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ON CLASSICAL ADAPTIVE LOGICS OF INDUCTION∗

DIDERIK BATENS AND LIEVEN HAESAERT

Abstract
This paper concerns the inference of inductive generalizations and
of predictions derived from them. It improves on the adaptive logic
of induction from [6] by presenting logics that are formulated strictly
according to the usual adaptive standards. It moreover extends that
paper with respect to background knowledge.

We present logics that handle inductive generalizations as well as
logics that handle prioritized background knowledge of three kinds:
background generalizations, pragmatic background generalizations
(the instances of which may be invoked even after the generaliza-
tions are falsified), and background theories. All logics may be
combined into a single system.

1. Aim of this Paper

This paper provides further evidence that inductive reasoning is a combina-
tion of forms of reasoning, each of which is characterized by a simple and
intuitive adaptive logic. The adaptive logics can be combined in a straight-
forward way and the combined system characterizes inductive reasoning; its
dynamic proof theory explicates actual inductive reasoning. It is essential
for the dynamic proof theory that the combination of logics forms a single
system in that all tasks are handled at the same time. In other words, the data
are not closed by one consequence relation — for example the one settling
which background theories are retained — before another consequence re-
lation is applied — for example the one by which local generalizations are
derived.

An adaptive logic of induction LI was presented in [6]. In its simplest
guise, this logic leads from data to the right inductive generalizations and to

∗Research for this paper was supported by subventions from Ghent University and from
the Fund for Scientific Research – Flanders, and indirectly by the the Flemish Minister re-
sponsible for Science and Technology (contract BIL01/80). We are indebted to Dagmar
Provijn and Liza Verhoeven for comments on a previous draft.
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256 DIDERIK BATENS AND LIEVEN HAESAERT

the consequences that are derivable by CL (Classical Logic) from the data
together with the derived generalizations — these are called local general-
izations. LI also handles background generalizations. The underlying idea
is that a background generalization is retained iff it is compatible with the
data. Background generalizations that are falsified by the data are discarded.
When background generalizations are present, the ‘local’ generalizations are
derived from the data together with the retained background generalizations.

We shall briefly present LI in Section 2. In the subsequent sections, we
modify and extend LI. A central modification is that the adaptive logic that
handles inductive generalization is clearly separated from adaptive logics
that take care of different kinds of background knowledge. A central reason
for a further modification is technical in nature. As [6] was written for the
philosophy of science community, the presentation avoids some technical
complications. As a result, LI does not strictly fit the usual adaptive logic
format. We shall repair this in Section 3 for the logic of inductive general-
ization. This is not only important for systematic reasons, but also because it
is fairly easy to handle the metatheory of adaptive logics that are formulated
in the standard format — see [5] for some evidence for this claim.

Thus formulated, adaptive logics are also more transparent from a logical
point of view. It will turn out that the system obtained by this reformula-
tion is slightly richer than LI. Moreover, both the Reliability strategy and the
Minimal Abnormality strategy turn out to be sensible from the new perspec-
tive.1 The new systems for inductive generalization will be called ILr and
ILm respectively and will be presented in Section 3 — the first uses the Re-
liability strategy, the second the Minimal Abnormality strategy. The relation
with LI will be discussed.

Further reasons to modify LI relate to the way in which background gen-
eralizations are handled. First, not all background generalizations need to
be assigned the same priority. If two of them are jointly incompatible with
the data, the priorities may determine that the one is retained while the other
is discarded. Next, background generalizations are often retained in a weak
sense, at least until better replacements are found, even after being falsified
— see for example [12]. To be more precise, instances of such background
generalizations are supposed to apply, even if the generalization is falsified,
unless and until the instances themselves are shown incompatible with the
data. Let us call them pragmatic background generalizations.2 Remark that

1 LI proceeds in terms of Reliability and the variant obtained by the minimal Abnormality
strategy does not seem very sensible. Adaptive strategies and their effects will be discussed
in Section 3.

2 Just to avoid confusion: a pragmatic background generalization is stronger than a non-
pragmatic one in that, even if it is falsified, its instances are retained wherever possible.
However, we do not suppose that all pragmatic background generalizations are falsified.
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ON CLASSICAL ADAPTIVE LOGICS OF INDUCTION 257

different pragmatic background generalizations may also be assigned a dif-
ferent priority. Thus, if both (∀x)(Px ⊃ Qx) and (∀x)(Rx ⊃ ∼Qx) are
pragmatic background generalizations, and the data contain both Pa and Ra
(and neither Qa nor ∼Qa), the priorities may determine that Qa applies
whereas ∼Qa does not. The logics that handle background generalizations
as well as pragmatic background generalizations will be spelled out in Sec-
tions 5 and 6. They will be called ILgr and ILgm — the “g” in the superscripts
refers to the fact that background generalizations are handled by these logics.

Incidentally, we shall not allow for local (that is: inductively derived)
pragmatic background generalizations. Pragmatic background generaliza-
tions usually find their origin in either a theory, a worldview or a conceptual
frame. If this theory, worldview or conceptual frame is known to be mis-
taken, in view of falsifications, one may hope that it will be partially retained
in a non-falsified replacement (which usually will require some restructuring
or even a conceptual shift). This is why a pragmatic background generaliza-
tion (∀x)(Px ⊃ Qx) should not be interpreted as “most P are Q”. The idea
is rather that there is an as yet unknown P ′, which is closely related to P ,
and an as yet unknown Q′, which is closely related to Q, and that all P ′ are
Q′.

A realistic approach to background knowledge requires that one also han-
dles background theories, rather than isolated generalizations. We discuss
the matter in Section 7. This results in two logics which we shall call LItr

and LItm — the “t” in the superscripts obviously refers to “theories”.
In Section 8, all these logics are combined into a single logic. All back-

ground knowledge that is jointly compatible with the data has effects on
predictions from the data. The joint compatibility is judged in terms of the
priorities of the background knowledge. Moreover, the data and all retained
background knowledge have priority over the local generalizations. Put dif-
ferently, local generalizations are inductively derived from the data supple-
mented with the retained background knowledge.

Some open problems are listed in Section 7 of [6]. It seems useful to men-
tion from the outset that inconsistent background knowledge will be disre-
garded throughout the whole paper because it requires an approach that is
by no means difficult — inconsistency-adaptive logics are well mastered —
but that departs drastically from the present logics — that all rely on CL and
modal extensions of it.
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258 DIDERIK BATENS AND LIEVEN HAESAERT

2. The Inductive Logic LI

The first adaptive logic of induction was LI from [6]. In this section we
briefly present it. Although LI does not fully agree with the standard adap-
tive logic format, it is characterized by a dynamic proof theory. Dynamic
proof theories proceed in terms of conditional rules, unconditional rules and
a Marking definition. The unconditional rules are those of CL, which is the
so-called lower limit logic. The conditional rules are responsible for the am-
pliative character of the logic: they lead to generalizations. To distinguish
such ‘derived’ generalizations from the background generalizations, they are
called local generalizations.

The lines of a dynamic proof have five elements: (i) a line number, (ii) a
derived formula A, (iii) the line numbers of the formulas from which A is
derived, (iv) the rule by which A is derived, and (v) the set of formulas
that should behave normally in order for A to be so derivable. All this will
become clear below.

LI is formulated for the standard predicative language (with identity). It
takes ordered sets as premises, such as Σ = 〈Γ, Γ∗〉, in which Γ is a set
of empirical data and Γ∗ is a set of background generalizations (conditional
premises). The data are singular statements (of any form). The background
generalizations are considered as the result of inductive inferences made in
the past. For this reason, they are generalizations in the technical sense of
the term: closed formulas of the form ∀(A ⊃ B), in which ∀ abbreviates
a sequence of universal quantifiers and A ⊃ B is purely functional — no
individual constant, sentential letter or quantifier occurs in it. We refer the
reader to [6] for the justification of this decision.

We shall illustrate the LI-proof theory by means of a (very) simple exam-
ple: let Γ = {(Pa∧∼Qa)∧∼Ra,∼Pb∧ (Qb∧Rb), P c∧Rc, Qd∧∼Pe}
and Γ∗ = {(∀x)(Px ⊃ ∼Qx), (∀x)(Qx ⊃ Rx), (∀x)(Px ⊃ Rx)}.

Γ contains the empirical data, which function just as usual premises. The
background generalizations in Γ∗ are also a sort of premises, but they are
handled in a special way because they are defeasible. We shall disregard
them for a while, and only introduce members of Γ by the premise rule:

PREM If A ∈ Γ, one may add a line comprising the following elements:
(i) an appropriate line number, (ii) A, (iii) −, (iv) PREM, and (v) ∅.

We shall present the rules of inference in generic form,3 and call them
RU (unconditional rule) and RC (conditional rule) respectively. RU simply
comes to applying CL, with one small difference.

3 This simplifies the task of listing the rules, but there obviously is nothing essential to it.
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ON CLASSICAL ADAPTIVE LOGICS OF INDUCTION 259

RU If A1, . . . , An `CL B and each of A1, . . ., An occur in the proof on
lines i1, . . . , in that have conditions ∆1, . . ., ∆n respectively, one
may add a line comprising the following elements: (i) an appropri-
ate line number, (ii) B, (iii) i1, . . . , in, (iv) RU, and (v) ∆1∪. . .∪∆n.

Remark that RU simply adds the union of the conditions of its premises
to its conclusion. Conditions are introduced by the rules RC and BK — the
latter serves to introduce background generalizations.

RC Where A is a generalization, one may add a line comprising the
following elements: (i) an appropriate line number, (ii) A, (iii) −,
(iv) RC, and (v) {A}.

Unlike what is the case for the conditional rule of most other adaptive
logics, the present RC enables one to write down just any generalization at
any point in the proof. We shall soon see that this is harmless in view of the
Marking definition. At present, let us look at our example.

1 (Pa ∧ ∼Qa) ∧ ∼Ra − PREM ∅
2 ∼Pb ∧ (Qb ∧ Rb) − PREM ∅
3 Pc ∧ Rc − PREM ∅
4 Qd ∧ ∼Pe − PREM ∅
5 (∀x)(Qx ⊃ Rx) − RC {(∀x)(Qx ⊃ Rx)}
6 Rd 4, 5 RU {(∀x)(Qx ⊃ Rx)}
7 (∀x)(∼Px ⊃ Qx) − RC {(∀x)(∼Px ⊃ Qx)}
8 Qe 4, 7 RU {(∀x)(∼Px ⊃ Qx)}

So, we have introduced two generalizations, and we have derived conclu-
sions from the data together with the generalizations. In order to obtain Rd,
we relied on the supposition that (∀x)(Qx ⊃ Rx) behaves normally. For
the time being, read this as: its negation has not been derived on the empty
condition (there is no line that has ∼(∀x)(Qx ⊃ Rx) as its second element
and ∅ as its fifth element). In general, LI presupposes that generalizations
behave normally, unless and until they are shown to behave abnormally.

