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A GENERAL CHARACTERIZATION OF ADAPTIVE LOGICS∗

DIDERIK BATENS

Abstract
This paper contains a unified characterization of adaptive logics.
The general structure is presented in the simplest possible guise,
both for flat and prioritized adaptive logics. The latter are presented
as a special case of combined adaptive logics. The aim of the paper
is to provide the general framework underlying several other papers
in this volume and to prepare the unified metatheory of adaptive
logics.

1. The Dynamics of Reasoning

Let us start with a loose characterization: a logic is adaptive iff it adapts
itself to the specific premises to which it is applied. Two comments are in
place here. First, I do not mean to say that the consequence set, determined
by the logic, depends on the set of premises. This obviously holds for nearly
all logics.1 What I mean is, first and foremost, that the logic interprets the
premise set ‘as normally as possible’. What is meant by “normal” depends
on the specific adaptive logic, but, given a standard of normality, the effect
is always the same. In semantic terms, the effect is that some models of
the premises are selected in view of the abnormalities they verify. In proof
theoretic terms, the effect is that some rules of inference do not apply in gen-
eral, but that their instances apply or do not apply to some consequences of

∗The research for this paper was financed by the Fund for Scientific Research – Flanders,
by the Research Fund of Ghent University, and indirectly by the Flemish Minister responsible
for Science and Technology (contract BIL01/80). For comments on a former draft, I am
indebted to Guido Vanackere, to Lieven Haesaert, especially to Andrzej Wiśniewski, and
even more to Joke Meheus.

1 There are two obvious exceptions: zero logic, according to which nothing is derivable
from any premise set (not even the premises themselves), and universal logic, according to
which everything is derivable from any premise set. See [7] for a sensible application of zero
logic and of an adaptive logic definable from it.
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46 DIDERIK BATENS

the premises in view of the presence or absence of other consequences. Put
differently, that the premises have certain consequences may prevent a rule
of inference to be applicable to some other consequences of the premises.
Next, I really mean that the logic adapts itself to the premises. The reasoner
does not interfere in this. The adaptive effect results from the logic — that
is, from the semantics as well as from the proof theory — independently of
any decision of the human or machine that applies the logic.

In the subsequent sections, I present a more technical characterization.
Before doing so, however, I explain what is the use of adaptive logics, which
is a simple and straightforward matter.

For a multiplicity of consequence relations that occur in actual and impor-
tant reasoning, there is no positive test. In other words, there is no systematic
procedure that, for every set of premises Γ and for every conclusion A, leads
after finitely many steps to a “yes” if A is a consequence of Γ.2 When I say
that such consequence relations are important, I mean that they play a central
role, both in everyday reasoning and in scientific reasoning. They may not
be required for organizing knowledge in theories. However, they do occur in
the reasoning processes that lead to knowledge, such as inductive reasoning,
the search for an explanation, handling inconsistent knowledge, and problem
solving in general.

As a result of the absence of a positive test, reasoning processes in which
such consequence relations are applied display an external as well as an in-
ternal dynamics. The external dynamics is well known: as new premises
become available, consequences derived from the earlier premise set may
be withdrawn. In other words, the external dynamics results from the non-
monotonic character of the consequence relations — the fact that, for some
Γ, ∆ and A, Γ ` A but Γ ∪ ∆ 0 A. The internal dynamics is very different
from the external one. Even if the premise set is constant, certain formulas
are considered as derived at some stage of the reasoning process, but are con-
sidered as not derived at a later stage. For any consequence relation, insight
in the premises is only gained by deriving consequences from them. In the
absence of a positive test, this results in the internal dynamics.

The origin of the internal dynamics can easily be understood. Consider
some consequence relation `L1 such that Γ `L1 A depends on a number of
conditions, among which are Γ `L2 B and Γ 0L3 C.3 Suppose moreover
that, for both Γ `L2 B and Γ `L3 C, there is a positive test but no negative
test, just as is the case for Γ `CL A. It follows immediately that there is

2 Remark that the consequence relation defined by classical logic is undecidable, but that
there is a positive test for it. See [21] for such matters.

3 The forms of the formulas A, B and C will be related in some specific way, but this
need not concern us here.
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neither a positive test nor a negative test for Γ `L1 A. As a result, any
reasoning that aims at finding out whether A is L1-derivable from Γ will in
general have to be dynamic (that is, except for specific A and Γ). Indeed,
while one may apply the positive test to establish that Γ `L2 B, it will (in
general) be impossible to establish that Γ 0L3 C. How might one react to this
situation? The only sensible approach is to presuppose that Γ 0L3 C unless
and until the opposite has been established. In other words, one will take
Γ `L2 B as a provisional good reason to accept Γ `L1 A, but be prepared to
review this conclusion at a later stage of the reasoning.

For specific A and Γ, there may be a criterion to establish Γ `L1 A. Any
sensible person will then apply the criterion.4 For other A and Γ, a de-
cent heuristics may provide a reliable estimate of whether Γ `L1 A — this
heuristics may pertain to the way in which the dynamic proof is extended
after Γ `L2 B has been established. All this, however, changes nothing to
the occurrence of an internal dynamics in the reasoning process.

In subsequent sections, I shall present technical characterizations of (dif-
ferent kinds of) adaptive logics. This will include their semantics as well
as their dynamic proof theories. The latter are extremely important. Adap-
tive logics are intended to explicate actual forms of reasoning and only their
dynamic proofs provide one with such an explication.

