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SYNTHETIC TABLEAUX AND EROTETIC SEARCH SCENARIOS:
EXTENSION AND EXTRACTION

MARIUSZ URBAŃSKI

Abstract
This paper explores the interconnections between synthetic tableaux
and erotetic search scenarios.

1. Introduction

Synthetic tableaux method (STM) is a model-seeking and proof method. It
was developed in detail in Urbański (2001), (2002) and (forthcoming) as a
decision procedure for Classical Propositional Calculus (CPC) and for some
non-classical logics. Roughly speaking, a synthetic tableau for a formula A
is defined as a family of interconnected derivations (so called synthetic infer-
ences) of either A or non-A (or ¬A, in the case of languages with negation),
on the basis of all the relevant suitably defined sets of basic constituents of
A (in the case of propositional logics they are propositional variables of A)
or their negations. The formulas occuring in a synthetic inference of A can
only be subformulas of A or their negations.

The fundamental ideas underlying STM can be traced back to L. Kalmár’s
proof of the completeness of CPC. As the reader will recall, in this proof one
makes use of the fact that every valid formula is entailed by every consistent
set made up of all of its propositional variables or their negations. How-
ever, Kalmár’s original proof is system-dependent: it can be applied to every
logic which validates certain theorems. STM generalizes its idea. The result
is a tableau-style decision procedure which, in contradistinction to Beth-like
tableaux, is based on direct reasoning. A STM-proof of a formula A is such
a synthetic tableau Ω for A that every element of Ω is a synthetic inference
of A. Intuitively it can be said that a formula A is proved if and only if all the
possible attempts at “synthetizing” A or non-A on the basis of the consistent
sets of their subformulas (with the sets of basic constituents of A or their
negations interpreted as representing “initial conditions” or “basic assump-
tions”) lead to A. Thus, “one way or another” is the shortest description of
the ideas underlying STM as a proof method.
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70 MARIUSZ URBAŃSKI

It is extremely natural to extend such a procedure to include what is both
usually hidden in formal methods and indispensable in every epistemic ac-
tivity, that is, questions.

From the perspective of the inferential erotetic logic (IEL; cf., e.g., Wiś-
niewski (2001)) a synthetic tableau for a given formula A can be conceived
as an instruction scheme for a systematic search for solutions to the initial
problem expressed by the simple yes-no question: “Is it the case that A?”.
The procedure involves answering consecutively the operative (auxiliary)
questions which are raised by the main question (the initial problem) and
the results obtained at previous steps. The basic constituents of A or their
negations enter the picture as direct answers to the operative questions. The
desired solutions are the direct answers to the main question: A or non-A.

The basic intuitions underlying the idea of (one kind of) erotetic search
scenarios (cf. Wiśniewski (2001) or (2003)) can be described in a similar
way. In the present paper we explore the relations between synthetic tableaux
and erotetic search scenarios.

Some of the results presented here (in particular in Section 5) have already
appeared in Urbański (2002).

In order to keep the picture as simple as possible, our presentation will be
restricted to STM as a proof method for CPC. This somewhat toy-example
can easily be extended to cover STM as a model-seeking procedure for other
formal systems.

2. Synthetic tableaux

Let L be a language of CPC with ¬ (negation), → (implication), ∧ (conjunc-
tion) and ∨ (disjunction) as the primitive connectives. We use the symbols p,
q, ... as propositional variables of CPC, the symbols φ, ϕ, ... as metavariables
for them, the symbols A, B, ... as metavariables for well-formed formulas
(or formulas for short) of L and X, Y, ... as variables for sets of wffs of L.
We assume that all the basic syntactic and semantic notions of the language
L are defined in the standard manner. In particular, by a valuation of a set X
of formulas of L we mean a mapping which assigns one of the truth values
T (Truth), F (Falsehood) to every formula in X. The concept of a Boolean
valuation is defined in the usual way. By a compound formula we mean a
formula which is not a propositional variable. We also assume that in the
present section all the language-dependent notions are referred to the lan-
guage L.

We begin with the notion of an atom:
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Definition 1 : Every propositional variable and every formula of the form
¬A, where A is a propositional variable is an atom.

Thus, an atom is either a propositional variable, or the negation of a propo-
sitional variable. The atoms ϕ, ¬ϕ will be referred to as based on the propo-
sitional variable ϕ. The atoms based on the very same propositional variable
will be called associates. Thus, an associate to ϕ is ¬ϕ and vice versa.

Synthetic tableaux are defined as the families of synthetic inferences:

Definition 2 : A finite sequence s = s1, ..., sn of formulas is a synthetic
inference of a formula A iff:

(1) for any formula si of s, si is a subformula of A or a negation of a
subformula of A;

(2) s1 is an atom;
(3) sn = A;
(4) for any formula sg of s, sg satisfies exactly one of the following con-

ditions:
(a) sg is an atom and the associate to it does not appear in s;
(b) sg is derivable from a certain set of formulas such that each

element of this set occurs in s before sg.

Therefore, a synthetic inference of a formula A is such a finite sequence
s of its subformulas or their negations, that the first term of this sequence is
an atom and the last term is A itself. Moreover, every term of s is either an
atom or is derivable from some formula(s) occurring earlier in s.