9L10 (∀x)(Px ⊃ ∼Rx) − RC {(∀x)(Px ⊃ ∼Rx)}
10 ∼(∀x)(Px ⊃ ∼Rx) 3 RU ∅

Here we see the Marking definition at work.4 At line 9, we introduced
another generalization. At line 10, however, we obtained the negation of

4 We postpone the exact formulation of the Marking definition until we explained the
complication introduced by background generalizations.
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260 DIDERIK BATENS AND LIEVEN HAESAERT

the generalization on the empty condition. As a result, all lines that have
(∀x)(Px ⊃ ∼Rx) in their fifth element are marked — the superscripted
L10 indicates that line 9 is marked because it relies on a local (whence
the “L”) generalization that was shown to behave abnormally at stage 10
of the proof.5 Let us at once consider some more complex applications of
the Marking definition.

11L15 (∀x)(Px ⊃ ∼Qx) − RC {(∀x)(Px ⊃ ∼Qx)}
12L15 ∼Qc 3, 11 RU {(∀x)(Px ⊃ ∼Qx)}
13L15 (∀x)(Rx ⊃ Qx) − RC {(∀x)(Rx ⊃ Qx)}
14L15 Qc 3, 13 RU {(∀x)(Rx ⊃ Qx)}
15 ∼(∀x)(Px ⊃ ∼Qx)∨

∼(∀x)(Rx ⊃ Qx) 3 RU ∅

What is going on here? On line 15, it was shown that either (∀x)(Px ⊃
∼Qx) or (∀x)(Rx ⊃ Qx) behaves abnormally. As we have no clue as to
which of both behaves abnormally, we consider both as unreliable. This en-
ables us to make the Marking definition more precise. Remember that an
abnormality is the negation of a generalization. A disjunction of abnormal-
ities will be called a Dab-formula. It is handy to use the form Dab(∆) to
abbreviate the disjunction of the finite set of abnormalities ∆. Dab(∆) is a
minimal Dab-formula at a stage of a proof iff Dab(∆) occurs as the second
element of some line that has ∅ as its fifth element, and there is no ∆′ ⊂ ∆
such that Dab(∆′) occurs as the second element of some line that has ∅ as
its fifth element. A generalization A is unreliable at a stage of a proof iff ∼A
is a disjunct of a minimal Dab-formula at that stage. The Marking definition
will make sure that a line is marked if an unreliable (local) generalization
is a member of the fifth element of the line. This is why lines 11–14 are
marked. Incidentally, the marks of lines 11 and 12 would be removed at a
later stage, if the proof then would contain a line that has ∼(∀x)(Rx ⊃ Qx)
as its second element and ∅ as its fifth element.6

It is instructive to see what happens to generalizations that contain non-
instantiated predicates.

16L17 (∀x)(Px ⊃ Sx) − RC {(∀x)(Px ⊃ Sx)}
17 ∼(∀x)(Px ⊃ Sx) ∨ ∼(∀x)(Px ⊃ ∼Sx) 1 RU ∅

5 Stage i of a proof is obtained at the moment that line i is added to the proof.

6 Clearly, ∼(∀x)(Rx ⊃ Qx) is not a CL-consequence of the premises. We shall see,
however, that ∼(∀x)(Rx ⊃ Qx) is LI-derivable from the premises and retained background
generalizations.
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ON CLASSICAL ADAPTIVE LOGICS OF INDUCTION 261

Let us now have a look at background generalizations. As announced,
these are like premises, except for being defeasible. To be more precise, they
may be falsified by the data. This is why they are introduced by a special
rule, BK, which attaches a condition to them.

BK If A ∈ Γ∗, one may add a line comprising the following elements:
(i) an appropriate line number, (ii) A, (iii) −, (iv) BK, and (v) {A}.

As expected, the condition should be interpreted as: provided the general-
ization does not behave abnormally. Remark that, in the continuation of the
proof, one background generalization is at once marked.

18 (∀x)(Px ⊃ ∼Qx) − BK {(∀x)(Px ⊃ ∼Qx)}
19 (∀x)(Qx ⊃ Rx) − BK {(∀x)(Qx ⊃ Rx)}
20B21 (∀x)(Px ⊃ Rx) − BK {(∀x)(Px ⊃ Rx)}
21 ∼(∀x)(Px ⊃ Rx) 1 RU ∅

The mark of line 20 reads “B21” because a background generalization is
shown unreliable on line 21.

Now we come to an extremely important point which touches upon the
marking of background generalizations and upon their effect on the marking
of local generalizations. First, a background generalization is only unreliable
at a stage of a proof if, at that stage, there is a minimal Dab-formula, Dab(∆)
such that A ∈ ∆ and ∆ ⊆ Γ∗. This is why line 20 is marked in view of line
21, but line 18 is not marked in view of line 15. Indeed, (∀x)(Rx ⊃ Qx) is
not a background generalization.

The upshot is that line 15 is interpreted as follows: as (∀x)(Px ⊃ ∼Qx) ∈
Γ∗ and (∀x)(Rx ⊃ Qx) /∈ Γ∗, (∀x)(Px ⊃ ∼Qx) is considered as a reliable
background generalization and (hence) (∀x)(Rx ⊃ Qx) is considered as an
unreliable local generalization. As a result, the marks have to be modified at
stage 18 of the proof. Lines 13 and 14 remain marked because (∀x)(Rx ⊃
Qx) is considered as an unreliable local generalization. However, lines 11
and 12 are unmarked (from stage 18 on) because (∀x)(Px ⊃ ∼Qx) is a
reliable background generalization. Hence, ∼Qc is considered as derived at
stage 18 of the proof — it will remain considered derived at all later stages
as line 18 cannot be marked on the present premises).7

We now present the precise Marking definitions, starting with the marks
deriving from unreliable background generalizations.

7 That 11 is unmarked should not cause puzzlement. As (∀x)(Px ⊃ ∼Qx) is a retained
background generalization (from stage 18 on), one obviously can also introduce it as a local
generalization.
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262 DIDERIK BATENS AND LIEVEN HAESAERT

Definition 1 : Where Dab(∆1), . . . ,Dab(∆n) are the minimal Dab-formulas
at stage s of a proof from Σ = 〈Γ, Γ∗〉, U∗

s (Γ) =
⋃
{∆i ⊆ Γ∗ | 1 ≤ i ≤ n}.

Definition 2 : Where ∆ is the fifth element of line i, line i is B-marked iff
∆ ∩ U∗

s (Γ) 6= ∅.

U∗

s (Γ) comprises the background generalizations that are unreliable at
stage s of the proof. What remains of the background knowledge at stage
s will be denoted by Γ∗

s = Γ∗ − U∗

s (Γ) (the reliable background knowledge
at stage s). Intuitively, the background knowledge is restricted to Γ∗

s at stage
s of the proof.

Which local generalizations are unreliable is determined by the data and
the reliable background knowledge. A Dab-formula Dab(∆) will be called
a minimal local Dab-formula iff no formula Dab(∆′) occurs in the proof
such that (∆′ − Γ∗

s) ⊂ (∆ − Γ∗

s).

Definition 3 : Where Dab(∆1), . . . ,Dab(∆n) are the minimal local Dab-
formulas at stage s of a proof from Σ = 〈Γ, Γ∗〉, U◦

s (Γ) =
⋃
{∆i −Γ∗

s | 1 ≤
i ≤ n}.

Definition 4 : Where ∆ is the fifth element of a line i that is not B-marked,
line i is L-marked iff ∆ ∩ U ◦

s (Γ) 6= ∅.

U◦

s (Γ) comprises the unreliable local generalizations at stage s. These
generalizations may have been introduced by RC, they may be unreliable
background generalizations, and they may be generalizations that have not
even been introduced by either BK or RC in the proof.

To complete the dynamic proof theory of LI, we still have to present the
definition of final derivability. The three following definitions are the same
as for other adaptive logics. This is why we present them without referring
to the specific logic (here LI) and shall not repeat them in the sequel.

Definition 5 : A formula A is derived at stage s of a proof from Σ iff A is the
second element of a non-marked line at stage s.

Definition 6 : A is finally derived from Γ on line i of a proof at stage s iff
(i) A is the second element of line i, (ii) line i is not marked at stage s,
and (iii) any extension of the proof in which line i is marked may be further
extended in such a way that line i is unmarked.

Definition 7 : Γ ` A (A is finally derivable from Γ) iff A is finally derived on
a line of a proof from Γ.
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ON CLASSICAL ADAPTIVE LOGICS OF INDUCTION 263

3. The Basic Inductive Logic

Let us for a moment disregard background knowledge, which requires a pri-
oritized adaptive logic. Thus restricted, we are discussing a flat adaptive
logic (“flat” meaning “non-prioritized”).

The standard way to characterize a flat adaptive logic is by specifying a
lower limit logic, a set of abnormalities, which is characterized by some log-
ical form,8 and an adaptive strategy. The lower limit logic LLL and the set
of abnormalities Ω should specify an upper limit logic ULL in that a char-
acterization of ULL is obtained by adding to the characterization of LLL an
axiom, or rule, or semantic clause, etc. (depending on the type of the charac-
terization) that rules out abnormalities. Moreover, the lower limit logic and
the upper limit logic should be connected by the Derivability Adjustment
Theorem, viz.

Γ `ULL A iff there is a Dab(∆) such that Γ `LLL A ∨ Dab(∆)

in which Dab(∆) is a disjunction of abnormalities as before and “∨” is the
standard CL-disjunction.9

The effect of this construction is for example that the set of lower limit
models that do not verify any abnormality forms a semantics that is charac-
teristic for the upper limit logic. Also, if no abnormalities are derivable by
the lower limit logic from some Γ, then the adaptive consequence set of Γ is
identical to the upper limit consequence set of Γ.10

Seen in this respect, LI clearly has some odd properties. The lower limit
logic is obviously CL. But if the generalizations (as defined in Section 2)
form the set of abnormalities, then every lower limit model verifies some
abnormalities — remember that ∼∀(A ⊃ B) ∨ ∼∀(A ⊃ ∼B) ∨ ∼∀(∼A ⊃
B) ∨ ∼∀(∼A ⊃ ∼B) is a CL-theorem. So, if LI is forced into the above
format, its upper limit logic is the trivial logic (which has any formula as a
theorem) and no set of premises is normal (not even the empty set).

8 This logical form may be restricted. For example, the metavariables that occur in it may
be restricted to primitive formulas or to formulas that are purely functional.

9 If the lower limit logic requires that disjunction behaves abnormally, a standard CL-
disjunction should be added — see [4] for examples.

10 By some historical accident, the first adaptive logics — see [3], the oldest paper, and
[2] — were such that the lower limit logic and the upper limit logic determine a unique set
of abnormalities. In this case, the set of abnormalities is a function of the lower limit logic
and the upper limit logic. This caused some confusion which was only cleared up when the
Ghent logic group started studying ampliative logics — see for example [7]. Then it was
realized that a lower limit logic may be combined with many different sets of abnormalities
to obtain the same upper limit logic.
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264 DIDERIK BATENS AND LIEVEN HAESAERT

And yet, it is quite obvious, especially from a semantic point of view, that
there is a nice upper limit logic that removes the above oddities. Remem-
bering the connection between induction and the uniformity of models as
described for example in [10], the upper limit logic should be characterized
by the CL-models that are completely uniform. Let us call these the UCL-
models (uniform classical logic models). These are the models in which the
interpretation of any predicate of adicity n is either the empty set or the set
of all n-tuples of members of the domain. Axiomatically, this logic may be
characterized by extending CL with, for example, the axiom

∃A ⊃ ∀A (1)

in which ∃A abbreviates the existential closure of A. Let us call this logic
UCL.11 Where derivability and semantic consequence are defined as usual,
we leave it to the reader to prove that UCL is sound and strongly complete
with respect to the UCL-semantics.

