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ADAPTIVE LOGICS FOR QUESTION EVOCATION∗

JOKE MEHEUS†

Abstract
In this paper, I present two adaptive logics for Wiśniewski’s notion
of question evocation. The first is based on an erotetic extension of
Classical Logic, the second on an erotetic extension of S5. For both
logics, I present the semantics and the dynamic proof theory. The
latter is especially important in view of the fact that question evoca-
tion is a non-monotonic relation for which there is no positive test.
Thanks to its dynamical character, the proof theory moreover solves
the logical omniscience problem to which Wiśniewski’s static defi-
nition of question evocation leads.

1. Introduction

The importance of erotetic inferences for scientific reasoning, and for rea-
soning and problem solving in general, can hardly be overstated. The expla-
nation of new phenomena, the discovery of new laws and theories, even the
design and performance of experiments, all involve the derivation of ques-
tions. Also in computer applications, the importance of erotetic inferences
is becoming ever more evident. The quality of expert systems for diagnosis,
for instance, is largely dependent on their capability of generating the right
questions.

Notwithstanding their obvious importance, erotetic inferences have long
been neglected. For decades, studies in erotetic logic concentrated on the re-
lation between questions and answers. Only recently, attention is paid to the
way in which questions arise from sentences and/or other questions. Central
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and the referees for several corrections and suggestions.
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136 JOKE MEHEUS

contributions in this respect are Hintikka’s interrogative model (see espe-
cially the papers in [6]) and Wiśniewski’s inferential erotetic logic (see espe-
cially [11] and [13]). Within the interrogative model, questioning is studied
as a game between two subjects (one of which may be Nature). Many of
the basic intuitions behind this model were generalized and systematized in
Wiśniewski’s inferential erotetic logic. The import of the latter is that it pro-
vides proper semantic explications for the main types of erotetic inferences.

One of these types concerns the derivation of questions from a set of
declarative sentences.1 On Wiśniewski’s account, a question Q is derivable
from a set of declarative sentences Γ iff Q is sound relative to Γ as well as
informative relative to Γ. Intuitively, the former requirement is fulfilled iff Q
is truly answerable in case all members of Γ are true, the latter iff Q cannot
be answered on the basis of Γ.

In order to explicate this intuitive characterization, Wiśniewski introduced
the semantic concept of question evocation. As we shall see below, the re-
sulting explication is highly attractive: it is very transparent and applicable to
any logic of questions that satisfies some minimal requirements. The draw-
back, however, is that it is of limited use with respect to applications. One
of the reasons for this is that, in many cases, it presupposes logical omni-
science: for many sets of premises Γ and for many questions Q, one has to
be aware of all the logical consequences of Γ in order to decide that Q is
evoked by Γ.2

The aim of this paper is to reconstruct Wiśniewski’s concept of question
evocation in terms of adaptive logics. A major advantage of this reconstruc-
tion is that the resulting logics enable one to explicate the actual reasoning
processes that lead to the derivation of new questions. This is related to a pe-
culiar property of the proof theory of adaptive logics: at any stage of a proof,
it is allowed that inferences are made on the basis of the best insights in the
premises at that stage of the proof. As a consequence, the proof theory of
adaptive logics is dynamic — conclusions derived at some stage in the proof
may at a later stage be withdrawn. In view of this dynamics, adaptive logics
are characterized by two notions of derivability: derivability at a stage and
final derivability. For all adaptive logics currently available, the latter notion
has been proven sound and complete with respect to a proper semantics.

I shall present two adaptive logics for question evocation. The first of
these, called Qs, captures Wiśniewski’s notion of question evocation with

1 Other types considered by Wiśniewski concern the derivation of auxiliary questions
from an initial question, and the derivation of auxiliary questions from an initial question
together with a non-empty set of declarative premises.

2 A main exception concerns the case where some question evocation rule applies — see
[13] for an explanation of this notion.



“06Joke”
2003/6/9
page 137

i

i

i

i

i

i

i

i

ADAPTIVE LOGICS FOR QUESTION EVOCATION 137

respect to the logic of questions Q — a specific erotetic extension of Clas-
sical Logic (henceforth CL). The second logic, Qms, is based on an erotetic
extension of S5. The significance of Qms is not only that it provides a better
insight in the notion of question evocation, but also that it leads to a better
understanding of the theoretical foundations of Qs. It is important to note
that, although both Qs and Qms refer to specific logics of questions, the
mechanism by which they are obtained may easily be applied to other logics
of questions.

The techniques that led to Qs and Qms derive from the adaptive logic
programme. The first adaptive logic was designed by Diderik Batens around
1980 (see [1]). Meanwhile, a whole variety of such logics is available — see
[2] and [4] for a survey. As we shall see below, the importance of adaptive
logics is that they enable one to study, in a formally exact way, reasoning
patterns that are non-monotonic and/or dynamic.3

I shall proceed as follows. After briefly discussing Wiśniewski’s analysis
of question evocation (Section 2), I argue why a reconstruction in terms of
adaptive logics is important (Section 3). The next four sections are devoted
to the logic Qs: its proof theory is discussed in Sections 4 and 5, its semantics
in Sections 6 and 7. In Section 8, I show how the logic Qs fits into the
adaptive logics frame. This enables me to situate the logic Qs in a broader
picture, and to discuss its theoretical foundation. The logic Qms is presented
in Section 9.

I end this section with some terminological and notational remarks. In
the subsequent sections, I shall always use A, B, C, . . . as metavariables
for declarative formulas, Q, Q′, Q′′, . . . for erotetic formulas, and X , Y ,
Z, X ′, . . . for (declarative or erotetic) formulas. Γ, ∆, Γ′, ∆′, . . . will
always refer to sets of declarative formulas, and Φ, Ψ, Φ′, Ψ′, . . . to sets of
erotetic formulas. The term “well-formed formula” (wff) will always refer
to a closed formula. As usual, I shall use the term “direct answer” to refer to
an answer that is possible and just-sufficient, and I shall say that a question
is sound iff at least one of its direct answers is true. The set of direct answers
to a question Q will be referred to by dQ. By a presupposition of a question
Q, I shall mean any declarative sentence that is implied by every member of
dQ.

3 A reasoning pattern is called dynamic if the mere analysis of the premises may lead
to the withdrawal of previously drawn conclusions. Not all dynamic reasoning patterns are
non-monotonic. In [3], for instance, Batens shows that the pure logic of relevant implication
can be characterized by a dynamic proof theory.
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138 JOKE MEHEUS

2. Question Evocation

As mentioned in the previous section, Wiśniewski’s concept of question evo-
cation can be applied to any logic of questions that satisfies some minimal
requirements. An obvious requirement is that its language L consists of a
declarative part (some standard formalized language) and an erotetic part
(that allows for the formation of questions). The only other requirements
are that the declarative part of L is provided with a proper semantics (rich
enough to define some concept of truth), and that its erotetic part assigns to
each question an at least two-element set of direct answers.

In order to define question evocation in a way that is as general as pos-
sible, Wiśniewski relies on two concepts from [9], partitions and multiple-
conclusion entailment (henceforth, mc-entailment). The former enables one
to define entailment independent from a particular type of semantics, the
latter to generalize entailment to sets of conclusions.

Where W denotes the set of declarative wffs of L, a partition of L is a
couple P = 〈T, F 〉 such that T ∩ F = ∅ and T ∪ F = W . A declarative
wff A is true in a partition P = 〈T, F 〉 iff A ∈ T ; otherwise A is false. A
partition is called admissible iff it is determined by the underlying semantics
of the declarative part of L.4 Both entailment and mc-entailment are defined
with respect to the admissible partitions:

Definition 1 : Γ entails A (Γ |= A) iff A is true in each admissible partition
P in which all the members of Γ are true.

Definition 2 : Γ mc-entails ∆ (Γ ||= ∆) iff at least one member of ∆ is true
in each admissible partition P in which all the members of Γ are true.