The derivability relation is determined by the following rules:

DN-rule
A/¬¬A

CI1-rule CI2-rule CR-rule
¬A/A → B B/A → B A,¬B/¬(A → B)

KI-rule KR1-rule KR2-rule
A, B/A ∧ B ¬A/¬(A ∧ B) ¬B/¬(A ∧ B)

DI1-rule DI2-rule DR-rule
A/A ∨ B B/A ∨ B ¬A,¬B/¬(A ∨ B)

It can easily be observed that the derivability relation here is of a “syn-
thetizing” character: the rules describe the way formulas are composed on
the basis of their subformulas or their negations.
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72 MARIUSZ URBAŃSKI

Example 1.

Consider the following four sequences of formulas:

c1 = p, p∨ q, r, p∧ r, (p∨ q) → r, q,¬¬q,¬((p∧ r) → ¬q),¬(((p∨ q) →
r) → ((p ∧ r) → ¬q))
c2 = p, p ∨ q, r, p ∧ r, (p ∨ q) → r,¬q, (p ∧ r) → ¬q, ((p ∨ q) → r) →
((p ∧ r) → ¬q)
c3 = p, p ∨ q,¬r,¬((p ∨ q) → r), ((p ∨ q) → r) → ((p ∧ r) → ¬q)
c4 = ¬p,¬(p ∧ r), (p ∧ r) → ¬q, ((p ∨ q) → r) → ((p ∧ r) → ¬q)

The sequence c1 is a synthetic inference of the formula ¬(((p ∨ q) → r) →
((p ∧ r) → ¬q)) whereas the sequences c2, c3, c4 are synthetic inferences
of the formula ((p ∨ q) → r) → ((p ∧ r) → ¬q).

The main concept of STM is the notion of a synthetic tableau for a given
formula:

Definition 3 : A family Ω of finite sequences of formulas is a synthetic tableau
for a formula A iff:

(1) each element of Ω is a synthetic inference of A or of ¬A;
(2) there exists such a propositional variable ϕ that the first term of every

sequence in Ω is an atom based on ϕ;
(3) for every sequence s = s1, ..., sn in Ω the following holds:

if si is an atom, then:
(a) Ω contains a certain synthetic inference s′ = s′1, ..., s

′

m such
that s′i is an associate to si and, if i > 1, then s′j = sj for
j = 1, ..., i − 1;

(b) if i > 1, then for each such synthetic inference s′ = s′1, ..., s
′

r in
Ω that s′j = sj for j = 1, ..., i − 1, the following holds: s′i = si

or s′i is an associate to si.

Thus, a synthetic tableau Ω for a formula A is a set of interconnected
synthetic inferences of A or of ¬A such that every element of Ω begins with
an atom based on a fixed propositional variable. If the i-th term of a sequence
s in Ω is an atom based on φ, then there exists in Ω such a synthetic inference
s′ that its i-th term is an associate to si and, if i > 1, then s and s′ do not
differ up to their i-1th terms. Moreover, for every sequence s′ in Ω such that
s and s′ do not differ up to their i-1th terms the i-th term of s′ is an atom
based on φ.
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Example 2.

The set ∆ = {c1, c2, c3, c4} made up of the synthetic inferences of the Ex-
ample 1 is a synthetic tableau for the formula ((p ∨ q) → r) → ((p ∧ r) →
¬q). For clarity it can be presented in a tree-like diagram form in the follow-
ing way:

p ¬p
p ∨ q ¬(p ∧ r)

(p ∧ r) → ¬q
r ¬r ((p ∨ q) → r) → ((p ∧ r) → ¬q)
p ∧ r ¬((p ∨ q) → r)
(p ∨ q) → r ((p ∨ q) → r) → ((p ∧ r) → ¬q)

q ¬q
¬¬q (p ∧ r) → ¬q
¬((p ∧ r) → ¬q) ((p ∨ q) → r) → ((p ∧ r) → ¬q)
¬(((p ∨ q) → r) → ((p ∧ r) → ¬q))

��
�HHH

��
���PPPPP

Every branch of the above tree (or, to be precise, a bush: it is not the case
that for a given synthetic tableau Ω there exists such a formula A that every
synthetic inference in Ω begins with A; thus there is no trunk in synthetic
tableaux) is made up of the formulas of a certain synthetic inference in Ω.
The last formula of the inference is indicated by underlining.

It is worth noticing that although synthetic tableaux are defined as sets of
synthetic inferences, it is not only convenient to represent a synthetic tableau
for a given formula by a tree-like diagram but also to use such diagrams as
the genuine form of synthetic tableaux (the reason for this claim will become
clear after Section 4).

Now, consider the following synthetic tableau for the formula p → (¬p →
q):
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74 MARIUSZ URBAŃSKI

Example 3.

p ¬p
p → (¬p → q)

q ¬q
¬¬p

¬p → q ¬¬p ¬p → q
p → (¬p → q) ¬p → q p → (¬p → q)

p → (¬p → q)

��
��PPPP

��
�PPP

Here, the leftmost branch of the tableau and the branch next to it represent
two distinct derivations of the formula p → (¬p → q) on the basis of the
very same set of atoms. Intuitively, these branches represent two distinct
ways of solving the initial problem on the basis of the same evidence (or
extralogical assumptions). As a result, the tableau branches not only on
pairs of associates, but on the formulas ¬p → q and ¬¬p, as well. While it
is not the case that we would like to avoid such a situation in general, such
inferential steps can in a sense be interpreted as superfluous and therefore
may be avoided. To this end, we introduce the notion of a regular synthetic
tableau, that is a tableau that branches on pairs of associated atoms only.