Of course, we have put cart before horse. We now have to find a set of ab-
normalities that, together with the lower limit logic CL, delivers UCL. This
problem, however, is easily solved. We shall simply take as abnormalities
the formulas of the form

∃A ∧ ∃∼A (2)

in which A is purely functional — see [6] for the justification of this re-
quirement. So, where F◦ is the set of purely functional formulas, the set of
abnormalities will be

Ω = {∃A ∧ ∃∼A | A ∈ F◦}

As before, a Dab-formula will be a disjunction of members of Ω. An
expression of the form Dab(∆) will always denote a formula with ∆ ⊆ Ω
and the conditions (fifth elements) of lines in the dynamic proof will always
be finite subsets of Ω.

We now prove a theorem that is essential for the dynamic proof theory
of adaptive logics. We first need a simple Lemma, the proof of which is
obvious.

Lemma 1 : UCL is equivalent to the system obtained by restricting axioms
of the form of axioma schema (1) in such a way that A ∈ F ◦.

11 UCL is one of the many extensions of CL that fulfil all the traditional requirements. It
is monotonic, structural, transitive, etc. The only trouble with UCL is that it is no good for
being applied to the real world.
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ON CLASSICAL ADAPTIVE LOGICS OF INDUCTION 265

Theorem 1 : Γ `UCL A iff there is a ∆ ⊆ Ω such that Γ `CL A ∨ Dab(∆).
(Derivability Adjustment Theorem.)

Proof. For the left–right direction, suppose that Γ `UCL A and consider
an UCL-axiomatic proof of A from Γ in which all axioms of the form (1)
are restricted as specified in Lemma 1. Let Θ be the set of all instances
of the axiom (1) that are invoked in the proof. Obviously, Θ is finite and
Γ ∪ Θ `CL A. It follows that, where Θ∼ = {∃A ∧ ∃∼A | ∃A ⊃ ∀A ∈ Θ},
Θ∼ ⊆ Ω and Γ `CL A ∨ Dab(Θ∼).

For the right–left direction, suppose that Γ `CL A ∨ Dab(∆), and hence
that Γ �CL A ∨ Dab(∆). It follows that all CL-models of Γ, and hence all
UCL-models of Γ, verify A ∨ Dab(∆). But all UCL-models of Γ falsify
Dab(∆). Consequently, Γ `UCL A. “

From the lower limit logic CL and the set of abnormalities Ω, we now
define the adaptive logics ILr and ILm , by the Reliability strategy and the
Minimal Abnormality strategy respectively. Given that their premises com-
prise data only (and no background knowledge), Theorem 1 enables one to
define these logics. As is usual, the difference between both logics appears
only in the Marking definition. Here are the common rules of inference:

PREM If A ∈ Γ, one may add a line comprising the following elements:
(i) an appropriate line number, (ii) A, (iii) −, (iv) PREM, and (v) ∅.

RU If A1, . . . , An `CL B and each of A1, . . ., An occur in the proof on
lines i1, . . . , in that have conditions ∆1, . . ., ∆n respectively, one
may add a line comprising the following elements: (i) an appropri-
ate line number, (ii) B, (iii) i1, . . . , in, (iv) RU, and (v) ∆1∪. . .∪∆n.

RC If A1, . . . , An `CL B ∨ Dab(Θ) and each of A1, . . ., An occur
in the proof on lines i1, . . . , in that have conditions ∆1, . . ., ∆n

respectively, one may add a line comprising the following elements:
(i) an appropriate line number, (ii) B, (iii) i1, . . . , in, (iv) RC, and
(v) ∆1 ∪ . . . ∪ ∆n ∪ Θ.

At any stage of the proof, zero or more Dab-formulas will be derived.
Some of them are minimal (at that stage). Let Us(Γ) be the union of all ∆
for which Dab(∆) is a minimal Dab-formula at stage s. Let Φ◦

s(Γ) be the
set of all sets that contain one disjunct out of each minimal Dab-formula at
stage s, and let Φs(Γ) contain those members of Φ◦

s(Γ) that are not proper
supersets of other members of Φ◦

s(Γ).

Definition 8 : Marking for ILr : Line i is marked at stage s iff, where ∆ is its
fifth element, ∆ ∩ Us(Γ) 6= ∅.
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Definition 9 : Marking for ILm : Line i is marked at stage s iff, where A is the
second element and ∆ the fifth element of line i, (i) there is no ϕ ∈ Φs(Γ)
such that ϕ ∩ ∆ = ∅, or (ii) for some ϕ ∈ Φs(Γ), there is no line k that
has A as its second element and has as its fifth element some Θ such that
ϕ ∩ Θ = ∅.

In view of these Marking definitions, ILr -derivability and ILm -derivability
are defined as usual, viz. by Definitions 5, 6 and 7.

Let us at once present an example to illustrate the logics. In the example,
the Reliability strategy and the Minimal Abnormality strategy lead to the
same results. The distinction between both has been illustrated in many
papers.

To keep the proofs within margins, we shall abbreviate abnormalities by
the formulas they derive from. In the fifth element of lines, A will abbreviate
∃A ∧ ∃∼A. Thus a fifth element {Px ⊃ Qx} abbreviates

{(∃x)(Px ⊃ Qx) ∧ (∃x)∼(Px ⊃ Qx)}.12

Similarly, Dab{Px ⊃ Qx, Rx ⊃ Qx} abbreviates

((∃x)(Px ⊃ Qx) ∧ ((∃x)∼(Px ⊃ Qx))
∨((∃x)(Rx ⊃ Qx) ∧ ((∃x)∼(Rx ⊃ Qx))

Here is the example:

1 (Pa ∧ ∼Qa) ∧ ∼Ra − PREM ∅
2 ∼Pb ∧ (Qb ∧ Rb) − PREM ∅
3 Pc ∧ Rc − PREM ∅
4 Qd ∧ ∼Pe − PREM ∅
5 (∀x)(Qx ⊃ Rx) 2 RC {Qx ⊃ Rx}
6 Rd 4, 5 RU {Qx ⊃ Rx}
7 (∀x)(∼Px ⊃ Qx) 2 RC {∼Px ⊃ Qx}
8 Qe 4, 7 RU {∼Px ⊃ Qx}
9L10 (∀x)(Px ⊃ ∼Rx) 1 RC {Px ⊃ ∼Rx}
10 Dab(Px ⊃ ∼Rx) 1, 3 RU ∅
11L17 (∀x)(Px ⊃ ∼Qx) 1 RC {Px ⊃ ∼Qx}
12L17 ∼Qc 3, 11 RU {Px ⊃ ∼Qx}
13L17 (∀x)(Rx ⊃ Qx) 2 RC {Rx ⊃ Qx}
14L17 Qc 3, 13 RU {Rx ⊃ Qx}

12 This is obviously CL-equivalent to {(∃x)(∼Px ∨ Qx) ∧ (∃x)(Px ∧ ∼Qx)}.
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15 (∃x)∼(Px ⊃ ∼Qx) ∨ (∃x)∼(Rx ⊃ Qx) 3 RU ∅
16 (∃x)(Px ⊃ ∼Qx) ∧ (∃x)(Rx ⊃ Qx) 1, 2 RU ∅
17 Dab{Px ⊃ ∼Qx, Rx ⊃ Qx} 15, 16 RU ∅
18L22 (∀x)(Px ⊃ Sx) 4 RC {Px ⊃ Sx}
19L22 Sa 1, 18 RU {Px ⊃ Sx}
20 (∃x)∼(Px ⊃ Sx) ∨ (∃x)∼(Px ⊃ ∼Sx) 3 RU ∅
21 (∃x)(Px ⊃ Sx) ∧ (∃x)(Px ⊃ ∼Sx) 4 RU ∅
22 Dab{Px ⊃ Sx, Px ⊃ ∼Sx} 20, 21 RU ∅

It is instructive to have a look at the marked generalizations. 9 is not fi-
nally derivable because it is falsified by 3 — it is incompatible with the data.
However, several generalizations that are themselves compatible with the
data may be jointly incompatible with them. This is the case for 11, 13 and
18. Among these, 18 is a somewhat special case. As S does not occur in the
data, (∀x)(Px ⊃ Sx) and (∀x)(Px ⊃ ∼Sx) are compatible with them, but
are jointly incompatible with them in view of the presence of Pa. In gen-
eral, generalizations that contain a ‘new’ predicate will be marked, except
when they are CL-consequences of finally derivable generalizations.13 Ob-
viously, line 13 is not needed to derive 17 (and to mark line 11). However,
line 13 enables us to illustrate a useful point: that two generalizations are
jointly incompatible with the data may be found out by deriving inconsistent
predictions from them — in this case 12 and 14.

The semantics of ILr and ILm follows the usual lines of adaptive log-
ics and soundness and completeness are provable along the standard road.
For each CL-model M , we define Ab(M) = {A | M |= A; A ∈ Ω}.
Where ∆1, ∆2, . . . are the subsets of Ω for which Dab(∆i) is a minimal
Dab-consequence of Γ,14 U(Γ) = ∆1 ∪ ∆2 ∪ . . ..

A CL-model M of Γ is an ILr -model of Γ iff Ab(M) ⊆ U(Γ) and Γ �ILr

A iff A is verified by all ILr -models of Γ. A CL-model M of Γ is an ILm -
model of Γ iff there is no CL-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M)
and Γ �ILm A iff A is verified by all ILm -models of Γ.

This seems the right place to briefly discuss the relation between ILr and
LI. In a sense, the former explicates the latter. Consider a case where, in a
LI-proof from Γ, the hypothesis (∀x)(Px ⊃ Qx) is introduced at line i. If
(∃x)(Px ⊃ Qx) is not derivable from Γ, ∼(∀x)(Px ⊃ Qx) is a disjunct
of a minimal Dab-consequence (of LI) of Γ and hence line i is marked in
the LI-proof. Suppose then that (∃x)(Px ⊃ Qx) is derivable from Γ. In

13 For example, as (∀x)(∼Px ⊃ Qx) happens to be finally derivable, so is (∀x)((∼Px∧
Sx) ⊃ Qx).

14 This simply means that all CL-models of Γ verify Dab(∆i) and that there is no Θ ⊂ ∆i

such that all CL-models of Γ verify Dab(Θ).
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this case, (∀x)(Px ⊃ Qx) can be derived on the condition {(∃x)(Px ⊃
Qx)∧ (∃x)∼(Px ⊃ Qx)} in an ILr -proof from Γ. This line will be marked
just in case (∃x)(Px ⊃ Qx) ∧ (∃x)∼(Px ⊃ Qx) is a disjunct of a minimal
Dab-consequence of Γ. As (∃x)(Px ⊃ Qx) is derivable from Γ, it seems
that this will be the case iff, in the context of LI, ∼(∀x)(Px ⊃ Qx) ∈ U ◦

s (Γ).
If this is correct (∀x)(Px ⊃ Qx) is finally LI-derivable from Γ just in case
it is ILr -derivable from Γ.