In view of these definitions, the adequacy requirements for question evo-
cation are straightforward. The first requirement (that the question is sound
relative to the premises) is fulfilled iff the set of direct answers to the question
is mc-entailed by the premises. The second requirement (that the question
should be informative relative to the premises) is fulfilled iff none of the
direct answers to Q is entailed by Γ. Hence, we have

Definition 3 : A question Q is evoked by a set of declarative wffs Γ iff
(i) Γ ||= dQ, and

(ii) for every A ∈ dQ, Γ 6|= A.

4 As Wiśniewski discusses in [11], there may be further restrictions on admissible parti-
tions — for instance, that they warrant ω-completeness or that they validate some specific set
of non-logical sentences.
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ADAPTIVE LOGICS FOR QUESTION EVOCATION 139

This definition is very broad: it not only covers the evocation of so-called
regular questions, but also that of irregular ones. To see this, I first need
to define what is meant by a prospective presupposition of a question. Let
Pres(Q) denote the set of presuppositions of Q, and PPres(Q) its set of
prospective presuppositions:

Definition 4 : A ∈ Pres(Q) iff B |= A, for every B ∈ dQ.

Definition 5 : A ∈ PPres(Q) iff A ∈ Pres(Q) and A ||= dQ.

As we shall see below, not all questions have prospective presuppositions.
Those that do are called regular:

Definition 6 : A question Q is regular iff PPres(Q) 6= ∅.

The adaptive logics for question evocation presented below only handle
regular questions. The reason is that, if a regular question Q is sound with
respect to a set of premises Γ, there exists a finite proof from Γ that estab-
lishes this. With regard to irregular questions, the latter need not be the case.

It immediately follows from Definition 5 that, for regular questions, Defi-
nition 3 reduces to the following:

Definition 7 : A regular question Q is evoked by a set of declarative wffs Γ
iff
(i) for some A ∈ PPres(Q), Γ |= A, and

(ii) for every A ∈ dQ, Γ 6|= A.

In the rest of this paper, I shall only consider the evocation of regular
questions.

3. Why the Reconstruction is Important

It is easily observed that question evocation is a non-monotonic notion: ques-
tions evoked by some set of declarative sentences may be suppressed when
this set is extended. For instance, “Is p or q the case?” is informative with
respect to Γ = {p∨ q}, but not with respect to Γ = {p∨ q, ¬q}. Hence, the
question is evoked by the former, but not by the latter.

For the predicative case, question evocation is not only non-monotonic, but
also lacks a positive test: even if some question satisfies the requirements of
Definition 7, it is possible that no finite construction exists that establishes
this. This is related to the fact that the second requirement of Definition 7
is a negative one. As predicative logic is undecidable, it may be impossible



“06Joke”
2003/6/9
page 140

i

i

i

i

i

i

i

i

140 JOKE MEHEUS

to establish, for some question Q and some set of sentences Γ, that none of
the direct answers to Q is derivable from Γ, and hence, to establish that Q is
evoked by Γ.

There are several ways to deal with this lack of a positive test. One way
is to consider only decidable theories. For such theories, one may be sure
that, if a question Q is evoked by some set of premises Γ, one will be able to
establish this by a finite construction. Another way is to apply some kind of
“negation as failure”. For instance, one could decide to consider a question
Q as informative with respect to some premise set Γ iff the contrary has not
been shown within a certain time or a certain number of steps. A final way
is to allow that inferences are made, not on the basis of absolute warrants,
but on the basis of one’s best insights in the premises. When this last option
is followed, the resulting reasoning processes not only exhibit an external
form of dynamics, but also an internal one — the withdrawal of previously
derived conclusions may be caused by merely analysing the premises.

There are several arguments in favour of this last option. The first is that
unwanted restrictions are avoided: the derivation of questions can be de-
fined for any first-order theory. A second argument is that also arbitrariness
is avoided: the decision on the informativeness of a question is based on
one’s best insights at a certain moment in time (rather than on, for instance,
the number of steps taken), and is moreover open for revision in view of
later insights. A third argument is that, because of its non-monotonic char-
acter, question evocation is defeasible anyway. Whether the withdrawal of
a question is caused by an external factor or an internal one does not seem
to be essential. The fourth, and most important argument is that, even for
decidable fragments, it is often unrealistic to require absolute warrants. As
already hinted at in the first section, reasoners (whether human or artificial)
are not logically omniscient: discovering the more interesting consequences
of one’s theory requires time and effort. So, even if a decision method is
available, reasoners may lack the resources to perform an exhaustive search,
and hence, may be forced to act on their present best insights. Moreover,
in some contexts, increasing one’s information by asking questions may be
cheaper and less time consuming than making further inferences. In such
cases, it is important that one is able to infer as many useful questions as
possible, even if some of them later turn out to be non-informative with re-
spect to the premises.

As mentioned already in the first section, the logics presented in this pa-
per follow the last option. This has the advantage that, even for undecidable
fragments, they enable one to come to justified conclusions. These conclu-
sions are tentative and may later be rejected, but they constitute, given one’s
insight in the premises at that moment, the best possible estimate of which
questions satisfy the requirements of Definition 7.
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ADAPTIVE LOGICS FOR QUESTION EVOCATION 141

Note that it does not follow from all this that Wiśniewski’s definition be-
comes superfluous. As we shall see below, Definition 7 has an important
role to play in the dynamic proof theory. This is related to the fact that, in
order for the dynamic proof theory to be sensible, different dynamic proofs
should — ‘in the end’ — lead to the same set of evoked questions. What this
final set of questions should be is given by Definition 7. Hence, in order to
show that the proof theory is adequate, I shall prove that the notion of final
derivability of both logics corresponds to Wiśniewski’s definition.

4. The General Idea

In this section, I present an intuitive characterization of the dynamic proof
theory of the logic Qs. I begin, however, with some remarks on the logic of
questions Q on which Qs is based.

The logic Q is an erotetic extension of (the ω-complete fragment of) CL,
and is obtained by enriching the language of CL with two kinds of questions.
However, except in the case of inconsistent sets of premises, Q does not al-
low for the derivation of any question. Thus, for all consistent sets Γ, the
derivability relation and the semantic consequence relation of Q are equiv-
alent to those of CL: for any wff X and any consistent set Γ, Γ `Q X iff
Γ `CL X and Γ |=Q X iff Γ |=CL X .5

The first kind of questions incorporated in Q are of the form ?{A1, . . . , An}
(n ≥ 2) in which A1, . . . , An are syntactically distinct declarative sentences.
A question of the form ?{A1, . . . , An} is read as “Is A1 the case or A2 or . . .
or An?”. The direct answers to ?{A1, . . . , An} are A1, . . . , An, and its set
of prospective presuppositions is {B | `Q B ≡ (A1 ∨ . . . ∨ An)}.

Where A(α) stands for a declarative wff that has α as its only free variable,
the second kind of questions are of the form (¿α)A(α), and are read as “For
which α is A the case?”. Any wff obtained by systematically replacing the
individual variable α in A(α) by an individual constant counts as a direct
answer to (¿α)A(α). As only ω-complete models are considered, the set of
prospective presuppositions of (¿α)A(α) is {B | `Q B ≡ (∃α)A(α)}. It is
easily observed that, without the restriction to ω-complete models, (¿x)Px
would not have prospective presuppositions: the truth of (∃x)Px would not
warrant that (¿x)Px has a true direct answer.

In view of the subsequent sections, it is convenient that I select, for both
types of questions, a specific member of PPres(Q) as a representative

5 We shall see below that, despite these equivalences, Q-models have a different structure
from that of CL-models. The latter will be important to define the semantics of Qs in a natural
way from that of Q.
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142 JOKE MEHEUS

of that set. Let π(Q) denote this member, and let π(?{A1, . . . , An}) =∨
{A1, . . . , An}, and π((¿α)A(α)) = (∃α)A(α).
Obtaining the proof theory for Qs from that of Q is absolutely straight-

forward and well in line with everyday intuitions. The basic idea is that the
derivation of π(Q) is considered as a sufficient condition to derive Q, and
the derivation of a member of dQ as a sufficient condition to withdraw Q. In
line with this very simple idea, the derivation of questions in Qs is governed
by one rule (RC) and one ‘marking definition’. The rule RC enables one
to add a question Q to a proof whenever π(Q) is derived in it; the marking
definition warrants that Q is withdrawn from the proof, as soon as a member
of dQ is derived in it. Technically, the latter is realized by marking the line
on which Q occurs. This indicates that the question at issue is no longer
considered as derived.