Definition 4 : A regular synthetic tableau for a formula A is a synthetic
tableau Ω for A such that for every sequence s = s1, ..., sn in Ω the fol-
lowing conditions hold:

(1) if si(i = 1, ..., n) is an atom, and m(i < m < n) is an index such
that si+1, ..., sm−1 are not atoms and sm is an atom, then for every
sequence s* in Ω such that s∗j = sj(j = 1, ..., i) we have: s∗i+1 =
si+1, ..., s

∗

m−1 = sm−1;
(2) if si(i = 1, ..., n) is an atom and for each index m(i < m ≤ n) sm is

not an atom, then for every sequence s* in Ω such that s∗j = sj(j =

1, ..., i) we have: s∗i+1 = si+1, ..., s
∗

n = sn.

The tableau of Example 2 is regular, whereas the tableau of Example 3 is
not regular.

Some basic properties of STM are given by the following lemmas and
theorems:

Lemma 1 : A formula A is satisfiable iff there exists a synthetic inference of
A.

Lemma 2 : For every formula A there exists a synthetic tableau for A.
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Theorem 1 : A formula A is a CPC-valid formula iff there exists such a syn-
thetic tableau Ω for A that every element of Ω is a synthetic inference of
A.

Theorem 2 : A formula A is a CPC-inconsistent formula iff there exists such
a synthetic tableau Ω for A that every element of Ω is a synthetic inference
of ¬A.

The proofs can be found in Urbański (2001) and (2002).
In the case of decidable systems, an efficient, mechanical and finite proce-

dure for synthetic tableau construction for a given formula can be defined (cf.
Urbański (2002) and (forthcoming)). Some remarks concerning the similar-
ities between the basic intuitions underlying STM and other proof methods
can be found in Urbański (2001) and (2002).

3. Erotetic background

Now we need a language based on the language L of CPC and enriched with
questions. Let L* be the language that results from L by adding to its vocab-
ulary the signs ?, {, }. The set For of formulas of L is the set of declarative
formulas of L* (d-wffs for short). The set eFor of erotetic formulas (that is,
questions) of L* (e-wffs for short) is the smallest set that fulfils the following
condition:

(*) if A1, ..., An are distinct d-wffs of L* (where n > 1),
then ?{A1, ..., An} ∈ eFor.

A well-formed formula (wff) of L* is either a declarative-wff of L* or a
question of L*. From now on we assume that all the language-dependent
notions are referred to the language L*.

The d-wffs A1, ..., An will be referred to as direct answers to the question
?{A1, ..., An} (for the discussion of the motivations for such a representation
of questions cf. Wiśniewski (1995)). We will use the signs Q, Q1,... as
metavariables for questions of L*. The set of all the direct answers to the
question Q will be symbolized by dQ.

According to the condition (*) every set of d-wffs of L* of at least two
elements forms a set of direct answers to some question of L*. However,
some special cases can be distinguished.
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A simple yes-no question is a question of the form ?{A,¬A}. It can be
read “Is it the case that A?” and it will be abbreviated as ?A. A question ?A
will be referred to as based on formula A.

An atomic yes-no question is a simple yes-no question based on a propo-
sitional variable. Thus, direct answers to atomic yes-no questions are atoms.

A binary conjunctive question is a question of the form ?{A ∧ B, A ∧
¬B,¬A ∧ B,¬A ∧ ¬B}. It can be read “Is it the case that A and is it the
case that B?” and it will be abbreviated as ?± | A, B |.

The concept of a (generalized) conjunctive question is introduced by the
following:

Definition 5 : Let A1, ..., Ak(k > 1) be distinct declarative formulas. Let
αj(j = 1, ..., k) be a 2k-term sequence, whose n-th term is defined in the
following way:

αj
n =







Aj if 1 ≤ n ≤ 2k−j

¬Aj if 2k−j < n ≤ 2(k−j)+1

αj
n−m if 2(k−j)+1 < n ≤ 2k, where m = 2(k−j)+1

Let β i(1 ≤ i ≤ 2k) be a k-element sequence, defined in the following way:

β i =< α1
i , α

2
i , ..., α

k
i > .

A conjunctive question with A1, ..., Ak as its factors is the question of the
form: ?{C1, ..., Ct}, where t = 2k and every Ci(i = 1, ..., t) is of the form:

(βi
1 ∧ (βi

2 ∧ ...(βi
k−1 ∧ βi

k)...).

A conjunctive question with A1, ..., Ak as its factors will be abbreviated
as ?± | A1, ..., Ak |. Thus a binary conjunctive question ?± | A, B | is a
conjunctive question with A and B as its factors.

Within the framework of IEL two kinds of erotetic inferences (that is, in-
ferences which have questions as their conclusions) are distinguished. They
differ with respect to the premises involved. We are interested here in valid
erotetic inferences which premises consist of questions and (possibly) of
some declarative sentences. The formal counterpart of an intuitive notion
of such an inference is the (semantical) concept of the erotetic implication
(for discussion concerning the problem of validity of erotetic inferences cf.
Wiśniewski (1995)).
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Definition 6 : (cf. Wiśniewski (1995) or (2001)) A question Q implies a
question Q1 on the basis of a set of d-wffs X (in symbols: Im(Q, X, Q1)), iff

(i) for each A in dQ: if all the elements of the set X ∪ {A} are true
under a certain Boolean valuation, then at least one element of the
set dQ1 is true under this valuation as well, and

(ii) for each B in dQ1 there exists a non-empty proper subset Y of dQ
which fulfils the following condition: if all the elements of the set
X ∪ {B} are true under a certain Boolean valuation, then at least
one element of the set Y is true under this valuation as well.