We did not try to prove the above hypothesis, because the matter is not very
important. More important is that ILr is clearly distinct from LI in that, from
some sets of premises, it enables one to derive disjunctions of formulas of
the form ∀A that are not LI-derivable from them. Here is a simple example:

1 Pa − PREM ∅
2 (Pa ⊃ Qa) ∨ (Pa ⊃ ∼Qa) 1 RU ∅
3 (∀x)(Px ⊃ Qx) ∨ (Pa ⊃ ∼Qa) 2 RC {Px⊃Qx}
4 (∀x)(Px ⊃ Qx) ∨ (∀x)(Px ⊃ ∼Qx) 3 RC {Px⊃Qx, Px⊃∼Qx}

The premise has UCL-models and hence no Dab-formula is derivable
from it. It follows that line 4 will not be marked in any extension of the
proof. However, (∀x)(Px ⊃ Qx)∨ (∀x)(Px ⊃ ∼Qx) is not a LI-final con-
sequence of Pa because (∃x)(Px∧Qx)∨(∃x)(Px∧∼Qx) is CL-derivable
from Pa.15

It is easily seen that (∀x)Qx∨ (∀x)∼Qx is also finally ILr -derivable from
Pa (as well as from, for example, the empty premise set) whereas it is not
finally LI-derivable from Pa (or from the empty premise set). It is simple
enough to see reasons for this — we consider the Reliability strategy only.
In LI, (∀x)Qx ∨ (∀x)∼Qx can only be derived on the condition {(∀x)Qx}
or on the condition {(∀x)∼Qx}. However, if neither condition is derivable
from the data, then the CL-theorem ∼(∀x)Qx ∨ ∼(∀x)∼Qx functions as
a disjunction of abnormalities. Nothing similar prevents the derivation of
(∀x)Qx ∨ (∀x)∼Qx by ILr . For example,

((∃x)Qx ∧ (∃x)∼Qx) ∨ ((∃x)∼Qx ∧ (∃x)Qx),

which is CL-equivalent to (∃x)Qx ∧ (∃x)∼Qx, is not a CL-theorem.

15 The only way to obtain (∀x)(Px ⊃ Qx) ∨ (∀x)(Px ⊃ ∼Qx) in LI, is by deriving
it from one of its disjuncts (or from formulas that are equivalent or stronger than these dis-
juncts). So, in LI, the disjunction is only derivable on lines that have {(∀x)(Px ∧ ∼Qx)}
or {(∀x)(Px ∧ Qx)} as their fifth element. But both kinds of lines are marked. A similar
reasoning applies if the disjunction is derived from formulas that are equivalent or stronger
than these disjuncts.
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This is exactly as it should be. Even according to LI, (∃x)Qx is suf-
ficient to inductively derive (∀x)Qx and (∃x)∼Qx is sufficient to induc-
tively derive (∀x)∼Qx, unless (∃x)Qx ∧ (∃x)∼Qx is CL-derivable from
the premises. The same inductive presupposition enables one to induc-
tively derive (∀x)Qx ∨ (∀x)∼Qx if neither (∃x)Qx nor (∃x)∼Qx is a CL-
consequence of the premises. In words, if one did not observe any object
to have either property Q or property ∼Q, one nevertheless may presuppose
that all objects are identical with respect to Q-hood.

Apart from agreeing with the usual adaptive format, ILr and ILm seem to
improve upon LI in two respects. First, they enable one to derive general-
izations from instances rather than enabling one to posit generalizations for
no reason at all. Next, for some sets of premises, they enable one to derive
certain disjunctions of generalizations that are not derivable according to LI,
but should be derivable from an intuitive viewpoint.

4. Two Modal Logics

LI is a prioritized adaptive logic in that its set of premises is Σ = 〈Γ, Γ∗〉 and
Γ, the set of data, is given a higher priority than Γ∗, the set of background
generalizations. However, LI handles background generalizations in too poor
a way because it puts them all on a par. If two background generalizations
are compatible with the data, but jointly incompatible, LI rejects both. In real
life, background generalizations may receive different degrees of priority. In
the following three sections, we shall introduce ways to handle three kinds
of background knowledge in a prioritized way. We shall introduce separate
adaptive logics, and discuss their combination in Section 8.

The premises of a prioritized logic are often represented by a tuple, say:

Σ = 〈Γ0, Γ1, . . . , Γn〉 , (3)

in which Γ0 represents the data, which receive the maximal priority, and the
other sets contain background generalizations that receive a lower priority,
viz. a priority that is lower as i is larger.

In Section 7, we shall need a somewhat more complex case, in which the
premises are represented by16

Σ = {Γ0
0, Γ

i1
1 , . . . , Γin

n } (i1, . . . , in ∈ N − {0}) . (4)

16 No background knowledge should be considered as absolutely certain, whence the in-
dices are members of N − {0}.
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Here the priority of a Γi is determined by its superscript — we shall take the
priority to be lower as the superscript is higher. The set of data Γ0

0 obviously
receives maximal priority. As we need to combine the different adaptive
logics, and as the priorities of the different kinds of background knowledge
have to be commensurable, we shall throughout concentrate on (4). In other
words, premises given in the form (3) will be first rephrased in the form (4)
and then ‘translated’.

Some like to characterize (flat as well as prioritized) adaptive logics as
formula preferential systems — see [13] and [1]. For reasons which we can-
not discuss here, we prefer to stick to the original intuition behind adaptive
logics, and to characterize them by a set of abnormalities Ω (or by a tuple of
sets of abnormalities) which is (or are) defined by a logical form. Moreover,
we want the official formulation of our premises to express the degree of
priority. The easiest way to realize this is by ‘translating’ the Σ from (4) to
the standard modal language, for example as follows: Σ♦ = {♦iA | A ∈
Γi

j ; 0 ≤ j ≤ n} in which ♦iA denotes A preceded by i occurrences of ♦.
This approach requires that some modal logic is chosen. We shall briefly

(semantically) characterize two modal logics that will prove useful in subse-
quent sections. It is not difficult to see that we need modal logics in which
the accessibility relation is not transitive or not reflexive (for otherwise ♦iA
collapses into ♦A for all i). We shall employ two logics in which the ac-
cessibility relation is not transitive. One of them is a predicative version of
the modal logic T of Feys (which is von Wright’s M). We take this system
from [9]. The other is a rather non-standard modal logic. As we shall need
to combine these logics in Section 8, we shall employ two different symbols
for “possibly”. Incidentally, in the present context ♦iA and �iA are better
read as “A is accepted unless and until falsified” — or perhaps “A is likely
to be true” where the “likely” becomes weaker as i is larger.

Let L be the standard predicative language with S , P r, C, F , and W
the sets of sentential letters, predicative letters of rank r, constants, formu-
las, and wffs (closed formulas). Let LM be the standard predicative modal
language and WM the set of its closed formulas. Negation, disjunction,
the existential quantifier and possibility (and identity) will be considered as
primitive; other logical symbols are defined in the usual way.

To simplify the semantic metalanguage, we introduce a set of pseudo-
constants O, requiring that any element of the domain D is named by at least
one member of C ∪ O.17 Let WM+ denote the set of wffs of the pseudo-
language LM+ (defined by letting C ∪ O play the role played by C in LM ).
The function of O is to simplify the clauses for the quantifiers.

17O should have at least the cardinality of the largest model considered — if there is no
such model, one selects a suitable O for each model.
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A T-model M is a quintuple 〈W, w0, R, D, v〉 in which W is a set of
worlds, w0 ∈ W the real world, R a reflexive binary relation on W , D a
non-empty set and v an assignment function. The assignment function v is
as follows:

C1.1 v : S × W 7→ {0, 1}
C1.2 v : C ∪ O × W 7→ D
C1.3 v : Pr × W 7→ ℘(Dr) (the power set of the r-th Cartesian product

of D)

The valuation function, vM : WM+×W 7→ {0, 1}, determined by the model
M is defined by:

C2.1 where A ∈ S , vM (A, w) = v(A, w)
C2.2 vM (πrα1 . . . αr, w) = 1 iff 〈v(α1, w), . . . , v(αr, w)〉 ∈ v(πr, w)
C2.3 vM (α = β, w) = 1 iff v(α, w) = v(β, w)
C2.4 vM (∼A, w) = 1 iff vM (A, w) = 0
C2.5 vM (A ∨ B, w) = 1 iff vM (A, w) = 1 or vM (B, w) = 1
C2.6 vM ((∃α)A(α), w) = 1 iff vM (A(β), w) = 1 for at least one β ∈

C ∪ O
C2.7 vM (♦A, w) = 1 iff vM (A, w′) = 1 for at least one w′ such that

Rww′.

A model M verifies A ∈ WM iff vM (A, w0) = 1. Γ � A (A is a semantic
consequence of Γ) iff all models of Γ verify A. � A (A is valid) iff A is
verified by all models.

A bit of explanation seems useful. One may define a function d that as-
signs to each w ∈ W its domain d(w) = {v(α, w) | α ∈ C ∪ O}. If an
element of an r-tuple of v(πr, w) does not belong to d(w), then the r-tuple
does not have any effect on the valuation.18 Remark also that, if Rww′, the
question whether v(α, w) is or is not a member of d(w′) is immaterial for
any v(A, w). For example, the value of vM (♦Pa, w) is determined by the
values of v(a, w′) and v(P, w′) for those w′ for which Rww′. Obviously, the
semantics may be rephrased as a counterpart semantics: a ∈ d(w) is a coun-
terpart of b ∈ d(w′) just in case there is an α ∈ C ∪O such that v(α, w) = a

and v(α, w′) = b. An α ∈ C ∪ O may be seen as picking a specific coun-
terpart ‘path’ on W .19 T is axiomatically characterized by axioms for CL
with Replacement of Identicals invalid within the scope of a modality, plus
the axioms of the propositional logic T, plus the Barcan Formula.

18 This means that C1.3 may be replaced by “v : Pr × W 7→ ℘((d(w))r)”.

19 The technique to handle quantifiers in terms of C ∪O is itself not related to modal logic
— see, for example, the semantics for P in [8].
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In some cases, a very non-standard modal logic is more suitable. We shall
call it IM (because it isolates modal formulas). We first present its semantics
and then offer some explanation.