In addition to the rule RC and the marking definition, there is a premise
rule PREM and a generic rule RU. The former enables one to introduce
premises, the latter to add A to a proof from Γ whenever Γ `Q A. What
the latter comes to is that, for declarative inferences, Qs behaves exactly as
Q (and hence, as CL).

In order to illustrate these basic ideas, I give a very simple example of a
Qs-proof (the fifth column can be ignored for the moment):

1 (∃x)Pxa – PREM ∅
2 (∀x)(Pxa ⊃ Qxa) – PREM ∅
3 Qba ∧ (∀x)(Qxa ⊃ x = b) – PREM ∅

As π((¿x)Pxa) = (∃x)Pxa, the rule RC enables one to derive the ques-
tion (¿x)Pxa from the formula on line 1. This derivation, however, should
be conditional: if at a later stage in the proof a direct answer to (¿x)Pxa is
derived, then the latter has to be withdrawn. To remember the condition on
which the line is added, it is written down (in some conventional form) as
the fifth element of the line. This is how the result of applying RC to line 1
looks like:6

· · ·
4 (¿x)Pxa 1 RC {(¿x)Pxa}

Line 4 will be read as “the question (¿x)Pxa is derivable from the premises
provided that no direct answer to the former ‘behaves abnormally’ with re-
spect to the latter”. I shall say that a direct answer A to some question Q
behaves abnormally with respect to a set of premises Γ iff Q is sound with

6 To illustrate the dynamical character of the proofs, I shall each time give the complete
proof, but, for reasons of space, omit lines that are not needed to see the dynamics.



“06Joke”
2003/6/9
page 143

i

i

i

i

i

i

i

i

ADAPTIVE LOGICS FOR QUESTION EVOCATION 143

respect to Γ and A is Q-derivable from Γ. This terminology is borrowed from
other adaptive logics, and refers to the fact that some assumption, which is
regarded as desirable with respect to the application context at issue, is vio-
lated. Simplifying for the moment, the assumption in the present case is that,
whenever a question Q is sound relative to a set of premises Γ, Q is infor-
mative with respect to Γ, and hence, none of the members of dQ is derivable
from Γ.7

Suppose now that we continue the proof as follows:

· · ·
5 (∃x)Qxa 1, 2 RU ∅
6 (¿x)Qxa 5 RC {(¿x)Qxa}
7 Qba 3 RU ∅

At stage 7, it becomes clear that the question at line 6 is not informative with
respect to the premises, and hence, that it has to be withdrawn. In the proof,
this can be seen from the fact that one of the direct answers to the question
included in the fifth element of line 6 behaves abnormally at stage 7 (that is,
is derived in the proof at that stage). The marking definition warrants that all
lines the fifth element of which contains such a question are marked:

· · ·
5 (∃x)Qxa 1, 2 RU ∅
6 (¿x)Qxa 5 RC {(¿x)Qxa} X7

7 Qba 3 RU ∅

At this stage of the proof, the question on line 6 is no longer considered
as derived, but the question on line 4 still is. However, also the latter is not
finally derivable from the premises — there exists an extension of the proof
in which it is withdrawn:

· · ·
4 (¿x)Pxa 1 RC {(¿x)Pxa} X8

5 (∃x)Qxa 1, 2 RU ∅
6 (¿x)Qxa 5 RC {(¿x)Qxa} X7

7 Qba 3 RU ∅
8 Pba 1, 2, 3 RU ∅

7 In other adaptive logics, the condition of a line contains the formulas that have to behave
normally in order for the line to be derivable. In the case of Qs this would mean that a
question Q is added to the proof with its set of direct answers as the condition. However, as
the set of direct answers to a question may be infinite, I use the question itself to refer to that
set. The usual format will be illustrated in the proof theory of Qms — see Section 9.
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144 JOKE MEHEUS

By now, it should also be clear why the premises are introduced on an
empty condition (see lines 1–3). If the condition of a line is empty, then this
line will not be marked in any extension of the proof. Note also that if a
formula is added by means of the rule RU, then no condition is introduced,
but the conditions (if any) that affect the premises of the application are con-
joined for its conclusion. What this comes to is that RU is an unconditional
rule: formulas added by it are only withdrawn if some of the formulas to
which it is applied are withdrawn.8

In the next section, I show how all this can be characterized in a formally
exact way.

5. The Dynamic Proof Theory

Let L be the standard language of CL (including ⊥, syntactically character-
ized by ⊥ ⊃ A), and let F and W refer to, respectively, its set of (open and
closed) formulas and its set of wffs (closed formulas). Let LQ be obtained
from L by extending it with the erotetic signs “?”, “¿”, “{”, and “}”. The set
of wffs of LQ, WQ, is the smallest set fulfilling the following conditions:

(i) if A ∈ W , then A ∈ WQ,
(ii) if A1, . . . , An (n ≥ 2) ∈ W , and A1, . . . , An are syntactically distinct,

then ?{A1, . . . , An} ∈ WQ,
(iii) if A(α) ∈ F , and α is the only variable that occurs free in A, then

(¿α)A(α) ∈ WQ.

Let the set Q be WQ−W . Henceforth, members of W will be called “declar-
ative wffs”, and members of Q “erotetic wffs”. Remark that the definition of
WQ does not allow for any operation on erotetic wffs. Let every erotetic wff
Q be associated with dQ and with π(Q) as explained in the previous section.
LQ is the language of both Q and Qs. The derivation relation of the former

is defined with respect to that of CL:

Definition 8 : Γ `Q X iff Γ `CL ⊥ or (X ∈ W and Γ `CL X).

As explained in the previous section, the logic Q is used to formulate the
generic rules that govern Qs-proofs from Γ:

8 As we shall see below, the proof theory of Qs is much more restricted than that of other
adaptive logics. Unlike what is the case for other adaptive logics, lines added by means of
RU always have an empty condition, and hence, are never withdrawn.
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ADAPTIVE LOGICS FOR QUESTION EVOCATION 145

PREM If A ∈ Γ, then one may add to the proof a line consisting of
(i) the appropriate line number,

(ii) A,
(iii) “−”,
(iv) “PREM”, and
(v) ∅.

RU If A1, . . . , An `Q X (n ≥ 0), and A1, . . . , An occur in the proof
on the conditions Φ1, . . . , Φn, then one may add to the proof a line
consisting of:

(i) the appropriate line number,
(ii) X ,

(iii) the line numbers of the Ai,
(iv) “RU”, and
(v) Φ1 ∪ . . . ∪ Φn.

RC If π(Q) occurs in the proof on the condition Φ, then one may add to
the proof a line consisting of:

(i) the appropriate line number,
(ii) Q,

(iii) the line number of π(Q),
(iv) “RC”, and
(v) {Q} ∪ Φ.

Note that, in view of the convention concerning the use of metavariables
from the first section, the rule PREM does not allow for the introduction of
erotetic wffs. Hence, questions can only be added on an empty condition if
Γ `CL ⊥ (in view of RU and Definition 8). Observe also that, in view of
RU and RC, no declarative wff is ever added to the proof on a non-empty
condition. Because of this, the dynamics in Qs-proofs is very limited: it
only affects erotetic wffs (no declarative wff is ever withdrawn from a proof).
Note finally that neither RU nor RC can be applied to erotetic wffs. Thus,
questions may be introduced (and later withdrawn), but no further inferences
are ever drawn from them.9

Let me illustrate the above rules by a simple propositional example. Sup-
pose that Γ consists of the following four premises:10

9 In [8], an extension of Qs is proposed that has a much more interesting proof theory. It
enables one, for instance, not only to introduce new questions, but also to analyse them. The
purpose of this paper, however, is to capture the notion of question evocation as intended by
Wiśniewski.