The properties of the erotetic implication are discussed in detail in Wiś-
niewski (1995). Note, that in the original definition of the concept in ques-
tion a notion of a multiple-conclusion entailment is used.

In what follows we will make use of the fact that the following (cf. Wiś-
niewski (2001)) hold:

(1) Im(?± | A1, ..., Ak |, ∅, ?Ai), where i = 1, ..., k.
Thus a conjunctive question Q implies (on the basis of the empty set)
every simple yes-no question which is based on a factor of Q.

(2) Im(?¬A, ∅, ?A).

(3) Im(?A#B, ∅, ?± | A, B |), where # is any of the connectives: ∧,
∨, →.

Moreover, one can easily prove the following:

(4) If A contains more than one propositional variable, then Im(?A, ∅,
?± | ϕ1, ..., ϕm |), where ϕ1, ..., ϕm(m > 1) are all the distinct
propositional variables of A.
Thus a simple yes-no question based on a formula A implies (on the
basis of the empty set) a conjunctive question which factors are all
the distinct propositional variables of A.

(5) If A contains only one propositional variable, then Im(?A, ∅, ?ϕ),
where ϕ is the only propositional variable of A.
Thus if A contains only one propositional variable, then the simple
yes-no question based on A implies (on the basis of the empty set)
the atomic yes-no questions based on this variable.

Erotetic search scenarios are defined as families of erotetic derivations:
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Definition 7 : (Wiśniewski (2001), (2003)) A finite sequence e = e1, ..., en

of wffs is an erotetic derivation of a direct answer A to the question Q on the
basis of a set of d-wffs X iff e1 = Q, ek = A and the following hold:

(1) for each question ek of e such that k > 1:
(a) dek 6= dQ, and
(b) ek+1 is either a question or a direct answer to ek;

(2) for each d-wff ej of e:
(a) ej ∈ X, or
(b) ej is a direct answer to ej−1, where ej−1 6= Q, or
(c) ej is entailed by a certain set of d-wffs such that each element of

this set precedes ej in e;
(3) for each question ek of e such that ek 6= Q: ek is implied by a

certain question ej which precedes ek in e on the basis of the empty
set, or on the basis of a set of d-wffs such that each element of this
set precedes ek in e.

We assume here that entailment is determined by the rules listed in Sec-
tion 2.

Definition 8 : (Wiśniewski (2001), (2003)) A term ek of an erotetic deriva-
tion e = e1, ..., en (where 1 < k < n) is a query of e iff ek is a question and
ek+1 is a direct answer to ek.

Definition 9 : (Wiśniewski (2001), (2003)) A finite family Φ of sequences of
wffs is an erotetic search scenario for a question Q relative to a set of d-wffs
X iff each element of Φ is an erotetic derivation of a direct answer to Q on
the basis of X and the following conditions hold:

(1) dQ ∩ X = ∅;
(2) Φ contains at least two elements;
(3) for each element e = e1, ..., en of Φ, for each index k such that

1 ≤ k < n:
(a) if ek is a question and ek+1 is a direct answer to ek, then for each

direct answer B to ek, the family Φ contains a certain erotetic
derivation e′ = e′1, ..., e

′

m such that ej = e′j for j = 1, ..., k,
and e′k+1 = B;

(b) if ek is a d-wff, or ek is a question and ek+1 is not a direct answer
to ek, then for each erotetic derivation e′ = e′1, ..., e

′

m in Φ such
that ej = e′j for j = 1, ..., k, we have e′k+1 = ek+1.

Definition 9 neither assumes nor denies that X is a non-empty set. In what
follows by an erotetic search scenario for a question Q we mean an erotetic
search scenario for this question relative to the empty set.
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Examples of erotetic derivations and erotetic search scenarios will be given
in subsequent sections.

Detailed presentation of erotetic search scenarios can be found in Wiśniew-
ski (2003). For an introduction see also Wiśniewski (2001).

4. Description of a reasoning

Now let us focus on the reasoning involved in the construction of the (tree-
like diagram of) synthetic tableau for the formula ((p ∨ q) → r) → ((p ∧
r) → ¬q) (cf. Example 2; for convenience we will call this formula C).

Imagine a systematic inquirer, Mr. I, whose aim is to solve the following
(initial) problem (we can call it a “main question”): Is it the case that C
or is it the case that ¬C? Mr. I has no extralogical background knowledge
that could be helpful in this task. Thus, the question becomes: what are
the circumstances in which C is the case, and what are the circumstances
in which ¬C is the case? His aim is not merely to find out which of the
two possibilities holds, but to give a complete description of all the possible
cases, that is, to give a kind of conditional schema for approaching the initial
problem.