An IM-model M is a quintuple 〈W, w0, R, D, v〉 in which W is a set of
worlds, w0 ∈ W the real world, R a reflexive binary relation on W , D a
non-empty set and v an assignment function. The assignment function v is
such that:

C1.1 v : S × W 7→ {0, 1}
C1.2 v : C ∪ O × W 7→ D
C1.3 v : Pr × W 7→ ℘(Dr)
C1.4 v : W × W 7→ {0, 1}

The valuation function, vM : WM+×W 7→ {0, 1}, determined by the model
M is defined by:

C2.1 where A ∈ S , vM (A, w0) = v(A, w0)
C2.2 vM (πrα1 . . . αr, w0) = 1 iff 〈v(α1, w0), . . . , v(αr, w0)〉 ∈ v(πr, w0)
C2.3 vM (α = β, w0) = 1 iff v(α, w0) = v(β, w0)
C2.4 vM (∼A, w0) = 1 iff vM (A, w0) = 0
C2.5 vM (A ∨ B, w0) = 1 iff vM (A, w0) = 1 or vM (B, w0) = 1
C2.6 vM ((∃α)A(α), w0) = 1 iff vM (A(β), w0) = 1 for at least one β ∈

C ∪ O
C2.7 if w ∈ W − {w0} and A ∈ W , then vM (A, w) = v(A, w)
C2.8 vM (�A, w) = 1 iff vM (A, w′) = 1 for at least one w′ such that

Rww′.

A model M verifies A ∈ WM iff vM (A, w0) = 1. Semantic consequence
and validity are defined as before. IM is axiomatically characterized by ax-
ioms for CL with Replacement of Identicals invalid within the scope of a
modality, plus the axiom A ⊃ �A plus the Barcan Formula.

Remark that C1.1–3 have only effect in w0 whereas C1.4 has no effect
in w0. In other words, non-modal formulas (members of W) are assigned
arbitrary values in worlds that are different from w0. Formulas of the form
�A are governed by C2.8 in all worlds. The main effect of the construction
is that ‘modal formulas have no modal consequences’. Thus (∼ � ∼(A ⊃
B) ∧ �A) ⊃ �B and �(A ∧ B) ⊃ �A are not theorems of IM. It also is not
excluded that IM verifies A even if ∼A is a CL-theorem — we shall neither
need nor use this feature below.20

In view of subsequent sections, it is useful to see the following. Where Σ
is as in (4) and Γ0

0 ∪Γi1
1 ∪ . . .∪Γin

n is consistent, Σ� = {�iA | A ∈ Γi
j ; 0 ≤

20 Where A ⊃ B =df ∼A ∨ B, a model that verifies �(∼A ∨ B) always verifies �(A ⊃
B). This feature will cause no trouble for our adaptive logics.
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j ≤ n} has IM-models in which W = {w0}; similarly (replacing � by ♦)
for T-models.

5. Prioritized Background Generalizations

In line with Section 3, we shall consider background generalizations to be
formulas of the form ∀A with A ∈ F◦. As announced in Section 4, we
shall take every background generalization to have a certain priority. Σ will
be as in (4), with Γ0

0 the set of data and the other Γi
j sets of background

generalizations. The members of Γi
j (1 ≤ j ≤ n) receive a priority which is

lower according as i is higher.
The idea underlying our approach is that a background generalization in

Γi1
1 will be retained unless it is, separately or jointly, incompatible with Γ0

0;
a background generalization in Γi2

2 will be retained unless it is, separately
or jointly, incompatible with the union of Γ0

0 and the retained background
generalizations from Γi1

1 ; etc.
As announced, the official formulation of the premises will be a set of

formulas of the form �i∀B in which B ∈ F◦ is a non-modal formula and
i ∈ N − {0}. Thus, the usual formulation Σ = 〈Γ0

0, Γ
i1
1 , . . . , Γin

n 〉 will be
given a modal ‘translation’, viz. Σ� = {�iA | A ∈ Γi

j ; 0 ≤ j ≤ n} in which
�iA denotes A preceded by i occurrences of �.

The adaptive logics will proceed in terms of the modal logic IM. The
abnormalities will be of the form �iA ∧ ∼A. As we are after a prioritized
adaptive logic, a set of abnormalities should be associated with each priority
level. Thus, for any i ∈ N − {0}, Ωi = {�iA ∧ ∼A | A ∈ W}, and
Ω = Ω1 ∪ Ω2 ∪ . . .. As before, a Dab-formula will be a disjunction of
members of Ω. An expression of the form Dab(∆) will always denote a
formula for which ∆ ⊆ Ω and the conditions (fifth elements) of lines in
the dynamic proof will always be finite subsets of Ω. In practice, the fifth
elements of lines of a sensible proof from Σ� will be formulas of the form
�iA ∧ ∼A in which A is of the form ∀B and B ∈ F ◦.21

The upper limit logic defined by IM is the modal logic Triv, which is ob-
tained, for example, by adding to IM the axiom schema �A ⊃ A. Where Σ

21 Proceeding in a non-sensible way, one might introduce a premise � � (∀x)(Px ⊃ Qx)
(on the condition ∅), derive from this � � (∀x)(Px ⊃ Qx)∨�(Pa) (still on the condition ∅),
and from this derive � � (∀x)(Px ⊃ Qx) ∨ (Pa) on the condition {�(Pa) ∧ ∼Pa}. This
leads nowhere but is not forbidden.
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is as in (4), we obviously have

Σ� `Triv A iff Γ0
0 ∪ Γi1

1 ∪ . . . ∪ Γin
n `CL A .

If ∀A ∈ Γi
j , then �i∀A ∈ Σ�. In agreement with the Derivability Adjust-

ment Theorem, we then have:

�i∀A `IM ∀A ∨ (�i∀A ∧ ∼∀A) .

So, if the premises have a (systematic) maximally normal interpretation22

according to which �i∀A ∧ ∼∀A is false, ∀A will be adaptively derivable
from the premises if �i∀A is IM-derivable from them.

It is easily proved that

Σ� `Triv A iff there is a Dab(∆) such that Σ� `IM A ∨ Dab(∆)

which is the Derivability Adjustment Theorem. This provides the motor for
the dynamic proof theory, which we now present.

The adaptive logics will be called ILgr and ILgm — the “g” refers to back-
ground generalization, the “r” and “m” refer (as before) to the Reliability
strategy and the Minimal Abnormality strategy respectively. We first list
their common rules of inference.

PREM If A ∈ Σ�, one may add a line comprising the following elements:
(i) an appropriate line number, (ii) A, (iii) −, (iv) PREM, and (v) ∅.

RU If A1, . . . , An `IM B and each of A1, . . ., An occur in the proof on
lines i1, . . . , in that have conditions ∆1, . . ., ∆n respectively, one
may add a line comprising the following elements: (i) an appropri-
ate line number, (ii) B, (iii) i1, . . . , in, (iv) RU, and (v) ∆1∪. . .∪∆n.

RC If A1, . . . , An `IM B ∨ Dab(Θ) and each of A1, . . ., An occur
in the proof on lines i1, . . . , in that have conditions ∆1, . . ., ∆n

respectively, one may add a line comprising the following elements:
(i) an appropriate line number, (ii) B, (iii) i1, . . . , in, (iv) RC, and
(v) ∆1 ∪ . . . ∪ ∆n ∪ Θ.

The marking definitions require a bit of care, but are very transparent and
intuitive.

Remember that Ω = Ω1 ∪ Ω2 ∪ . . .. Consider some Dab(∆). If ∆ ⊆ Ωi,
we shall write the formula as Dab

i(∆). This notation enables us to write
any Dab-formula as a disjunction of Dab

i-formulas. Thus, if ∆ = ∆1 ∪

22 The meaning of this expression will depend on the chosen strategy.
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∆2 ∪∆3 and ∆1 ⊆ Ω4, ∆2 ⊆ Ω7 and ∆3 ⊆ Ω8, Dab(∆) may be written as
Dab

4(∆1) ∨ Dab
7(∆2) ∨ Dab

8(∆3).
Consider a proof from Σ�. Suppose that Dab

4(∆1)∨Dab
7(∆2)∨Dab

8(∆3)
has been derived on the empty condition in the proof. In other words, there
is a line of the form

i Dab
4(∆1) ∨ Dab

7(∆2) ∨ Dab
8(∆3) . . . . . . ∅

The proof obviously can be extended with the following line:

j Dab
8(∆3) i RC ∆1 ∪ ∆2

Remark that the sequences of symbols � in Θ count less than 8 members.
If ∆1 ∪ ∆2 is such that line j is unmarked, in other words, if the premises
are such that the members of ∆1 ∪ ∆2 may be taken to be false, then one
should conclude that at least one member of ∆3 is true on the premises.

Let us say that line j is clean. In general, a clean line is one that has
as its second element a formula Dab

i(∆) and as its fifth element a set
Θ ⊆ Ω1 ∪ . . .∪Ωi−1. Put differently, the second element is a disjunction of
abnormalities of the same level, and the fifth element contains only abnor-
malities of a higher level (that is, with shorter sequences of diamonds).23

We shall say that Dab
i(∆) is a minimal Dab

i-formula at stage s of the
proof if it has been derived at a clean and unmarked line whereas, at stage s,
Dab

i(∆′) is not derived at a clean and unmarked line for any ∆′ ⊂ ∆.
At any stage of the proof, zero or more Dab

i-formulas will be derived.
Some of them are minimal (at that stage). Let, for each i ∈ N−{0}, U i

s(Σ
�)

be the union of all ∆ for which Dab
i(∆) is a minimal Dab

i-formula at stage
s. Let Φi◦

s (Γ) be the set of all sets that contain one disjunct out of each
minimal Dab

i-formula at stage s, and let Φi
s(Γ) contain those members of

Φi◦
s (Γ) that are not proper supersets of other members of Φi◦

s (Γ).

Definition 10 : Marking for ILgr : Where ∆ is the fifth element of line j, line
j is marked at stage s iff, ∆ ∩ U i

s(Γ) 6= ∅ for some i ∈ N − {0}.

Definition 11 : Marking for ILgm : Where A is the second element and ∆ the
fifth element of line j, line j is marked at stage s iff, for some i ∈ N − {0},
(i) there is no ϕ ∈ Φi

s(Γ) such that ϕ ∩ ∆ = ∅, or (ii) for some ϕ ∈ Φi
s(Γ),

there is no line k that has A as its second element and has as its fifth element
some Θ such that ϕ ∩ Θ = ∅.

23 If the second element of a clean line is a Dab
1-formula, then its fifth element is obvi-

ously empty.
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Next, ILgr -derivability and ILgm -derivability are defined as usual, viz. by
Definitions 5, 6 and 7.

Here is a simple example of a proof. The Reliability strategy and the
Minimal Abnormality strategy lead to the same marks. Abbreviations are as
before.