10 For the sake of simplicity, I use continuous disjunctions.
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1 p ∨ q – PREM ∅
2 ¬q ∨ t ∨ p – PREM ∅
3 p ⊃ (q ∧ r) – PREM ∅
4 ¬(q ∧ ¬s) – PREM ∅

As π(?{p, q}) = p ∨ q, the rule RC can be applied to the formula on line 1:

5 ?{p, q} 1 RC {?{p, q}}

In an analogous way, several questions can be derived, by RC, from the
formula on line 2:

6 ?{¬q, t, p} 2 RC {?{¬q, t, p}}
7 ?{¬q, t ∨ p} 2 RC {?{¬q, t ∨ p}}
8 ?{¬q ∨ t, p} 2 RC {?{¬q ∨ t, p}}

Although the rule RC cannot be applied to the formulas on lines 3 and 4,
it can be applied to some of their Q-consequences. The latter can be added
by means of the rule RU:

9 ¬p ∨ (q ∧ r) 3 RU ∅
10 ?{¬p, (q ∧ r)} 9 RC {?{¬p, (q ∧ r)}}
11 ¬p ∨ q 3 RU ∅
12 ?{¬p, q} 11 RC {?{¬p, q}}
13 ¬q ∨ s 4 RU ∅
14 ?{¬q, s} 13 RC {?{¬q, s}}

The following examples of questions are obtained by first applying RU to
more than one formula:

15 p ∨ t 1, 2 RU ∅
16 ?{p, t} 15 RC ?{p, t}
17 t ∨ q 11, 15 RU ∅
18 t ∨ s 13, 17 RU ∅
19 ?{t, s} 18 RC ?{t, s}

A final way to derive questions in the proof is by first introducing formulas
that are Q-valid:

20 p ∨ ¬p – RU ∅
21 ?{p, ¬p} 20 RC {?{p, ¬p}}

Let us now turn to the marking definition. This definition requires that I
first define the set of declarative wffs that have, at stage s, been recognized as
abnormal. As mentioned in the previous section, a direct answer A to some
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question Q is said to behave abnormally with respect to Γ iff Q is sound with
respect to Γ, and A is Q-derivable from it. However, as ?{A,¬A} is sound
with respect to any set of premises Γ, it immediately follows from this that
all Q-consequences of Γ should be considered as abnormalities with respect
to Γ.11 Hence, the abnormalities recognized at stage s of the proof are simply
all declarative wffs that have, at that stage, been derived in the proof:

Definition 9 : Ab
s(Γ) = {A ∈ W | A has been derived from Γ at stage s of

the proof}.

The marking definition is now straightforward:

Definition 10 : A line i that has Φ as its fifth element is marked at stage s of
a proof iff for some Q ∈ Φ, dQ ∩ Ab

s(Γ) 6= ∅.

In order to illustrate the marking definition, let us return to the example of
a few paragraphs ago. It is easily observed that, at stage 21, none of the lines
is marked — Ab21(Γ) consists of all declarative wffs derived in the proof,
and none of the derived questions has any of these wffs among its direct
answers. Suppose, however, that we continue the proof as follows:

22 q 1, 3 RU ∅
23 s 22, 4 RU ∅

As q is a member of Ab22(Γ) as well as a direct answer to the questions that
occur in the fifth element of lines 5 and 12, both these lines are marked at
stage 22. For analogous reasons, lines 14 and 19 are marked at stage 23.

In view of the marking definition, two forms of derivability can be defined
— derivability at a stage and final derivability:12

Definition 11 : X is derived at a stage in a proof from Γ iff X is derived on a
line that is, at that stage of the proof, not marked.

Definition 12 : X is finally derived in a proof from Γ iff X is derived on a
line that is not marked, and will not be marked in any further extension of
the proof.

11 Below we shall see that this interpretation of the set of abnormalities is a simplified one,
but that it is safe, and moreover needed to define the proof theory in a realistic way.

12 The dynamics of Qs is more restricted than that of other adaptive logics: once a line in
a Qs-proof is marked, it remains marked in any further extension of the proof. This is why
the definition for final derivability for Qs is simpler than that for most other adaptive logics.
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As is usual for adaptive logics, the consequence relation of Qs is defined
with respect to final derivability:

Definition 13 : Γ `Qs X (X is finally derivable from Γ) iff X is finally
derived in a Qs-proof from Γ.

In the above example, the questions that occur on lines 5 and 12 are de-
rived until stage 21 of the proof, but are no longer derived from stage 22 on;
those on lines 14 and 19 are no longer derived from stage 23 on. Given the
simplicity of the premises, it is easily observed that all other questions are
finally derived.

By inspection of the three generic rules and the marking definition, it is
easily proven that, for declarative inferences, Qs is equivalent to Q:

Theorem 1 : Γ `Qs A iff Γ `Q A.

The following theorem shows that, for consistent premise sets, the proof
theory of Qs is adequate with respect to Wiśniewski’s definition of question
evocation (as applied to the logic of questions Q):13

Theorem 2 : For every consistent Γ, Γ `Qs Q iff (i) Γ `Q π(Q), and (ii) for
every A ∈ dQ, Γ 6`Q A.

Proof. For the left-right direction, suppose that the antecedent holds true. In
that case, Q has been finally derived on a line i in a Qs-proof from Γ. Hence,
in view of RU and RC, (i) holds true. To see that also (ii) holds true, suppose
that, for some A ∈ dQ, Γ `Q A. As Q is compact (in view of Definition 8),
it follows that there is an extension of the proof in which A is derived. But
then, in view of the marking definition, line i is marked in that extension.
This contradicts the supposition that Q is finally derived in the proof.

For the right-left direction, suppose that (i) Γ `Q π(Q), and (ii) for every
A ∈ dQ, Γ 6`Q A. In view of (i), Q is added by RC on some line i in some
Qs-proof from Γ. In view of (ii), line i will not be marked in any extension
of this proof, and hence, in view of Definitions 12 and 13, Γ `Qs Q. �

13 For inconsistent sets of premises, the approach presented here diverges from that of
Wiśniewski. Whereas his definition ensures that no question is evoked by an inconsistent set
Γ, Qs enables one to derive any question from an inconsistent set. The latter is related to the
fact that I extend the semantics to the erotetic part of the language — see Section 6.
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6. The Semantics of Q

As for all adaptive logics, the semantics of Qs is obtained by making a se-
lection of the models of some monotonic logic. In this case, the monotonic
system is the logic of questions Q. This is why I first discuss the semantics of
the latter. However, before I do so, I need to point out a rather fundamental
difference with Wiśniewski’s semantic approach.

In the approach presented here, the semantics of a logic of questions not
only applies to the declarative part of its language, but also to its erotetic part.
Thus, not only declarative wffs receive a truth value in the models of Q, but
also erotetic wffs. At first sight, this may seem counter-intuitive. Can one
sensibly consider the truth or falsity of a question? It is important to note,
however, that “truth in a model” is a technical matter, needed to define the
semantic consequence relation. That a question is verified by a model does
not necessarily imply that this question is considered as true in an intuitive
sense of the word.

It is also important to note that a distinction should be made between “a
question Q is verified by a model” and “a question Q is sound”. In the
semantics of Q, the former implies the latter, but not vice versa. This is
intuitively justified: as the soundness of a question Q relative to a set of
premises Γ is not considered as a sufficient condition for Q to be entailed by
Γ, it should be possible that a question Q is sound in all models of Γ (in the
sense that π(Q) is verified in all of them), but that it is nevertheless falsified
in some of them.

To implement these basic insights in the simplest way possible, I define
a Q-model as a set of CL-models. More precisely, where ∆ ⊂ W and
where Σ∆ is the set of all ω-complete CL-models of ∆, a Q-model M is
of the form Σ∆. Where vM : W −→ {0, 1} is the usual valuation function
determined by an ω-complete CL-model M , the valuation function vM :
WQ −→ {0, 1} determined by a Q-model M is defined by the following
clauses:14

C1 vM(A) = 1 iff vM (A) = 1, for every M ∈ Σ∆

C2 vM(Q) = 1 iff (i) vM (π(Q)) = 1, for every M ∈ Σ∆, and (ii) for
every A ∈ dQ, vM (A) = 0, for some M ∈ Σ∆.