The main question cannot be answered immediately. As a clever logician
Mr. I is aware that the answer depends on the combinations of truth-values
of the propositional variables of C, thus it is reasonable to pose the relevant
question. A question about the truth-values of all the propositional variables
of C gives rise to a series of questions about the truth-values of each of these
variables. Mr. I starts with the variable p: is p true or is p false? That is:
is p the case, or is ¬p the case? If the second possibility holds, then it is
quite clear how to proceed in order to solve the initial problem as in this case
¬(p∧r) is true and both (p∧r) → ¬q and C are true as well. But what about
the second possibility? Can the truth value of C be determined on the basis
of the fact that p is true? Obviously, it is not enough. Thus Mr. I has to seek
for new information, that is, information that cannot be derived on the basis
of what has been established so far. So he asks one further question: is it the
case that r or is it the case that ¬r? In the second case the antecedent of C
would be false and thus C itself would be true. In the first case (the p-r case,
that is, p true, r true) Mr. I can deduce that p∧ r and the antecedent of C are
both true. This is still not enough to answer the main question. Again, Mr. I
is in need of some fresh information and again the reasoning has to be split,
this time because of the two possible truth-values of q. Mr. I can conclude
that on the basis of the assumption that p, r and q are true, the formulas ¬¬q
and ¬((p ∧ r) → ¬q) can be derived. As the truth of the antecedent of C
has already been established, in this case ¬C holds. On the other hand, if p,
r and ¬q are true, both the consequent of C and C itself are true.
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What we have described above is a complete scheme for solving Mr. I’s
initial problem. In principle, we have shown that there is only one possibility
of ¬C to be true, that is, the p-q-r case. If any of the other possibilities holds,
then C is the case. That solves the initial problem. And Mr. I can conclude
his investigations with a general remark that it is not the case that C is true
irrespective of the truth-value circumstances (the truth-value distributions
over the propositional variables of C), that is, that the general validity of C
has been disproved.

In the reasoning described above two kinds of steps were involved. The
first kind was of a declarative character: this way Mr. I introduced atoms
and formulas obtained by means of the derivability rules. The second kind
of steps involved was of an erotetic character: Mr. I posed some (auxiliary)
questions, which allowed him to unblock stopped inferences thus governing
(in a way) his declarative moves. The justification for the introduction of
auxiliary questions was that they were raised by the previous problems and
results. As for the purpose for posing them, they were introduced when new
information was needed, which could not be obtained simply as a conse-
quence of what had already been established.

If we try to write down Mr. I’s reasoning focusing on the declarative steps
solely, we will obtain the synthetic tableau for the formula ((p∨ q) → r) →
((p ∧ r) → ¬q) of the Example 2. But if we introduce into the picture a
representation of the erotetic steps we will obtain a diagram like this:

Example 4.

?((p ∨ q) → r) → ((p ∧ r) → ¬q)
?± | p, q, r |
?p

p ¬p
p ∨ q ¬(p ∧ r)
?r (p ∧ r) → ¬q

((p ∨ q) → r) → ((p ∧ r) → ¬q)
r ¬r
p ∧ r ¬((p ∨ q) → r)
(p ∨ q) → r ((p ∨ q) → r) → ((p ∧ r) → ¬q)
?q

q ¬q
¬¬q (p ∧ r) → ¬q
¬((p ∧ r) → ¬q) ((p ∨ q) → r) → ((p ∧ r) → ¬q)
¬(((p ∨ q) → r) → ((p ∧ r) → ¬q))

���
�XXXX

���
�XXXX

���
�XXXX
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It can easily be seen that the diagram of Example 4 represents an erotetic
search scenario for the question ?((p ∨ q) → r) → ((p ∧ r) → ¬q) relative
to the empty set.

5. Extraction

Let us now introduce a notion of a declarative part of an erotetic derivation
of a certain answer to a given question.

Definition 10 : Let e be an erotetic derivation of a direct answer A to the
question Q on the basis of a set X of declarative wffs. A sequence s, formed
by elimination of all the erotetic-wffs of e is the declarative part of e.

In the Example 5 the declarative part of the leftmost branch of the erotetic
search scenario of the Example 4 is shown (for the purposes of clarity this
time we write the sequences of formulas downwards):

Example 5.

e = ?((p ∨ q) → r) → ((p ∧ r) → ¬q)
?± | p, q, r |
?p
p
p ∨ q
?r
r
p ∧ r
(p ∨ q) → r
?q
q
¬¬q
¬((p ∧ r) → ¬q)
¬((p ∨ q) → r) → ((p ∧ r) → ¬q)

s = p
p ∨ q
r
p ∧ r
(p ∨ q) → r
q
¬¬q
¬((p ∧ r) → ¬q)
¬((p ∨ q) → r) → ((p ∧ r) → ¬q)
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The sequence s is the declarative part of the sequence e.

The notion of a declarative part of an erotetic search scenario for a question
Q is given by the following:

Definition 11 : Let Φ = {e1, ..., ek} be an erotetic search scenario for a
question Q relative to a set X of declarative wffs. The declarative part of Φ is
the set Θ = {s1, ..., sk}, where si is a declarative part of ei, for i = 1, ..., k.

The extraction theorem is the following:

Theorem 3 : (Extraction Theorem) Let Φ = {e1, ..., ek} be such an erotetic
search scenario for a question ?A relative to the empty set that:

(i) the queries of Φ are atomic yes-no questions only;
(ii) all the declarative formulas occurring in erotetic derivations of Φ are

subformulas of A or are negations of subformulas of A;
(iii) erotetic derivations in Φ are sequences without repetitions.

Then there exists such a synthetic tableau Ω for the formula A that Ω is a
declarative part of Φ.

Proof. First we show that the declarative part of each erotetic derivation in
Φ is a synthetic inference of the formula A or of the formula ¬A.
Let e be an erotetic derivation in Φ. Consider the sequence s that is the
declarative part of e. Since Φ is a scenario for ?A relative to the empty set,
then the first declarative term of e (which is at the same moment the first term
of s) must be a direct answer to a question occurring in e. As the queries
of e are simple yes-no questions only, then s1 is an atom. Since the last
term of every sequence in Φ is A or ¬A (as Φ is a scenario for the question
?A), therefore the last term of s is A or ¬A, respectively. Moreover, every
declarative wff B in e (and thus every term of s) meets exactly one of the
following conditions:

(1) B is an atom (as a direct answer to a query of e), or
(2) B is entailed by some earlier formulas of e (recall that the entailment

here is determined by the rules listed in Section 2).