1 (Pa ∧ Ra) ∧ Sa − PREM ∅
2 Qb ∧ ∼Sb − PREM ∅
3 Rd ∧ Pc − PREM ∅
4 �(∀x)(Rx ⊃ Sx) − PREM ∅
5 �(∀x)(Qx ⊃ Rx) − PREM ∅
6 �2(∀x)(Px ⊃ ∼Rx) − PREM ∅
7 �3(∀x)(Rx ⊃ ∼Qx) − PREM ∅
8 �4(∀x)(Px ⊃ Qx) − PREM ∅
9B15 (∀x)(Rx ⊃ Sx) 4 RC {�(R ⊃ S)}
10B15 Sd 3, 9 RU {�(R ⊃ S)}
11B15 ∼Rb 2, 9 RU {�(R ⊃ S)}
12B15 (∀x)(Qx ⊃ Rx) 5 RC {�(Q ⊃ R)}
13B15 Rb 2, 12 RU {�(Q ⊃ R)}
14 ∼(∀x)(Rx ⊃ Sx)∨

∼(∀x)(Qx ⊃ Rx) 2 RU ∅
15 Dab{�(R ⊃ S), �(Q ⊃ R)} 4, 5, 14 RU ∅
16B19 (∀x)(Px ⊃ ∼Rx) 6 RC {�2(P ⊃ ∼R)}
17B19 ∼Rc 3, 16 RU {�2(P ⊃ ∼R)}
18 ∼(∀x)(Px ⊃ ∼Rx) 1 RU ∅
19 Dab{�2(P ⊃ ∼R)} 6, 18 RU ∅
20 (∀x)(Rx ⊃ ∼Qx) 7 RC {�3(R ⊃ ∼Q)}
21 ∼Qa 1, 20 RU {�3(R ⊃ ∼Q)}
22B26 (∀x)(Px ⊃ Qx) 8 RC {�4(P ⊃ Q)}
23B26 Qa 1, 22 RU {�4(P ⊃ Q)}
24B26 Qc 3, 22 RU {�4(P ⊃ Q)}
25 ∼(∀x)(Px ⊃ Qx)∨

∼(∀x)(Rx ⊃ ∼Qx) 1 RU ∅
26 Dab{�4(P ⊃ Q)} 7, 8, 25 RU {�3(R ⊃ ∼Q)}

Finally, we briefly spell out the semantics. For any IM-model M of Σ�

and for every i ∈ N − {0}, Ab
i(M) =df {�iA ∧ ∼A | M |= �iA ∧ ∼A}.

Dab
i(∆) is a minimal Dab

i-consequence of Σ� iff Dab
i(∆) ∨ Dab(Θ) is a

minimal Dab-consequence of Σ� for some (possibly empty) Θ ⊆ Ω1∪ . . .∪
Ωi−1. Where Dab

i(∆1),Dab
i(∆2), . . . are the minimal Dab

i-consequences
of Σ�, U i(Σ∆) =df ∆1 ∪ ∆2 ∪ . . . .
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The ILgr -models of Σ� are defined by a sequence of selections of models
as follows:

Mr
0 =df {M | M |= Σ�}

and
Mr

i+1 =df {M ∈ Mr
i | Ab

i+1(M) ⊆ U i+1(Σ�)} .

Finally, Σ� �ILgr A iff A is verified by every ILgr -model of Σ�.
The ILgm -models of Σ� are defined by a similar sequence of selections of

models:
Mm

0 =df {M | M |= Σ�}

and

Mm
i+1 =df {M ∈ Mm

i | for no M ′ ∈ Mm
i , Ab

i+1(M ′) ⊂ Ab
i+1(M)}

Σ� �ILgm A iff A is verified by every ILgm -model of Σ�.

6. Prioritized Pragmatic Background Generalizations

The reason to introduce pragmatic background generalizations was discussed
in Section 1: some generalizations are retained even after they have been
falsified. What this comes to is that, even if the generalization itself has
been falsified, the instances of the generalizations are retained, unless and
until they are themselves falsified. The previous sentence contains the full
plot. Pragmatic background generalizations have to be handled as sets of
instances, rather than as generalizations. A different matter is that, just like
normal background generalizations, pragmatic background generalizations
should be prioritized. Let A and B be instances of two different pragmatic
background generalizations. If the data contradict A∧B, either A or B may
nevertheless be retained depending on the priority of the pragmatic general-
ization from which it is an instance.

With this settled, handling pragmatic background generalizations is sim-
ple enough. All we have to change is the modal ‘translation’ of Σ. Let
us proceed in the crudest possible way. All pragmatic background general-
izations are of the form ∀A in which A is purely functional. Suppose that
x1, . . . , xn are the individual variables that occur in A. By an instance of A
we obviously mean a formula in which each xi is systematically replaced by
an individual constant ai. Let Ax1,...,xn

a1,...,an denote an instance of A. Where Σ is



“11Dirk_Lieven”
2003/6/9
page 278

i

i

i

i

i

i

i

i

278 DIDERIK BATENS AND LIEVEN HAESAERT

as in (4), we define (quite differently from the previous section)24

Σ� = {A | A ∈ Γ0
0}∪{�

iAx1,...,xn
α1,...,αn

| ∀A ∈ Γi
j ; 0 < j ≤ n; α1, . . . , αn ∈ C}.

The logics ILgr and ILgm adequately handle pragmatic background gen-
eralizations. We have the same lower limit logic, the same set of abnor-
malities (and hence the same upper limit logic) and the same semantics
and proof theory. Under the modal translation from the previous section,
we faced a take-it-or-leave-it situation with respect to a generalization ∀A.
To be more precise, any background generalization ∀A was separately and
jointly (with other generalizations of the same level) compatible with the
data and the retained generalizations of lower levels, or it had to go. Un-
der the present translation, instances of pragmatic background generaliza-
tions are retained, provided they are separately and jointly (with instances
of other generalizations of the same level) compatible with the data and the
retained instances of generalizations of lower levels. Once the premises are
correctly phrased, the same logics handle them adequately. To illustrate the
matter, we present an example of a simple proof. The instances of prag-
matic background generalizations are all instances of �(∀x)(Rx ⊃ Sx),
�(∀x)(Qx ⊃ Rx), � � (∀x)(Px ⊃ ∼Rx), � � �(∀x)(Rx ⊃ ∼Qx), and
� � � � (∀x)(Px ⊃ Qx).

1 (Pa ∧ Ra) ∧ Sa − PREM ∅
2 Qb ∧ ∼Sb − PREM ∅
3 Rd ∧ Pc − PREM ∅
4 �(Rb ⊃ Sb) − PREM ∅
5 �(Rd ⊃ Sd) − PREM ∅
6B14 Rb ⊃ Sb 4 RC {♦(Rb ⊃ Sb)}
7B14 ∼Rb 2, 6 RU {♦(Rb ⊃ Sb)}
8 Rd ⊃ Sd 5 RC {♦(Rd ⊃ Sd)}
9 Sd 3, 8 RU {♦(Rd ⊃ Sd)}
10 �(Qb ⊃ Rb) − PREM ∅
11B14 Qb ⊃ Rb 10 RC {♦(Qb ⊃ Rb)}
12B14 Rb 2, 11 RU {♦(Qb ⊃ Rb)}
13 ∼(Qb ⊃ Rb) ∨ ∼(Rb ⊃ Sb) 2 RU ∅
14 Dab{�(Qb ⊃ Rb),

�(Rb ⊃ Sb)} 4, 10, 13 RU ∅
15 �2(Pa ⊃ ∼Ra) − PREM ∅

24 Even if Σ is finite, Σ� is infinite but characterized by finitely many forms. For those
who dislike this, it is simple enough to apply a variant of IM in which all w ∈ W − {w0}
have the property vM ((∀α)A(α), w) = 1 iff v((∀α)A(α), w) = 1 and vM (A(β), w) = 1
for all β ∈ C ∪ O.
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16B18 Pa ⊃ ∼Ra 15 RC {♦2(Pa ⊃ ∼Ra)}
17 ∼(Pa ⊃ ∼Ra) 1 RU ∅
18 Dab{♦2(Pa ⊃ ∼Ra)} 15, 17 RU ∅
19 ♦2(Pc ⊃ ∼Rc) − PREM ∅
20 Pc ⊃ ∼Rc 19 RC {♦2(Pc ⊃ ∼Rc)}
21 ∼Rc 3, 20 RU {♦2(Pc ⊃ ∼Rc)}
22 ♦3(Ra ⊃ ∼Qa) − PREM ∅
23 Ra ⊃ ∼Qa 22 RC {♦3(Ra ⊃ ∼Qa)}
24 ∼Qa 1, 23 RU {♦3(Ra ⊃ ∼Qa)}
25 ♦4(Pa ⊃ Qa) − PREM ∅
26B29 Pa ⊃ Qa 25 RC {♦4(Pa ⊃ Qa)}
27B29 Qa 1, 26 RU {♦4(Pa ⊃ Qa)}
28 ∼(Pa ⊃ Qa)∨

∼(Ra ⊃ ∼Qa) 1 RU ∅
29 Dab{♦4(Pa ⊃ Qa)} 22, 25, 28 RU {♦3(Ra ⊃ ∼Qa)}
30 ♦4(Pc ⊃ Qc) − PREM ∅
31 Pc ⊃ Qc 30 RC {♦4(Pc ⊃ Qc)}
32 Qc 3, 31 RU {♦4(Pc ⊃ Qc)}

7. Background Theories

We shall consider theories as sets of statements that form connected wholes
in at least two respects. First, the consequences of a theory are not just
the consequences of the statements that make up the theory, but the conse-
quences of the set. Next, if some consequence of a theory is falsified, the
theory is rejected as a whole, and not just those members of the theory from
which the consequence is derivable.

Of course, this approach is a simplification. First of all, consequences of
a rejected theory will usually be retained as background generalizations or
as pragmatic background generalizations. However, the choice of those con-
sequences is not a function of the theory itself or of its degree of priority
with respect to other theories. Hence, this problem falls beyond the scope
of the logics of induction discussed in the present paper. Moreover, falsified
theories are often not rejected at all, but are retained for all applications ex-
cept for those at which the falsification applies. The underlying reasoning
is clearly captured by an adaptive logic. However, this logic is necessarily
inconsistency-adaptive and cannot have CL as its lower limit logic. For this
reason, we do not discuss this logic in the present paper but postpone its dis-
cussion to a paper about the many inconsistency-adaptive forms of reasoning
that are connected to inductive reasoning.
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Given the present confines, how should a logic handle background theo-
ries? It is important to realize that two different theories may be assigned
the same degree of priority. This is why the usual notation should be as the
Σ in (4). The official formulation of the premises will again be a ‘modal
translation’ of Σ. As the consequences of a theory are the consequences of
the set of statements (for example Γ

ij
j ), and not of the individual statements,

the ‘translation’ will read25

Σ♦ = {♦i(A1 ∧ . . . ∧ Am) |A1, . . . , Am ∈Γi
j for some Γi

j ∈Σ}. (5)

in which the modal symbols are settled by the logic T from Section 4. This
warrants at once that ♦iA is T-derivable from the premises iff there is a Γi

j

such that Γi
j `CL A. The idea for the adaptive logic is obviously that A is

derivable from ♦iA, unless an abnormality prevents this.
Let us now turn to the adaptive logic that should handle the relation be-

tween the data Γ0
0 and a single theory, say Γ1

1 (the priority index is of course
arbitrary provided it is larger than 0). On the official formulation, the set of
premises is Σ♦ = Γ0

0∪{♦(A1∧. . .∧Am) | A1, . . . , Am ∈ Γ1
1}. As the whole

theory has to be left or kept according as it is falsified or not, we typically
need a flip-flop logic. Flip-flop logics are a border case of adaptive logics
with the following property: the adaptive consequences are identical to the
lower limit consequences if an abnormality is derivable from the premises
(by the lower limit logic), and are identical to the upper limit consequences
otherwise.26 This is precisely what a flip-flop logic will deliver: either all
CL-consequences of the theory Γ1

1 are retained, or none of them is (except
when it follows from the data and retained theories).