Truth in a model and validity are defined as usual, except that the defini-
tions are broadened to include questions:

14 Note that C2 comes to the same as vM(Q) = 1 iff vM(π(Q)) = 1, and vM(A) = 0,
for every A ∈ dQ.
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Definition 14 : X is verified by a Q-model M (M verifies X) iff vM(X) =
1.

Definition 15 : X is valid (|=Q X) iff X is verified by all Q-models.

Also the definition of semantic consequence is broadened to include ques-
tions. Note, however, that questions can only occur as conclusions, not as
premises:

Definition 16 : Γ |=Q X iff every Q-model that verifies all members of Γ
also verifies X .

Henceforth, it will be said that a Q-model M = Σ∆ is a Q-model of Γ
iff it verifies all members of Γ. The following three theorems illustrate some
important properties of the Q-semantics:

Theorem 3 : M = Σ∆ is a Q-model of Γ iff Σ∆ ⊆ ΣΓ.

Proof. For the left-right direction, suppose that Σ∆ 6⊆ ΣΓ. By the definition
of Σ∆ it follows that, for some A ∈ Γ and some M ∈ Σ∆, vM (A) = 0. But
then, in view of C1, Σ∆ is not a Q-model of Γ. The right-left direction is
obvious in view of the definition of Σ∆ and C1. �

Theorem 4 : M = Σ∆ verifies A iff ∆ |=Q A.

Proof. In view of Theorem 3, Σ∆′ is a Q-model of ∆ iff Σ∆′ ⊆ Σ∆. Hence,
in view of the Q-semantics, Σ∆ verifies A iff ∆ |=Q A. �

Theorem 5 : M = Σ∆ verifies π(Q) iff, for every M ∈ Σ∆, vM (A) = 1, for
some A ∈ dQ.

Proof. For the left-right direction, suppose that the antecedent holds true.
By inspection of the Q-semantics and the definition of π(Q), it follows that,
(i) if Q is of the form ?{A1, . . . , An}, every member of Σ∆ verifies some
Ai, and (ii) if Q is of the form (¿α)A(α), every member of Σ∆ verifies
some instance of (∃α)A(α) (in view of the fact that Σ∆ consists only of
ω-complete models).

The right-left direction is obvious in view of the Q-semantics and the def-
inition of π(Q). �

As was explained in the previous section, the logic Q has the same infer-
ential power as CL with respect to declarative wffs, but does not allow for
the derivation of any question (except when the premise set is inconsistent).
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That its semantics is adequate in this respect, is shown by the following two
theorems:

Theorem 6 : Γ |=Q A iff Γ |=CL A.

Proof. For the left-right direction, suppose that the antecedent holds true.
As M = ΣΓ is a Q-model of Γ (in view of Theorem 3), it follows that M
verifies all members of Γ, and moreover verifies A (in view of Theorem 4).
But then, in view of C1 and the fact that ΣΓ is the set of all CL-models of Γ,
Γ |=CL A. The right-left direction is immediate in view of the Q-semantics
and Theorem 3. �

Theorem 7 : If Γ has Q-models and Γ |=Q X , then X ∈ W .

Proof. Suppose that the antecedent holds true and that X ∈ Q. Let M =
Σ∆ be an arbitrary Q-model of Γ. It follows that every member of Σ∆

verifies some member of dX (in view of Theorem 5). Select an arbitrary
member M of Σ∆, and let ∆′ = {A | vM (A) = 1}. It is easily observed
that M′ = Σ∆′ is a Q-model of Γ, and that, for some A ∈ dX , vM′(A) = 1.
Hence, in view of C2, M′ falsifies X . But then, Γ 6|=Q X which contradicts
the supposition. �

The following theorem follows immediately from Theorems 6 and 7:

Theorem 8 : Γ |=Q X iff Γ |=CL ⊥ or (X ∈ W and Γ |=CL X).

As is intuitively justified, no question is valid in Q:

Corollary 1 : |=Q X iff X ∈ W and |=CL X .

In view of the soundness and completeness of CL, the soundness and com-
pleteness of Q follow immediately from Definition 8 and Theorem 8:

Theorem 9 : Γ |=Q X iff Γ `Q X .

7. The Semantics of Qs

As we have seen in the previous section, Q does (in general) not allow for
the derivation of questions. The reason is that, whenever a question Q is
verified in some model of the premises, there exists an alternative model in
which Q is falsified (see also the proof of Theorem 7). The semantics of Qs
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is obtained by selecting those Q-models of the premises that verify ‘as many
questions as possible’.

The format of the Q-semantics makes it possible to perform this selection
in a way that is very simple and natural:

Definition 17 : A Q-model M = Σ∆ is a Qs-model of Γ iff Σ∆ = ΣΓ.

By Definition 17, every consistent Γ has a unique Qs-model. In view of
Theorem 4, this model verifies a declarative wff A iff Γ |=Q A. Thus, it is
ensured that, whenever a question Q is sound and informative with respect
to Γ, it is verified by all Qs-models of Γ. This is most easily illustrated by
means of an example. Suppose that Γ = {p ∨ q}. In view of Theorem 3,
each of the following are Q-models of Γ:

(1) M1 = Σ{p∨q}

(2) M2 = Σ{p∨q, r}

(3) M3 = Σ{p}

(4) M4 = Σ{p, r}

Of these, only M1 and M2 verify ?{p, q}, and only M1 and M3 verify
?{r, ¬r}. So, neither of these questions is a Q-consequence of Γ. However,
by Definition 17, M1 is the only Qs-model of Γ, and hence, both ?{p, q}
and ?{r, ¬r} are verified in all Qs-models of Γ. As both questions are sound
and informative with respect to Γ, this is as it should be. Note that only M1

is such that it verifies no other formulas than those that follow from Γ by Q.

Definition 18 : Γ |=Qs X iff all Qs-models of Γ verify X .

Theorem 10 : Γ |=Qs A iff Γ |=Q A.

Proof. Immediate in view of Definition 17 and Theorem 4. �

Though intuitively very natural, the above semantic characterization of Qs

is not very helpful to see the relation with the proof theory. This is why I
shall now present an alternative characterization (that is more in line with
that of other adaptive logics) and prove it equivalent to the above one. The
new selection criterion will proceed in terms of the abnormalities that are
verified by the Q-models of Γ. The idea will be to select those Q-models
that are not more abnormal than is required by the premises.

As was explained in Sections 4 and 5, the plot behind the proof theory of
Qs is to assume that, whenever a question Q is shown to be sound with
respect to the premises, none of its direct answers is derivable from the
premises, unless and until this assumption is explicitly proven false. If some
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question Q is sound with respect to Γ, but one of its direct answers A is
derived at some stage of the proof, then A is considered as an abnormal-
ity with respect to Γ at that stage of the proof. Hence, in view of the fact
that ?{A,¬A} is sound with respect to any set of premises, the set Ab

s(Γ)
simply consists of all declarative wffs that occur in the proof at stage s.

In order to capture this plot in the semantics, I shall proceed in two steps.
First, I shall show that the above characterization of what counts as an ab-
normality is a simplified one, and present a more accurate characterization.
Next, I shall show that the simplified version is harmless and moreover
needed for a realistic proof theory.

As mentioned above, the term “abnormality” refers to the fact that some
assumption, that is considered as desirable with respect to the application
context at issue, is violated. At first sight, the assumption for the present
application context seems to be that, if a question is sound with respect to the
premises, it is informative with respect to them. This, however, is too crude.
Questions that have a tautology among their direct answers, are necessarily
sound with respect to every premise set Γ, but cannot be informative with
respect to any of these. Hence, the correct assumption is that, if a question
is sound with respect to the premises, and none of its direct answers is a
tautology, then it is informative with respect to them.

In line with this, the set of abnormalities that are unavoidable with respect
to Γ is defined as:

Definition 19 : Ab(Γ) = {A ∈ W | Γ |=Q A; 6|=Q A}.

and the ‘abnormal part’ of a model (the abnormalities verified by the model)
as:

Definition 20 : Ab(M) = {A ∈ W | M verifies A; 6|=Q A}.