The sequence e is a sequence without repetitions and so is s. Moreover, this
warrants that if an atom occurs in s then its associate does not occur in s.
Finally, all the declarative formulas of e (and thus all the terms of s) are
subformulas of A or are negations of subformulas of A. Therefore s is a
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synthetic inference of A or of ¬A.

It is easily visible that the set Ω = {s1, ..., sk} made up of the declarative
parts of all the erotetic derivations in Φ is a synthetic tableau for the formula
A. We have already shown that every sequence in Ω is a synthetic inference
of A or is a synthetic inference of ¬A. The fulfilment of the clauses 3a and
3b of the definition of a synthetic tableau (Definition 2) is guaranteed by the
clause 3 of the definition of an erotetic search scenario (Definition 7). �

As an example of extraction consider the set of sequences that is obtained
by the removal of all the erotetic formulas from the erotetic search scenario
for the question ?((p ∨ q) → r) → ((p ∧ r) → ¬q) (cf. Example 3).
The declarative part of this scenario is the synthetic tableau for the formula
((p ∨ q) → r) → ((p ∧ r) → ¬q) (cf. Example 2).

Note, that it is not the case that every synthetic tableau is a declarative part
of some erotetic search scenario. Let us consider a synthetic tableau for the
formula p:

Example 6. (a synthetic tableau for the formula p)

p ¬p

A scenario of which the Example 6 tableau might be a declarative part
should look like this:

Example 7.

?p

p ¬p
���

�XXXX

However, the two-element family of sequences of Example 7 is not an
erotetic search scenario at all, since according to Definition 7 the initial ques-
tion cannot be a query.

This remark pertains to the atomic yes-no questions only. It can be proved
(and we will prove this in the following section) that if A is a compound
formula, then for every regular synthetic tableau Ω for A there exists an
erotetic search scenario Φ such that Ω is a declarative part of Φ.
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6. Extension

Lemma 3 : Let A be a compound formula. For each regular synthetic tableau
Ω for A there exists an erotetic search scenario Φ for the question ?A relative
to the empty set such that Ω is the declarative part of Φ.

Proof. Let A be a compound formula and let Ω be a regular synthetic tableau
for A. There are three possibilities: (i) there is only one propositional vari-
able that is a subformula of A, or (ii) A contains more than one propositional
variable but the atoms based on only one of them are terms of sequences in
Ω, or (iii) A contains more than one propositional variable and atoms based
on more than one variable of A occur in Ω.
Assume that the possibility (i) holds. Let ϕ be the only propositional vari-
able of A. Thus Ω consists of sequences which begin with an atom based
on ϕ and do not contain any other atom. An erotetic search scenario of the
required kind is obtained here by adding to every sequence of Ω the initial
sequence ?A, ?ϕ (cf. fact (5), Section 3).
Assume that the possibility (ii) holds. Let ϕ1, ..., ϕm(m > 1) be all the
distinct propositional variables of A and let ϕk (where k = 1, ..., m) be the
only variable such that atoms based on it occur as terms of sequences in Ω.
An erotetic search scenario of the required kind is obtained here by adding
to every sequence of Ω the initial sequence ?A, ?± | ϕ1, ..., ϕm |, ?ϕk (cf.
facts (4) and (1), Section 3).
Assume that the possibility (iii) holds. Let ϕ1, ..., ϕm(m > 1) be all the
distinct propositional variables of A. Suppose that the first term of every el-
ement of Ω is an atom based on the variable ϕi(i = 1, ..., m). First, we add
to every element of Ω the following initial sequence ?A, ?± | ϕ1, ..., ϕm |
(cf. fact (4), Section 3). Second, we stick into any sequence of Ω which
contains an atom based on a variable ϕj(j 6= i, j = 1, ..., m) the question
?ϕj , placed before the atom (cf. fact (1), Section 3). The result is an erotetic
search scenario Φ for the question ?A relative to the empty set such that Ω is
the declarative part of Φ. �

As an example of application of the above procedure consider the synthetic
tableau for the formula ((p ∨ q) → r) → ((p ∧ r) → ¬q) (cf. Example 2)
and an erotetic search scenario of which it is the declarative part, that is, the
scenario for the question ?((p∨q) → r) → ((p∧r) → ¬q) (cf. Example 3).

The procedure described in the proof of Lemma 3 is the simplest way of
“extension” (regular) synthetic tableaux to erotetic search scenarios but it is
not the only one. Although the declarative part of a given erotetic search
scenario is uniquely determined, a given (regular) synthetic tableau can be
the declarative part of distinct scenarios. For example, this is another erotetic
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search scenario of which the synthetic tableau of Example 2 is the declarative
part:

Example 8.