The technical implementation of this idea is easily obtained. Let us define
two adaptive logics Tftr and Tftm . These are flat adaptive logics to handle
a single background theory by, respectively, the Reliability strategy and the
Minimal Abnormality strategy — later we shall upgrade these logics to re-
spectively Ttr and Ttm to handle a prioritized set of theories. The set of

25 Sometimes a theory is represented by a single formula (for example in [11]), viz. the
conjunction of the finite set of statements that make up the theory. However, most interesting
theories will at least include Arithmetic, and the first order induction ‘axiom’ is actually a
schema, representing infinitely many axioms.

26 Some people think that all adaptive logics are flip-flop logics, but this is obviously
mistaken. Most adaptive logics assign to an abnormal premise set more consequences than
the lower limit logic.
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abnormalities Ω comprises all formulas of the form ♦A ∧ ∼A and a Dab-
formula is a disjunction of members of Ω as before. The upper limit logic is
obviously Triv.

It is easily seen that these logics provide exactly the desired result. We
shall show this for Tftr . If Σ♦ is normal, then obviously CnTftr (Σ♦) =

CnTriv(Σ
♦); in other words, all of the theory is retained. If Σ♦ is abnormal,

then, as we now shall show, CnTftr (Σ♦) = CnT(Σ♦); in other words, the
whole theory is rejected.

Suppose then that Σ♦ is abnormal. This means that there are B1, . . . ,
Bn (n > 0) such that (♦B1 ∧ ∼B1) ∨ . . . ∨ (♦Bn ∧ ∼Bn) is T-derivable
from Σ♦. Consider an arbitrary A such that Σ♦ `T ♦A. If Σ♦ `T A, then
Σ♦ `T ♦A is inconsequential. If Σ♦ `T ∼A, then Σ♦ `T ♦A ∧ ∼A, and
hence ♦A ∧ ∼A ∈ U(Σ♦). If Σ♦

0T A and Σ♦
0T ∼A, then

(♦A∧∼A)∨(♦(A ⊃ B1)∧∼(A ⊃ B1))∨. . .∨(♦(A ⊃ Bn)∧∼(A ⊃ Bn))

is a minimal Dab-consequence of Σ♦ and hence ♦A ∧ ∼A ∈ U(Σ♦).27

Summarizing, if Σ♦ is abnormal and A is a CL-consequence of the theory
(hence ♦A is a T-consequence of Σ♦), then A is a Tftr -consequence of Σ♦

iff it is a CL-consequence of Σ♦ (and hence is a CL-consequence of the
data). A similar result may be established for Tftm .

Given these results, we shall present a direct dynamic proof format (one in
which the modalities are suppressed). In a standard proof, one would have a
conditional rule allowing for the following transition, where A ∈ Γ1

1:

i ♦A . . . . . . ∅
i + 1 A i RC {♦A ∧ ∼A}

If Γ1
1 is contradicted by the data, then line i + 1 will be marked because the

adaptive logic is a flip-flop. This means that we may just as well write:

i ♦A . . . . . . ∅
i + 1 A i RC {Γ1

1}

and mark all lines that have Γ1
1 in their condition as soon as some B ∧ ∼B

has been derived on the condition {Γ1
1}.28 Remark that we do not change the

logic, but only the notation, and that we mark in view of a derivable rule.

27 As Σ♦
0T A and Σ♦

0T ∼A, neither ♦A ∧ ∼A nor (♦(A ⊃ B1) ∧ ∼(A ⊃ B1)) ∨
. . . ∨ (♦(A ⊃ Bn) ∧ ∼(A ⊃ Bn)) are T-derivable from Σ♦.

28 If both Γ0
0 and Γ1

1 are consistent, B will be derived from one of these and ∼B from the
other.
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As the next step, we upgrade the logics to respectively Ttr and Ttm in
order to handle a prioritized set of theories. The lower logic is T, the set of
abnormalities Ω = {♦iA∧∼A | A ∈ W; i ∈ N−{0}}, and the upper limit
logic Triv. The set of premises has the form Σ♦ as in (5).

Let us start with the semantics. For any T-model M of Σ♦ and for every
i ∈ N − {0}, we define Ab

i(M) =df {♦iA ∧ ∼A | M |= ♦iA ∧ ∼A}.
For every i ∈ N − {0}, we define U i(Σ∆) =df ∆1 ∪ ∆2 ∪ . . ., where
Dab

i(∆1),Dab
i(∆2), . . . are the minimal Dab

i-consequences of Σ♦.
The ILtr -models of Σ♦ are defined by a sequence of selections of models

as follows:
Mr

0 =df {M | M |= Σ♦}

and
Mr

i+1 =df {M ∈ Mr
i | Ab

i+1(M) ⊆ U i+1(Σ♦)} .

Finally, Σ♦ �ILtr A iff A is verified by every ILtr -model of Σ♦.
The ILtm -models of Σ♦ are defined in a similar way:

Mm
0 =df {M | M |= Σ♦}

and

Mm
i+1 =df {M ∈ Mm

i | for no M ′ ∈ Mm
i , Ab

i+1(M ′) ⊂ Ab
i+1(M)}

Σ♦ �ILtm A iff A is verified by every ILtm -model of Σ♦.
In the direct dynamic proofs, the conditions (fifth elements) of the lines

will be sets of theories rather than sets of abnormalities. That A is derived on
a condition like {Γ2

5, Γ
1
7} is correctly interpreted as: A is derivable from the

premises (the data and the theories) unless an abnormality is CL-derivable
from Γ0

0 ∪ Γ2
5 ∪ Γ1

7 — remark that the members of Γ0
0 are always available.

As before, that an inconsistency is derived on some condition ∆ indicates
that a disjunction of abnormalities is derivable from Γ0

0 ∪
⋃

(∆). Here are
the rules for the dynamic proof theories:

PREM If A ∈ Σ♦ ∩ W (in other words, A ∈ Γ0
0), one may add a line

comprising the following elements: (i) an appropriate line number,
(ii) A, (iii) −, (iv) PREM, and (v) ∅.

CPREM If B1, . . . , Bn ∈ Γi
j and hence ♦i(B1 ∧ . . . ∧ Bn) ∈ Σ♦, one

may add a line comprising the following elements: (i) an appro-
priate line number, (ii) B1 ∧ . . . ∧ Bn, (iii) −, (iv) CPREM, and
(v) {Γi

j}.29
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RU If A1, . . . , An `T B and each of A1, . . ., An occur in the proof on
lines i1, . . . , in that have conditions ∆1, . . ., ∆n respectively, one
may add a line comprising the following elements: (i) an appro-
priate line number, (ii) B, (iii) i1, . . . , in, (iv) RU, and (v) ∆1 ∪
. . . ∪ ∆n.

Remark that the direct dynamic proof theory does not require a condi-
tional rule of the usual type. CPREM is the only conditional rule. The
marking rules are very simple but require some explanation. Suppose that,
on line k, an inconsistency is derived on the condition {Γi1

j1
, . . .Γin

jn
}. This

indicates that one of the theories is unreliable. Remember, however, that a
lower superscript expresses that a theory has a higher priority. So, line k
indicates that one should reject one of the theories in the condition that have
the highest superscript, unless of course another theory is rejected for a dif-
ferent reason. Such a reason would be that the theory occurs in the condition
of an inconsistency and that its superscript is maximal in that condition —
we illustrate this by an example below.30 A simple example is where an
inconsistency is derived on condition {Γ2

4, Γ
4
3} but an inconsistency is also

derived on the condition {Γ2
4, Γ

1
2}. The latter line indicates that Γ2

4 should be
rejected, whence the former line (is already marked and) does not provide
one with a reason to reject Γ4

3.
We now specify what corresponds to a disjunction of abnormalities on

the normal construction. Given a proof at a stage, let L be the set of lines
at which an inconsistency is derived. If the condition of some line in L is
the empty set, the data are inconsistent and even the lower limit logic T-
consequence set of Σ♦ is trivial, whence nay continuation of the proof is
useless. Next, one locates the lines in L for which 1 is the highest super-
script in the condition. For each such line, its condition ∆ is an abnormal
set of theories. Next one locates the the lines in L for which 2 is the highest
superscript in the condition. For each such line, one defines from its con-
dition ∆ the set ∆2 = {Γi

j ∈ ∆ | i = 2}; these ∆2 are abnormal sets of
theories. And so one continues up to the highest priority number (denoting
the lowest priority). Remark that all members of an abnormal set of theories
have the same superscript. A minimal abnormal set of theories at stage s is

29 We let CPREM introduce conjunctions to remind the reader of the official formulation
of the proofs.

30 It is easily checked that the official formulation of the proof theory, in which the con-
ditions are sets of abnormalities rather than sets of theories, leads to exactly the same result.
Actually, the rule in the text is obtained by ‘translating’ the marking rules for those proof
theories to the shortcut format.
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an abnormal set of theories at stage s that is not a proper superset of another
abnormal set of theories at stage s.

For the Reliability strategy, one defines U i
s(Σ

♦) as the union of the mini-
mal abnormal sets of theories (at stage s) of which the members have super-
script i.

Definition 12 : Marking for LItr , for all i ∈ N−{0}, starting with the lowest
one: Where ∆ is the fifth element of line j, line j is marked at stage s iff,
∆ ∩ U i

s(Γ) 6= ∅.

The idea behind the Minimal Abnormality strategy is equally simple. For
each priority level i, one defines Φi◦

s (Γ) as the set of all sets that contain
one member out of each minimal set of abnormal set of theories, and one
defines Φi

s(Γ) as those members of Φi◦
s (Γ) that are not proper supersets of

other members of Φi◦
s (Γ).

Definition 13 : Marking for ILtm , for all i ∈ N−{0}, starting with the lowest
one: Where A is the second element and ∆ the fifth element of line j, line j
is marked at stage s iff, (i) there is no ϕ ∈ Φi

s(Γ) such that ϕ ∩ ∆ = ∅, or
(ii) for some ϕ ∈ Φi

s(Γ), there is no line k that has A as its second element
and has as its fifth element some Θ such that ϕ ∩ Θ = ∅.