In view of these two definitions, a criterion can be defined to select those
models that are “as normal as possible”. In all adaptive logics, this selection
is based on a ‘strategy’ that disambiguates the ambiguous phrase “as nor-
mal as possible”. In this case, the selection can adequately be based on the
so-called Simple Strategy. According to this strategy, a formula behaves ab-
normally just in case it is derivable from the premises;15 models that verify
no other abnormalities than those derivable from the premises are called, by
lack of a better term, “Simply All Right”:

15 In most other adaptive logics, the phenomenon of ‘connected abnormalities’ leads to a
slightly more complicated definition of what counts as an abnormality. For a discussion of
the different strategies that are used in the design of adaptive logics, see [4].
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Definition 21 : A Q-model M of Γ is Simply All Right with respect to Γ iff
Ab(M) = Ab(Γ).

To see how this alternative selection of the adaptive models works, con-
sider again (1)–(4). In view of Definition 19, Ab({p ∨ q}) consists of all
Q-consequences of {p ∨ q} that are not Q-valid. Hence, in view of Def-
initions 20 and 21, M2 is not Simply All Right with respect to {p ∨ q}:
r ∈ Ab(M2), but r 6∈ Ab({p ∨ q}). For analogous reasons, also M3 and
M4 are not selected as adaptive models.

I now show that the selection based on the Simple Strategy is equivalent
to the selection obtained in view of Definition 17.

Lemma 1 : For any M = Σ∆, Ab(M) = Ab(∆).

Proof. Immediate in view of Definition 20, Theorems 4 and 6, and Definition
19. �

Theorem 11 : A Q-model M is a Qs-model of Γ iff it is Simply All Right with
respect to Γ.

Proof. For the left-right direction, suppose that M = Σ∆ is a Qs-model
of Γ. In view of Definition 17, Σ∆ = ΣΓ. Hence, in view of Lemma 1,
Ab(M) = Ab(Γ).

For the right-left direction, suppose that M = Σ∆ is a Q-model such that
Ab(M) = Ab(Γ). Hence, in view of Definitions 19 and 20, M verifies A
iff Γ |=Q A. But then, in view of Theorem 4, Σ∆ verifies A iff ΣΓ verifies
A. It follows that Σ∆ = ΣΓ, and hence, in view of Definition 17, that M is
a Qs-model of Γ. �

The semantics characterized by Definitions 19–21 is best in line with how
abnormalities are usually defined within an adaptive logic. However, as Q-
valid wffs are verified in all Q-models, the following definitions lead to ex-
actly the same selection:

Definition 22 : Ab
†(M) = {A ∈ W | M verifies A}.

Definition 23 : Ab
†(Γ) = {A ∈ W | Γ |=Q A}.

Definition 24 : A Q-model M of Γ is Simply All Right with respect to Γ iff
Ab

†(M) = Ab
†(Γ).

The semantic characterization given by these definitions is the one that is
closest to the proof theory. The reason why the proof theory is based on this
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simplified interpretation of an abnormality is that it should be possible to
write down, by means of RC, a question that has one or more tautologies as
direct answers. If the latter were not allowed, the applicability of RC would
become undecidable.

I now show that the proof theory of Qs is sound and complete with respect
to its semantics.

Theorem 12 : Γ `Qs X iff Γ |=Qs X .

Proof. In view of Theorems 1, 9 and 10, the theorem obviously holds true if
X ∈ W . So, I only have to consider the case where X ∈ Q.

For the left-right direction, suppose that the antecedent holds true for some
Q ∈ Q. It follows, from Theorem 2 and 9, that Γ |=Q π(Q), and that, for
every A ∈ dQ, Γ 6|=Q A. But then, in view of Theorem 4 and C2, ΣΓ verifies
Q. Hence, in view of Definition 17, Γ |=Qs Q.

For the right-left direction, suppose that Γ |=Qs Q. It follows, from Def-
inition 17 and C2, that ΣΓ verifies π(Q), and falsifies every A ∈ dQ. But
then, in view of Theorems 4 and 6, Γ |=Q π(Q), and, for every A ∈ dQ,
Γ 6|=Q A. Hence, in view of Theorems 2 and 9, Γ `Qs Q. �

8. How It All Fits in the Adaptive Logics Frame

Readers familiar with adaptive logics will have noted that the presentation
of Qs does not completely follow the standard scheme. In this section, I
shall show that Qs nevertheless is a ‘decent’ adaptive logic, that satisfies
all the conditions for adaptive logics discussed in [4]. The motivation for
doing so is that, for systems that satisfy these conditions, the results from
[4] enable one to prove, in an almost automatic way, a whole series of rather
fundamental properties.16

In line with the requirements from [4], it should be possible to characterize
an adaptive logic (AL) by a triple: a lower limit logic, a set of abnormalities
and a strategy. As for the strategy, the only condition from [4] is that it
should be one of the ‘standard’ ones, such as the Simple Strategy.17

The lower limit logic (LLL) should be monotonic and compact, and such
that CnLLL(Γ) is the intersection of all sets {A | Γ∪∆ `AL A} in which ∆ is

16 The conditions have been shown to be satisfied by all adaptive logics developed by
the ‘Ghent group’ — see http://logica.rug.ac.be/adlog/albib.html for an
overview of the logics developed by this group.

17 The two other standard strategies are the so-called Reliability Strategy and the Minimal
Abnormality Strategy.
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a subset of W (the set of all closed formulas of the language). From a proof
theoretic point of view, the lower limit logic defines the rules of inference
that are unconditionally valid. From a semantic point of view, it provides the
models from which the adaptive models of Γ are selected.

In the case of Qs, the lower limit logic is Q. It is easily observed that Q
satisfies the above conditions: it is monotonic and compact (as it is equiv-
alent to CL), and whatever is derivable from Γ by Q is derivable from any
(declarative) extension of Γ by Qs (in view of the rule RU and the marking
condition).18 It follows, as it should, that CnQ(Γ) ⊆ CnQs(Γ).

An important constraint for the set of abnormalities is that extending the
lower limit logic with the requirement that no abnormality is logically pos-
sible should result in a monotonic logic. Thus, if one eliminates, from the
lower limit logic models, all models that verify some abnormality, the result-
ing models should define a logic that satisfies the monotonicity requirement.
The logic thus obtained is called the upper limit logic, and turns any abnor-
mal set of premises into the trivial set.

In Qs, any declarative wff that is not Q-valid counts as an abnormality.
Hence, the logic obtained by eliminating all Q-models that verify some ab-
normality has only one model, namely Σ∅. This logic, let us call it Q+, is
monotonic and has indeed the property that, whenever Γ is abnormal (that
is, in this case, contains declarative wffs that are not Q-valid), CnQ+(Γ) is
trivial.

As is usual for adaptive logics, Q+ defines the ‘normal situation’. In this
case, the normal situation is that, whenever a question Q is sound with re-
spect to a premise set Γ and moreover does not contain any tautologies as
direct answers, then Q is informative with respect to Γ. Obviously, this situ-
ation only occurs if the premise set Γ is empty or all its members are Q-valid:
if Γ contains some wff A that is not Q-valid, then ?{A, ¬A} is not infor-
mative with respect to Γ, and hence, at least one question, that is sound with
respect to Γ and has no tautologies as direct answers, is ‘blocked’.

It is easily observed that, if the premise set is normal, Qs delivers the
same consequences as its upper limit logic Q+. If it is abnormal, then Qs

delivers less consequences than Q+ (as the latter leads to triviality), but more
consequences than its lower limit logic Q. All this is as it should be.

The only remaining condition from [4] is that it should be possible to ex-
press, in the language of the lower limit logic, that a formula behaves nor-
mally and that a formula behaves abnormally. This condition is not satisfied
in the case of Qs. In the next section, however, I shall show how, by slightly

18 The only difference is that, in the case of Q, it does not make sense to consider all
extensions of Γ. This, however, is related to the fact that I defined Q and Qs in such a way
that only declarative wffs can be included in the premise set.
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enriching the language of Q, a system can be defined that satisfies also this
condition, and that moreover, for any premise set Γ, leads to the same set of
erotetic conclusions as Qs. An advantage of this alternative system, I shall
call it Qms, is that its proof theory can be formulated in the usual format of
adaptive logics. We shall also see, however, that the logic Qms provides a
deeper insight in the evocation of questions, and hence, that it is interesting
in itself.19 As the system is presented in detail in [8], I shall only discuss its
main features here and refer to [8] for the meta-proofs.