? ((p ∨ q) → r) → ((p ∧ r) → ¬q)
?± | (p ∨ q) → r, (p ∧ r) → ¬q |
? (p ∧ r) → ¬q
?± | p ∧ r,¬q |
?p ∧ r
?± | p, r |
?p

p ¬p
p ∨ q ¬(p ∧ r)
?r (p ∧ r) → ¬q

((p ∨ q) → r) → ((p ∧ r) → ¬q)
r ¬r
p ∧ r ¬((p ∨ q) → r)
(p ∨ q) → r ((p ∨ q) → r) → ((p ∧ r) → ¬q)
?¬¬q
?q

q ¬q
¬¬q (p ∧ r) → ¬q
¬((p ∧ r) → ¬q) ((p ∨ q) → r) → ((p ∧ r) → ¬q)
¬(((p ∨ q) → r) → ((p ∧ r) → ¬q))

���
�XXXX

���
�XXXX

���
�XXXX

A more general approach to the problem of extension of synthetic tableaux
to erotetic search scenarios is offered by the following definitions:

Definition 12 : Let s be a synthetic inference of a formula A. A sequence e
is an erotetic extension of s iff:

(1) s is a subsequence of e;
(2) terms of s are the only d-wffs that occur in e;
(3) e1 =?A;
(4) if an atom based on φ is a term of s and it is the m-th term of e, then

there exists such a sequence of questions q = Q1, ..., Qt that:
(i) q is a subsequence of e;

(ii) em−1 =?φ = Qt;
(iii) for h = 1, ..., t such that Qh 6=?A we have: Im(Q, X, Qh),

where Q is a question that occurs in e before Qh and X is a
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(possibly empty) set made up of d-wffs such that each element if
X occurs in e before Qh;

(5) for every questions ei, ej of e (where i 6= j), dei 6= dej .

By Definitions 12 and 7 it can easily be proved that every erotetic extension
of a given synthetic inference of A is an erotetic derivation of the direct
answer A to the question ?A on the basis of the empty set.

Definition 13 : Let Ω = {s1, ..., sk} be a synthetic tableau for a formula A.
A set F = {e1, ..., ek} is an erotetic extension of Ω iff:

(1) ei is an erotetic extension of si, for every i = 1, ..., k;
(2) if for some d = 1, ..., k : sd

1 = ed
f , then for every i, j = 1, ..., k :

ei
1 = ej

1, ..., e
i
f−1 = ej

f−1;
(3) if si and sj of Ω (where i 6= j) do not differ up to their g-th terms and

their g+1 terms are associates, then if si
g+1 = ei

r, then the sequences
ei and ej of Φ do not differ up to their r − 1 terms.

Definitions 12 and 13 do not offer a mechanical procedure for extension
of a given synthetic tableau to an erotetic search scenario. However, they
give some hints on what such a procedure should look like. First, an erotetic
root should be added as an initial subsequence to every synthetic inference
in a tableau which is to be extended. Second, every atom occurring in a
tableau should be preceded by its erotetic “justification”, that is, a sequence
of implied questions the last element of which is an atomic yes-no question
based on the atom. The condition to be met here is that pairs of associates
on which a synthetic tableau branches should be preceded by the very same
sequence of questions.

Lemma 4 : Let A be a compound formula. Let Ω be a regular synthetic
tableau for A. Each erotetic extension of Ω is an erotetic search scenario for
the question ?A.

Proof. By Definition 9 and Definition 13 �

Lemma 5 : If Ω is a regular synthetic tableau for a compound formula A,
then there exists at least one erotetic extension of Ω.

Proof. By Lemma 3 �

Theorem 4 : (Extension Theorem) Let A be a compound formula. Let Ω be
a regular synthetic tableau for A. Then there exists such an erotetic search
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scenario Φ for the question ?A relative to the empty set that Ω is a declara-
tive part of Φ.

Proof. By Lemma 4 and Lemma 5 �

The Extension Theorem is restricted to regular synthetic tableaux only.
The reason for such a restriction is a technical one: in the case of non-regular
synthetic tableaux augmentation with questions does not produce erotetic
search scenarios. Nevertheless, IEL can also shed some light on the reason-
ings underlying such tableaux. Some parts of them may still be reconstructed
in terms of introducing implied questions. In particular, this pertains to the
introduction of atoms into a tableau.

7. Some evaluation

It is quite obvious that distinct reasonings aimed at solving the very same
problem can be evaluated comparatively with respect to some pragmatic fac-
tors (in the traditional meaning of the word “pragmatic”). The common label
for these factors is “economy of thinking”. In comparing the complexity or
difficulty of distinct reasonings one can take into account, e.g., the extent of
extralogical evidence (or assumptions) that is involved in a given reasoning.
The fewer the assumptions the lower the cost of a reasoning (the word “cost”
here can be taken very seriously; for instance, consider the problem of plan-
ning relevant experiments in natural sciences). The more assumptions there
are the greater the possibilities that have to be considered, that is, the number
of possible pieces of inferences to be performed.

Another factor that can be taken into account here is the total number of
inferential steps (of any kind) involved in a given reasoning. In the case of
this factor the relation to the complexity of a reasoning is also a proportional
one. Nevertheless, it seems that the first factor is of much greater importance.
Usually, the cost of performing logically-based inferences is substantially
lower than the cost of obtaining extralogical information.

Now we introduce some notions that can be used in a comparative evalu-
ation of distinct synthetic tableaux with respect to their complexity. These
notions are meant to represent the aforementioned complexity-factors. They
can be easily adjusted to the evaluation of distinct erotetic search scenarios.

Definition 14 :
(a) The depth of a synthetic inference s for a formula A (in symbols d(s))

is the number of atoms, occurring in s;
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(b) The depth of a synthetic tableau Ω for a formula A (in symbols d(Ω))
is the sum of the depths of all the synthetic inferences in Ω.

