referential graphs can be paradoxical.
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Although double-referential cycles with an odd number of negations can
play an interesting role in finite paradoxes, they can produce paradox only in
combination with self-referential graphs. In finite paradoxes, self-reference
is absolutely essential. In infinite paradoxes the situation is different. For
paradoxes formulated in the simplified language used in this section we can
formulate another condition that highlights the role of double references.
(v) a necessary condition for a paradox without self-reference is that the
sequence of propositions contains infinitely many double references, which
occur at infinitely many levels. The proof runs as follows. Suppose we have
a paradox without self-reference and there are no double references at all. In
this case we can construct a truth value assignment starting from an arbitrary
assignment on level 0 and from that assignment derive a possible assignment
on level 1, from that one for level 2, etc. The conclusion is that the sequence
of propositions can be satisfied, which contradicts the assumption that the
sequence is paradoxical. This means that there must be at least one double
reference. However, because of necessary condition (ii) the existence of one
double reference implies the existence of infinitely many double references.

Yablo’s paradox can be formulated in the simplified language in the fol-
lowing way.

(S1) S′

2 & S′

3 & S′

4 . . .
(S′

2) non-S2

(S2) S′

3 & S′

4 & S′

5 . . .
(S′

3) non-S3

Etc.
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Some of the paradoxes discussed in the following section (e.g. example 5)
cannot be formulated in the simplified language.

7. Yablo’s paradox

The referential pattern of Yablo’s paradox clearly satisfies the necessary con-
ditions of Sections 5 and 6. The five conditions derived in the preceding
sections are not sufficient for paradox. If the proposition “The following
propositions are all true” is repeated ω times, the conditions (i) through (v)
are all satisfied, but we have no paradox. So what brings about Yablo’s para-
dox?

The infinite sequence of propositions that constitutes Yablo’s paradox is a
limit sequence of a sequence of sequences Seq 1, Seq 2, Seq 3, ..., Seq n,
etc. with Seq n = [S1, S2, . . . , Sn]. The informal notion of limit that we use
here can easily be made precise. Clearly for all n, Seq n can be satisfied,
while the limit sequence cannot! From this point of view Yablo’s paradox
and similar paradoxes exhibit a particular discontinuity phenomenon. The
way in which the multiple references do the job becomes clearer if we look
at the way in which Seq n can be satisfied. Independently of what truth value
we assign to Sn the truth values of S1 through Sn−2 are necessarily 0 while
the truth values of Sn−1 and Sn must be opposite. The referential structure
of Seq n very much limits the possible assignment of truth values. All truth
values necessarily become 0 except for one unique truth value 1 that must
occur in one of the last two propositions. In a way the referential structure
in Yablo’s sequence of propositions still implies a true proposition among
the last two propositions, while at the same time there are no last proposi-
tions. This rather heuristic analysis finds some support in what happens in
the following example. By defining the limit somewhat differently we get a
sequence of ordinal number ω + 1.

Example 4
(S1) The following propositions are all not true
(S2) The following propositions are all not true
.
.
(Sn) The following propositions are all not true
Etc.
(Sω) The following propositions are all not true

Example 4 constitutes no paradox: We can assign truth value 1 to the last
proposition and truth value 0 to all the others. It is easy to construct other



“02koetsier”
2004/3/16
page 28

i

i

i

i

i

i

i

i

28 TJEERD B. JONGELING, TEUN KOETSIER AND EVERT WATTEL

sequences that possess a similar discontinuity at infinity.

Example 5
(S1) Among the following propositions there are at least 3 propositions

not true.
(S2) Among the following propositions there are at least 3 propositions

not true.
.
.
(Sn) Among the following propositions there are at least 3 propositions

not true.
Etc.

Seq n is such that the truth values of S1 through Sn−3 are necessarily 1.
The truth values of Sn−2 through Sn are necessarily all zero. For the limit
sequence there exists no truth value assignment.
Remarkable is also:

Example 6
(S1) For all k greater than 1 of which the decimal representation of k ends

in 1, Sk is not true
(S2) For all k greater than 2 of which the decimal representation of k ends

in 2, Sk is not true
.
.
(Sn) For all k greater than n of which the decimal representation of k ends

in the decimal representation of n, Sk is not true
Etc.

In Example 6 the referential structure of Seq n is such that all possible truth
value assignments to S1 through Sn have for growing n necessarily an ini-
tial segment of zeroes that grows indefinitely in length, while there is also
necessarily a last segment consisting (partially) of ones.

8. Conclusion

Until now the discussion on the question of whether self-reference is essen-
tially involved in paradoxes has not led to any definite conclusions. Sorensen
claims that self-reference is not essential for paradox to arise. His argu-
ment concerning the finite prediction paradox is incorrect, and in the case
of liar paradoxes his claim is refuted by the theorem we have proved. For
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infinite paradoxes his stance is based on Yablo’s paradox and is more con-
vincing. Priest on the other hand argues that even Yablo’s paradox involves
self-reference. He derives his result by replacing the original infinite Yablo
paradox by an analogous finite one, which does involve self-reference. We
have argued that Yablo’s paradox is an independent infinite paradox, which
involves ω-inconsistency and is not self-referential. The mathematical result
that we have derived shows that finite liar paradoxes necessarily involve self-
reference, while infinite ones need not involve self-reference, although they
have to satisfy a number of other conditions. This theorem suggests how
Sorensen and Priest can reach their contradictory conclusions. Sorensen
bases (part of) his argument on the infinite Yablo paradox and then gen-
eralises to all paradoxes, while Priest transforms Yablo’s paradox into an
analogous finite one.
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