9. The Adaptive Logic Qms

Suppose that we extend the language of Q with the operators “�” and “♦”.
For the application under consideration, “�A” can be read as “it is the case
that A” and “♦A” as “maybe it is the case that A”. In line with this intuitive
interpretation, it seems natural to reinterpret premises by means of �, and
thus to define, from a premise set Γ, a set Γ� = {�A | A ∈ Γ}.

Suppose further that we use the new operators to formulate the conditions
under which a question, say ?{p, q}, should be derivable from a set Γ�.
Soundness seems straightforward: ?{p, q} is sound iff “p∨q is the case”, and
hence, in our extended language iff �(p∨q) is true. But also informativeness
can be expressed in a very natural way: ?{p, q} is informative iff it is neither
established that p is the case nor that q is the case. What this comes to is that,
for all one knows, ¬p as well as ¬q could be the case, or expressed in our
extended language, that both ♦¬p and ♦¬q are true.

In line with all this, it seems natural to suggest that a question Q is evoked
from Γ� iff (i) �π(Q) is derivable from Γ�, and (ii) for every A ∈ dQ,
♦¬A is derivable from it. It is easily observed what this comes to in the
case of questions with a finite set of direct answers. However, also the case
of questions with an infinite set of direct answers now becomes extremely
simple. For instance, a question of the form (¿α)A(α) can be said to be
evoked from Γ� iff �(∃α)A(α) as well as (∀α)♦¬A(α) is derivable from
it.

At this point, some readers may get worried. The reason for their worry is
best illustrated by means of an example. Suppose that Γ = {p ∨ q}. In that
case, ?{p, q} should be evoked by it. But, not even S5 enables one to derive
♦¬p∧♦¬q from �(p∨q). I shall now show, however, that the adaptive logic

19 The reason why I nevertheless first presented the logic Qs is that it seems to be a very
basic and natural system.
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Qms leads to the desired result.20 In order to present Qms, I shall rely on the
typical elements of adaptive logics presented in the previous section — for
motivations and further clarifications, I refer to [8]. In line with the intuitions
from the beginning of this section, the logic Qms will only be defined for sets
of premises of the form Γ�.

The lower limit logic of Qms is an erotetic extension of (the ω-complete
fragment of) S5, and is called Qm. Its language, LMQ, is obtained by ex-
tending LQ with the modal operators “�” and “♦”. The logic itself is ob-
tained by extending S5 with the following definitions:

D1 ?{A1, . . . , An} =df �(A1 ∨ . . . ∨ An) ∧ (♦¬A1 ∧ . . . ∧ ♦¬An)
D2 (¿α)A(α) =df �(∃α)A(α) ∧ (∀α)♦¬A(α)

As before, the set F refers to the (open and closed) formulas of the (non-
modal) language LQ. Where A ∈ F , ∃�A abbreviates �A preceded by a
(possibly empty) sequence of existential quantifiers over the variables free
in �A. The set of abnormalities of Qms is defined as Ω = {∃�A | A ∈ F}.

Given the lower limit logic and the set of abnormalities Ω, the definition of
the upper limit logic is straightforward. It is the logic, call it Qm+, obtained
by eliminating, from the lower limit logic models, all models that verify
some member of Ω. Syntactically, Qm+ is obtained by extending Qm with
the rule “If 6`Qm ¬A, then `Qm+ ♦A.21

As is the case for all adaptive logics, the semantics of Qms is obtained by
selecting those lower limit logic models of the premises that are “not more
abnormal than is necessary in view of the premises”. To define the selection
criterion, I first define the abnormal part of a Qm-model:22

Definition 25 : Ab
†(M) = {∃�A | M verifies ∃�A}.

and the set of abnormalities that are unavoidable in view of Γ�:

20 The logic Qms is very similar to the logic of compatibility presented in [5]. Actually,
this is not surprising. As a sentence A is compatible with a set of premises Γ iff Γ 6` A,
a question Q is informative with respect to a set Γ iff the negation of each member of dQ
is compatible with Γ. The logic of compatibility presented in [5] enables one to derive ♦A

from Γ� whenever A is compatible with Γ. This property is shared by Qms.

21 See [8] for a semantic characterization of Qm+.

22 The semantics for Qms may be characterized in different ways, each of which is anal-
ogous to one of the characterizations of the Qs-semantics. Here, I immediately present the
simplified characterization, because this is most helpful in view of the proof theory.



“06Joke”
2003/6/9
page 159

i

i

i

i

i

i

i

i

ADAPTIVE LOGICS FOR QUESTION EVOCATION 159

Definition 26 : Ab
†(Γ�) = {∃�A | Γ� |=Qm ∃�A}.

Next, I use the Simple Strategy to interpret the phrase “not more abnormal
than necessary”:

Definition 27 : A Qm-model M is Simply All Right with respect to Γ� iff
Ab

†(M) = Ab
†(Γ�).

and define the consequence relation with respect to the selected models:

Definition 28 : Γ� |=Qms X iff all Qm-models that are Simply All Right with
respect to Γ� verify X .

The following theorem shows that Qms adequately captures the intuitions
from the beginning of this section — its proof is presented in [8]. Where A ∈
F , an expression of the form ∀♦A abbreviates A preceded by a (possibly
empty) sequence of universal quantifiers over the variables free in A.

Theorem 13 : Γ� |=Qms ∀♦A iff (Γ� 6|=Qm ∃�¬A or Γ� |=Qm �⊥).

As mentioned in the previous section, the extended language of Qm en-
ables one to express that a formula behaves abnormally. As I shall now
show, this leads to a very general and insightful formulation of the proof
theory.

Let Dab(∆) refer to
∨

(∆), in which ∆ ⊆ Ω — intuitively, Dab(∆) stands
for a disjunction of abnormalities. The motor behind the proof theory of Qms

is the following theorem — I refer to [8] for its proof:23

Theorem 14 : A1, . . . , An `Qm+ B if and only if there is a finite ∆ such that
A1, . . . , An `Qm B ∨ Dab(∆). (Derivability Adjustment Theorem.)

Theorem 14 warrants that, if B is Qm+-derivable from A1, . . . , An, then
B is Qm-derivable from A1, . . . , An or certain formulas behave abnormally
with respect to A1, . . . , An (remember that Dab(∆) is a disjunction of ab-
normalities). This naturally suggests that, in the dynamic proofs, we derive
B from A1, . . . , An, on the condition that no member of ∆ behaves abnor-
mally. The following pairs of examples illustrate Theorem 14:

23 It can be shown that the language of Q is too poor to formulate the analogue of this
theorem.
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(5) `Qm+ ♦¬p ∧ ♦¬q
(6) `Qm (♦¬p ∧ ♦¬q) ∨ (�p ∨ �q)
(7) `Qm+ (∀x)♦Px
(8) `Qm (∀x)♦Px ∨ (∃x)�¬Px
(9) �(p ∨ ¬p) `Qm+ ♦p ∧ ♦¬p
(10) �(p ∨ ¬p) `Qm (♦p ∧ ♦¬p) ∨ (�¬p ∨ �p)
(11) �p `Qm+ �⊥
(12) �p `Qm �⊥ ∨ �p

The last pair may at first sight seem surprising. Remember, however, that
Qm+ leads to triviality whenever it is applied to wffs that are not Qm-valid.
In the dynamic proofs, cases like (11)–(12) do not lead to unwanted results.
Indeed, whenever A ∨ Dab(∆) is derivable from the premises (by Qm), it
is allowed that A is added to the proof, but only on the condition that all
members of ∆ behave normally. Hence, although �⊥ ∨ �p is derivable
from �p by Qm, �⊥ can only be added to a proof from �p on the condition
that �p behaves normally. As the latter condition is not fulfilled, the marking
definition warrants that this line is immediately marked.