Definition 15 : The extent of a synthetic tableau Ω for a formula A (in sym-
bols e(Ω)) is the number of synthetic inferences in Ω.

Definition 16 :
(a) The length of a synthetic inference s for a formula A (in symbols

l(s)) is the number of terms of s;
(b) The length of a synthetic tableau Ω for a formula A (in symbols l(Ω))

is the sum of the lengths of all the synthetic inferences in Ω.

Our evaluation of distinct synthetic tableaux is basically focused on quan-
titative factors. What we are going to compare is the relative simplicity of
tableaux measured by means of their depth, extent and length. We consider
two main criteria of the relative simplicity and an auxiliary one. A synthetic
tableau Ω1 is said to be relatively simpler than a synthetic tableau Ω2 if:

main criteria
(M1) d(Ω1) < d(Ω2);
(M2) e(Ω1) < e(Ω2);

auxiliary criterion
(A) l(Ω1) < l(Ω2).

The main criteria measure the “extralogical cost” of reasonings that are
represented in evaluated synthetic tableaux (that is, the quantity of informa-
tion that is introduced into a tableau not by means of the derivability rules).
These two criteria are related to each other, but it is not the case that one of
them can be reduced to the other. Consider the following two examples of
pairs of schemata of synthetic tableaux:

Example 9.

synthetic tableau-scheme Ω1

φ1 ¬φ1

...
φ2 ¬φ2

...
φ3 ¬φ3

... ...

���
�XXXX

���
�XXXX
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synthetic tableau-scheme Ω2

φ1 ¬φ1

φ2 ¬φ2 φ2 ¬φ2

... ... ... ...

���
�XXXX ���

�XXXX

In the Example 9 we assume that in tableaux Ω1 and Ω2 no atoms occur
other than those indicated (that is, that there are no other branchings there).
Ω1 and Ω2 are equal with respect to their extents (e(Ω1) = e(Ω2) = 4) but
they differ with respect to their depths (d(Ω1) = 9 whereas d(Ω2) = 8).
Thus Ω2 is relatively simpler than Ω1.

It is possible also that for some tableaux ∆1, ∆2, the depth of ∆1 is greater
than the depth of ∆2, whereas the extent of ∆2 is greater than that of ∆1.

The length of a synthetic tableau is the measure of the total number of
formulas occurring in the tableau in question. According to what has been
said above we take the length of a tableau only as an auxiliary criterion of
relative simplicity.

Let us apply our criteria to the evaluation of the relative simplicity of three
distinct tableaux for the formula (p → q) → ((q → r) → (p → r)).

Example 10.

A synthetic tableau ∆1 for the formula A = (p → q) → ((q → r) → (p →
r))

p ¬p
p → r

q ¬q (q → r) → (p → r)
¬(p → q) A

r ¬r A
p → r ¬(q → r)
(q → r) → (p → r) (q → r) → (p → r)
A A

���
�XXXX

���
�XXXX

Example 11.

A synthetic tableau ∆2 for the formula A = (p → q) → ((q → r) → (p →
r))
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r ¬r
p → r
(q → r) → (p → r) q ¬q
A ¬(q → r) p ¬p

(q → r) → (p → r) ¬(p → q) p → r
A A (q → r) → (p → r)

A

   
   ``````

  ``

Example 12.

A synthetic tableau ∆3 for the formula A = (p → q) → ((q → r) → (p →
r))

q ¬q

p ¬p

r ¬r

p → r

p → r

r ¬r

(q → r) → (p → r)

(q → r) → (p → r)

p ¬p

p → r ¬(q → r)

A

A

¬(p → q) p → r

(q → r) → (p → r) (q → r) → (p → r)

A (q → r) → (p → r)

A A

A

�
�
��Z

Z
ZZ

�
��@

@@

((((hhhh








J
J
J
J

At first sight tableaux ∆1 and ∆2 do not differ substantially with respect to
their relative simplicity whereas tableau ∆3 is much more complex than the
other two. Reckoning the simplicity-factors supports this claim. These are
the relevant numbers for the above tableaux:

(M1) (M2) (A)
∆1 d(∆1) = 9 e(∆1) = 4 l(∆1) = 20;
∆2 d(∆2) = 9 e(∆2) = 4 l(∆2) = 20;
∆3 d(∆3) = 16 e(∆3) = 6 l(∆3) = 33.

8. Closing remarks

The Extension and Extraction theorems justify the claim that STM is a proof
method that is well-grounded in the logic of questions: there are erotetic
search scenarios that explicitly represent the “hidden part” of a reasoning
involved in establishing a regular synthetic tableau for a given formula. On
the one hand, this gives a formal substantiation for some intuitively valid
inferential steps performed in STM-style proofs (in particular for the way
that atoms are introduced into synthetic inferences). On the other hand the



“03urbanski”
2003/6/9
page 91

i

i

i

i

i

i

i

i

SYNTHETIC TABLEAUX AND EROTETIC SEARCH SCENARIOS 91

existence of erotetic extensions of regular synthetic tableaux allows STM
to be interpreted as a formal counterpart to the kind of a problem-solving
procedure that can be applied to problems expressed by a certain type of
questions. An interesting task would be to show that other proof methods
and decision procedures (in particular tableaux ones) can also be interpreted
in terms of inferential erotetic logic as (declarative) parts of larger cognitive
structures. It is possible that a kind of a uniform approach to the formal
representation of problem-solving procedures could be established in this
way.
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