As an example, we list a fragment of a proof to illustrate the marking rules
(both again leading to the same marks in the example). Let (Pa ∧ Qa) ∧
∼Ra, Rb ∧ ∼Qb ∈ Γ0

0 and let the background theories be such that Γ1
1 `CL

(∀x)(Qx ⊃ ∼Sx), Γ2
4 `CL (∀x)(Px ⊃ Sx), Γ2

4 `CL (∀x)(Rx ⊃ ∼Tx),
Γ3

5 `CL (∀x)(∼Qx ⊃ Tx). The following lines may then occur in a proof
from those premises:

1 (Pa ∧ Qa) ∧ ∼Ra − Prem ∅
2 Rb ∧ ∼Qb − Prem ∅
17 (∀x)(Qx ⊃ ∼Sx) . . . RC {Γ1

1}
18 (∀x)(Px ⊃ Sx) . . . RC {Γ2

4}
19 (∀x)(Rx ⊃ ∼Tx) . . . RC {Γ2

4}
20 (∀x)(∼Qx ⊃ Tx) . . . RC {Γ3

5}

Suppose that the proof is continued as follows:

21 Tb 2, 20 RU {Γ3
5}

22 Sa 1, 18 RU {Γ2
4}

23 ∼Tb 2, 19 RU {Γ2
4}

24 Tb ∧ ∼Tb 21, 23 RU {Γ3
5, Γ

2
4}
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At this point (at stage 24 of the proof), Γ3
5 is considered as falsified and hence

lines 20, 21 and 24 are marked. Next, let the proof continue as follows:

25 ∼Sa 1, 17 RU {Γ1
1}

26 Sa ∧ ∼Sa 22, 25 RU {Γ2
4, Γ

1
1}

At this stage, Γ2
4 is considered as falsified, whence lines 18, 19, 22–24 and

26 are marked. It follows that Γ3
5 is not any more considered as falsified,

and hence that no line is marked except for those mentioned in the previous
sentence. How the proof may continue further will of course depend on the
other premises.

8. Putting the logics Together

It is very easy to combine the previously mentioned logics, but the matter is
somewhat longwinded. This is why we shall discuss it in a rather informal
way.

We need a modal logic that combines T and IM. Let us call it TIM. A TIM-
model is a sextuple 〈W, W ′, w0, R, D, v〉 in which W and W ′ are (disjoint)
sets of worlds, w0 ∈ W the real world, R a reflexive binary relation on
W ∪ W ′, D a non-empty set and v an assignment function. The assignment
function v is as for IM-models. For all A ∈ W , one defines vM (A, w) as
in the IM-semantics if w ∈ W ′, and one defines vM (A, w) as in the T-
semantics if w ∈ W (in which case C1.4 has no effect). vM (♦A, w) = 1
iff vM (A, w′) = 1 for some w′ ∈ W such that Rww′. vM (�A, w) = 1 iff
vM (A, w′) = 1 for some w′ ∈ W ′ such that Rww′.

The set of premises Σ♦ will contain: (i) modal free formulas, which are
the data, (ii) formulas of the form �i∀A, which are background generaliza-
tions of priority i, (ii) sets of formulas {�iAx1,...,xn

α1,...,αn | α1, . . . , αn ∈ C}, each
of which contains all the instances of some pragmatic background general-
ization, and (iv) formulas of the form ♦iA in which A is a conjunction of
members of the same background theory of priority i.

The adaptive logics IL+r and IL+m are defined as follows. The lower
logic is obviously TIM and the set of abnormalities Ω is the union of all
Ωi = {�iA | i > 0; A ∈ W}∪{♦iA | i > 0; A ∈ W}∪{∃A∧∃∼A | A ∈
F◦}. The upper limit logic is UTriv, obtained by adding to TIM the axioms
�A ⊃ A, ♦A ⊃ A and ∃A ⊃ ∀A.

Let us start with the semantics. It is most handy to proceed in two steps,
the first taking care of background knowledge, the second of the local gen-
eralizations.

For every TIM-model M of Σ♦ and for every i ∈ N − {0}, we define
Ab

i(M) =df {�iA ∧ ∼A | M |= �iA ∧ ∼A} ∪ {♦iA ∧ ∼A | M |= ♦iA ∧
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∼A}. For every i ∈ N−{0}, we define U i(Σ∆) =df ∆1 ∪∆2 ∪ . . ., where
Dab

i(∆1),Dab
i(∆2), . . . are the minimal Dab

i-consequences of Σ♦.31

For every TIM-model M of Σ♦ we also define Ab
0(M) =df {∃A∧∃∼A |

M |= ∃A ∧ ∃∼A; A ∈ F◦}.
That a model is reliable with respect to the background knowledge is de-

fined by a sequence of selections of models:

Mr
0 =df {M | M |= Σ♦}

and
Mr

i+1 =df {M ∈ Mr
i | Ab

i+1(M) ⊆ U i+1(Σ♦)} .

Let Mr
b be the models obtained by this selection. This set of models defines

a set of minimal Dab
0-consequences of Σ♦ (disjunctions of formulas of the

form ∃A ∧ ∃∼A with A ∈ F◦). Let U0(Σ♦) be their union.
The IL+r -models of Σ♦ are defined by

M+r =df {M ∈ Mr
b | Ab

0(M) ⊆ U0(Σ♦)} .

Finally, Σ♦ �ILtr A iff A is verified by every IL+r -model of Σ♦.
We proceed in a similar way for IL+m . First we define the models of Σ♦

that are minimally abnormal with respect to the background knowledge:

Mm
0 =df {M | M |= Σ♦}

and

Mm
i+1 =df {M ∈ Mm

i | for no M ′ ∈ Mm
i , Ab

i+1(M ′) ⊂ Ab
i+1(M)}

Let Mm
b be the models obtained by this selection.

The IL+m -models of Σ♦ are defined by

M+r =df {M ∈ Mr
b | for no M ′ ∈ Mm

b , Ab
0(M ′) ⊂ Ab

0(M)} .

Finally, Σ♦ �IL+m A iff A is verified by every IL+m -model of Σ♦.

31 Remark that Dab
i(∆) is a minimal Dab

i-consequences of Σ♦ iff it is verified by any
TIM-model of Σ♦ and, for all ∆′ ⊂ ∆, Dab

i(∆′) is falsified by at least one TIM-model of
Σ♦.



“11Dirk_Lieven”
2003/6/9
page 287

i

i

i

i

i

i

i

i

ON CLASSICAL ADAPTIVE LOGICS OF INDUCTION 287

We now turn to the proof theory. The rules PREM, RU and RC are as
for ILgr and ILgm — see Section 5 — except that IM is replaced by TIM.32

For the marking definitions we shall follow an approach that is as simple as
possible in view of the logics that have been combined.

Remember the order in which abnormalities are avoided. The logics first
avoid abnormalities that derive from background items with priority 1; let
us call these abnormalities of level 1. Next, the logics avoid abnormalities
that derive from background items with priority 2 (abnormalities of level 2).
And so on. Only with all background knowledge thus taken into account, the
logics avoid abnormalities that pertain to local generalizations — remember
that these have a different form than the others, viz. ∃A ∧ ∃∼A.

Some warning may be useful here. First, the abnormalities of priority level
i contain abnormalities of the form ♦iA∧∼A as well as abnormalities of the
form �iA ∧∼A. Next, disjunctions of abnormalities of the form ∃A ∧ ∃∼A
(called Dab

0-formulas because no possibility operator occurs in them) may
be thought of as abnormalities of level 0, provided one remembers that while,
for all other numbers, the logics avoid first abnormalities of the lower levels,
they avoid abnormalities of level 0 only after abnormalities of all other levels.
To avoid confusion in this respect we shall say that priority level 1 is better
than level 2, etc., but that all levels are better than level 0.

A clean line is defined as in Section 5, except that we now require that the
abnormalities in the fifth element are better than the disjuncts of the second
element. Here are two examples of clean lines:

i ♦♦A ∧ ∼A . . . . . . {♦B ∧ ∼B, �C ∧ ∼C}
j ∃A ∧ ∃∼A . . . . . . {♦♦B ∧ ∼B, �C ∧ ∼C}

The definition of a minimal Dab
i-formula (at a stage) is extended accord-

ingly to Dab
0-formulas. Given this, U i

s(Σ
♦) and Φi

s(Σ
♦) are defined as

before (see for example Section 5) in terms of the minimal Dab
i-formulas

at stage s. The marking rules are exactly as in Section 5, except that, at each
stage of a proof, one starts marking in view of the best priority level, which
is 1, next marks in view of priority level 2, etc., and finally one marks in
view of priority level 0.

The logics IL+r and IL+m handle data, background generalizations, prag-
matic background generalizations, and background theories. One way to
look at these logics is by saying that their consequence sets extend the data

32 Remark that RC handles any Dab-formula, even a mixed one, in which abnormalities of
all sorts and all levels occur. Needless to say, our present construction will handle background
theories in the official way. Combining the direct proof theory from Section 7 with the proof
theories of the other sections would complicate the exposition (although not the proofs).
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in the following way. First, all CL-consequences of the data are in the adap-
tive consequence set. Next, for each priority level and starting with the best
one (represented by the lowest number), certain background generalizations,
instances of pragmatic background generalizations, and theories are added
to the set, and the result is closed under CL. Remark that there is no intrinsic
difference in priority between all those elements (with the exception of the
data). In other words, if one judges that, for a given set of knowledge, theo-
ries should have precedence on pragmatic generalizations, one has to express
this by the way in which the premises are represented, viz. by a difference
in modalities in the premises. The thus extended data determine which local
generalizations will be added to the consequence set.

An essential feature of the proofs is that (unlike what the previous para-
graph might suggest) applications of the rules may occur in any order. This
is essential because the consequence sets mentioned in the previous para-
graph may be undecidable. Suppose that one first derives some local gener-
alizations by RC, and only then applies RC to bring some background items
to level 0. In view of the background items that are retained, lines at which
local generalizations are derived may be marked. Certain heuristic strategies
may obviously improve the efficiency of a proof, but this a different matter
which we shall not discuss here.

9. Open Problems

It goes without saying that the properties of the discussed logics should be
studied better, and that technical simplifications should be introduced wher-
ever possible. One interesting property that deserves a high priority is the re-
lation between the basic induction logics and compatibility. Roughly stated,
a generalization is inductively derivable from a set of data iff it is compat-
ible with the union of the data and any set of generalizations that is itself
compatible with the data.

An important problem that is rather easy to answer but could not be dis-
cussed in the present paper concerns predictions on the basis of data that
are not uniform. Suppose that, amongst the data, most P are Q. One then
clearly wants to predict that the next P will be Q. The logic leading to the
desired consequence is simple, but quite different from the ones presented
in previous sections. For this reason, it was not discussed here. A related
problem concerns the derivation of statistical hypotheses, say of the form
P (A/B) = r in which A and B are purely functional and r is a real number
between 0 and 1 included. For some related results we refer to [14].

Very different open problems concern inconsistent data and inconsistent
background knowledge. The logics discussed in this paper handle such
cases, but they do not do so in an adequate way. Inconsistent data result in
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triviality, inconsistent background knowledge is simply discarded. It is not
difficult to devise more adequate logics for such situations, and the logics
presented in this paper are special cases of them. However, the inconsistent
situations require that one combines induction logics with inconsistency-
adaptive logics, and anything relating to inconsistency-adaptive logics was
avoided in the present paper.

Finally, quite some problems that belong to the philosophy of science are
as yet unsolved. For example, there are situations in which a scientist will
introduce local generalizations that conflict with background knowledge in
the hope to reach a new theory. We by no means underestimate such prob-
lems. The main reason for not discussing them here is that we consider the
present results as a necessary condition for that discussion.33
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