Let us now turn to the generic rules that govern Qms-proofs from Γ�. As
the premise rule is as for Qs, I only list the rules RU and RC:

RU If A1, . . . , An `Qm X (n ≥ 0), and A1, . . . , An occur in the proof
on the conditions ∆1, . . . , ∆n, then one may add to the proof a line
consisting of:

(i) the appropriate line number,
(ii) X ,

(iii) the line numbers of the Ai,
(iv) “RU”, and
(v) ∆1 ∪ . . . ∪ ∆n.

RC If A1, . . . , An `Qm B ∨ Dab(∆0) (n ≥ 0), and A1, . . . , An occur in
the proof on the conditions ∆1, . . . , ∆n, then one may add to the proof
a line consisting of:

(i) the appropriate line number,
(ii) B,

(iii) the line numbers of the Ai,
(iv) “RC”, and
(v) ∆0 ∪ ∆1 ∪ . . . ∪ ∆n.

Note that, unlike what was the case for Qs, the fifth element of a line
is now a set of declarative wffs (the formulas that are supposed to behave
normally). Note also that questions are no longer introduced by means of
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the rule RC (as was the case for Qs), but can only be derived by means of
the rule RU — this is also illustrated by the example below.24

In view of the marking definition, I need to define Ab
s(Γ�) — the formu-

las that behave abnormally at stage s of a proof. As abnormalities should be
derivable by Qm, it is required that the members of Ab

s(Γ�) are uncondi-
tionally derived (that is, on a line the fifth element of which is empty):25

Definition 29 : Ab
s(Γ�) = {∃�A | ∃�A is unconditionally derived from

Γ� at stage s of the proof}.

As the fifth element of a line is now a set of declarative wffs, the marking
definition can be defined in a simpler way than that for Qs:

Definition 30 : A line i that has ∆ as its fifth element is marked at stage s of
a proof iff ∆ ∩ Ab

s(Γ�) 6= ∅.

Derivability at a stage, final derivability, and the consequence relation are
defined as for Qs:

Definition 31 : X is derived at a stage in a proof from Γ� iff X is derived on
a line that is, at that stage of the proof, not marked.

Definition 32 : X is finally derived in a proof from Γ� iff X is derived on a
line that is not marked, and will not be marked in any further extension of
the proof.

Definition 33 : Γ� `Qms X (X is finally derivable from Γ�) iff X is finally
derived in a Qms-proof from Γ�.

To illustrate the proof theory of Qms, I repeat the example from Section 4
in a slightly adjusted form:

1 �(∃x)Pxa – PREM ∅
2 �(∀x)(Pxa ⊃ Qxa) – PREM ∅
3 �Qba – PREM ∅

24 It is possible to define derived conditional rules that allow for the introduction of ques-
tions in a more direct way. However, in the present generic format, this would require that I
allow for ‘mixed’ wffs of the form Q ∨ Dab(∆).

25 This was unnecessary in the case of Qs — in the proof theory of Qs declarative wffs
can never be derived on a non-empty condition.
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4 (∀x)♦¬Pxa – RC {(∃x)�Pxa}
5 (¿x)Pxa 1, 4 RU {(∃x)�Pxa}
6 �(∃x)Qxa 1, 2 RU ∅
7 (∀x)♦¬Qxa – RC {(∃x)�Qxa} X9

8 (¿x)Qxa 6, 7 RU {(∃x)�Qxa} X9

9 (∃x)�Qxa 3 RU ∅

As can be seen from this example, the main difference with the proof for-
mat for Qs is that questions are derived in an indirect way, namely by first
deriving that each of their direct answers may be false (see lines 4 and 7). In
view of the simplicity of the premises, it is easily observed that the question
on line 5 is finally derived from the premises. Lines 7 and 8 are marked at
stage 9 in the proof.

I refer to [8] for the proof that the proof theory of Qms is sound and com-
plete with respect to its semantics:

Theorem 15 : Γ `Qms X iff Γ |=Qms X .

As mentioned above, the system Qms is not only interesting in itself, but
also facilitates the meta-theoretic proofs for Qs. To end this section, I come
briefly back to this. Let f(X) refer to �X , if X ∈ W , and to X , if X ∈ Q.
As is proved in [8], the logic Qs can be defined with respect to a fragment of
Qms:

Theorem 16 : Γ |=Qs X iff Γ� |=Qms f(X).

On the basis of this relation and relying on the results from [4], it is proven
in [8] that all the ‘standard properties’ for adaptive logics hold for Qs. I only
mention some of these:

Theorem 17 : If Γ has Q-models, then it has Qs-models. (Reassurance.)

Theorem 18 : If Γ |=Qs A for every A ∈ Γ′, and Γ ∪ Γ′ |=Qs X , then
Γ |=Qs X . (Cautious Cut.)

Theorem 19 : If Γ |=Qs A for every A ∈ Γ′, and Γ |=Qs X , then Γ∪ Γ′ |=Qs

X . (Cautious Monotonicity.)

Theorem 20 : If Γ `Qs X , then any proof from Γ can be extended into a proof
in which X is finally derived from Γ. (Proof Invariance.)
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10. In Conclusion

The logics presented in this paper seem to open up a whole new avenue in
the study of erotetic inferences. Thanks to their dynamic proof theory, it
now becomes possible to explicate, in a realistic and yet formally exact way,
the actual reasoning processes that lead to the derivation of new questions.
However, also their semantics seems to be of great importance. The latter
warrants that the dynamic proof theory is not just ‘a nice trick’ but an integral
part of a decent logic to which it seems hard to object.

Further qualities of the logics is that both their proof theory and their se-
mantics are very natural, and that they seem to provide a sound basis to de-
velop alternative systems. An important problem in this respect is the design
of logics that can handle the derivation of auxiliary questions from an ini-
tial question and zero or more declarative sentences. An important starting
point for these logics seems to be Wiśniewski’s concept of erotetic implica-
tion (see especially [10]). Other open problems that immediately come to
mind concern the generalization of these logics to the inconsistent case —
as is argued in [7], for instance, questions are often derived from inconsis-
tent sets of premises — and the generalization to other types of questions —
for instance, questions that are related to explanation problems.26 From a
more theoretical perspective, it seems important to design a generic format
for adaptive logics of questions that does neither rely on a specific format for
questions nor on a specific type of them.27

Centre for Logic and Philosophy of Science
Ghent University, Belgium

E-mail: Joke.Meheus@rug.ac.be

REFERENCES

[1] Diderik Batens. Dynamic dialectical logics. In Graham Priest, Richard
Routley, and Jean Norman, editors, Paraconsistent Logic. Essays on
the Inconsistent, pages 187–217. Philosophia Verlag, München, 1989.

[2] Diderik Batens. A survey of inconsistency-adaptive logics. In Diderik
Batens, Chris Mortensen, Graham Priest, and Jean Paul Van Ben-
degem, editors, Frontiers of Paraconsistent Logic, pages 49–73. Re-
search Studies Press, Baldock, UK, 2000.

26 For an interesting analysis of explanation problems in terms of erotetic logic, see [12].

27 Unpublished papers in the reference section are available at the internet address
http://logica.rug.ac.be/centrum/writings.



“06Joke”
2003/6/9
page 164

i

i

i

i

i

i

i

i

164 JOKE MEHEUS

[3] Diderik Batens. A dynamic characterization of the pure logic of rele-
vant implication. Journal of Philosophical Logic, 30:267–280, 2001.

[4] Diderik Batens. The need for adaptive logics in epistemology. To ap-
pear.

[5] Diderik Batens and Joke Meheus. The adaptive logic of compatibility.
Studia Logica, 66:327–348, 2000.

[6] Jaakko Hintikka. Inquiry as Inquiry: A Logic of Scientific Discovery.
Kluwer, Dordrecht, 1999.

[7] Joke Meheus. Erotetic arguments from inconsistent premises. Logique
et Analyse, 165–166:49–80, 1999 (appeared in 2002).

[8] Joke Meheus. Valid reasoning to and from questions. To appear.
[9] D. J. Shoesmith and T. J. Smiley. Multiple-Conclusion Logic. Cam-

bridge University Press, Cambridge, 1978.
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