I shall distinguish between flat and prioritized adaptive logics. An adaptive
logic is called flat if all abnormalities are treated on a par. It is called pri-
oritized if it avoids some abnormalities before avoiding others (and, where
necessary, without avoiding the others). Put differently, a prioritized adap-
tive logic interprets a premise set as normally as possible with respect to a
first set of abnormalities, interprets the result as normally as possible with
respect to a second set of abnormalities, and so on. In Section 2, I shall
characterize flat adaptive logics, in Section 3 prioritized ones.

After briefly pointing out the role of CL for the description and study of
adaptive logics in Section 4, I shall present general characterizations of the
semantics and of the dynamic proof theories in Section 5 and 6 respectively.
In Section 7, I shall discuss the distinction between corrective and ampliative
adaptive logics. Some final warnings are presented in Section 8.

4 Still, if applying the criterion is extremely ‘expensive’ in comparison to the expense of
a mistaken conclusion, one might decide not to apply it.
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48 DIDERIK BATENS

2. Flat Adaptive Logics

A flat adaptive logic AL is characterized by a triple:

(i) A lower limit logic: any monotonic logic.
(ii) A set of abnormalities: a set of formulas characterized by a logical

form.
(iii) An adaptive strategy: this specifies what it means to interpret the prem-

ises ‘as normally as possible’.

The lower limit logic LLL is the stable part of the adaptive logic, the part
that is not subject to adaptation.5 From a proof theoretic point of view, the
lower limit logic delineates the rules of inference that hold unexceptionally.
From a semantic point of view, the adaptive models of Γ are a selection of
the lower limit models of Γ. It follows that CnLLL(Γ) ⊆ CnAL(Γ).

The set of abnormalities — the term will become clear in the next para-
graph — Ω comprises the formulas6 that are presupposed to be false, unless
and until proven otherwise. Ω may comprise those formulas of the logical
form that fulfil a certain restriction, provided that, for every formula B of the
logical form, some ∆ ⊆ Ω is such that B `LLL

∨
(∆). Let us consider some

examples. In many inconsistency-adaptive logics, Ω is the set of formulas of
the form ∃(A ∧ ∼A), in which ∃A abbreviates the existential closure of A.
In others, the set is restricted, for example, to formulas in which A is primi-
tive (contains no logical symbols except for identity). In this case, the lower
limit logic LLL should warrant that, for every B of the form ∃(A ∧ ∼A),
there is a ∆ ⊆ Ω such that B `LLL

∨
(∆). In the basic inductive logic from

[13], the set of abnormalities consists of all formulas of the form ∃A∧∃∼A
in which A is purely functional (no individual constants, quantifiers or sen-
tential letters occur in it). Here the lower limit logic is CL and, for every B
of the form ∃A ∧ ∃∼A, there is a ∆ ⊆ Ω such that B `CL

∨
(∆).7

If the lower limit logic is extended with the requirement that no abnormal-
ity is logically possible, one obtains a monotonic logic, which is called the

5 Typically, the lower limit consequences of a set of premises relate to the adaptive con-
sequences as follows: Γ `LLL A iff Γ ∪ ∆ `AL A for all sets of formulas ∆.

6 For some logics, the abnormalities are couples consisting of an open formula with n
free variables and of an n-tuple of elements of the domain.

7 Some flat adaptive logics were described as formula-preferential systems in [23] — see
also [1]. It is not clear whether this may be done for all adaptive logics, but the approach is
clearly a useful challenge to the Ghent one.
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upper limit logic ULL.8 The effect is easily seen by considering the seman-
tics. An adequate semantics for the upper limit logic is obtained by selecting
those lower limit logic models that verify no abnormality. The name “ab-
normality” refers to the upper limit logic. ULL requires premise sets to be
normal, and ‘explodes’ abnormal premise sets (assigns them the trivial con-
sequence set).

Some examples are useful to clarify the matter. If the lower limit logic is
CL and the set of abnormalities comprises the formulas of the form ∃A ∧
∃∼A (see above), then the upper limit logic is obtained by adding to CL the
axiom ∃A ⊃ ∀A.9 If, as is the case for many inconsistency-adaptive logics,
the lower limit logic is a paraconsistent logic10 PL which contains CL,11 and
the set of abnormalities comprises the formulas of the form ∃(A∧∼A), then
the upper limit logic is CL.12 The importance of the set of abnormalities is
obvious. If the premise set does not require any abnormality to obtain, the
adaptive logic will deliver the same consequences as the upper limit logic.
If the premise set requires some abnormalities to obtain, the adaptive logic
will still deliver more consequences than the lower limit logic, viz. all upper
limit consequences that are not ‘blocked’ by those abnormalities. In sum,
the adaptive logic interprets the set of premises ‘as much as possible’ in
agreement with the upper limit logic; it avoids abnormalities ‘in as far as’
the premises permit.

Given a lower limit logic and a strategy, different sets of abnormalities may
result in the same upper limit logic but still lead to a different adaptive logic.
Suppose that the lower limit logic is a rich paraconsistent logic PL, and that
the set of abnormalities Ω is either all formulas of the form ∃(A∧∼A) or all
such formulas that are not PL-equivalent to a disjunction of (less complex)

8 This is the reason why the set of abnormalities Ω has to be characterized by some logical
form.

9 Semantically, this logic is characterized by those CL-models in which, for each predi-
cate π of adicity i, v(π) ∈ {∅, Di} in which Di is the i-th Cartesian product of the domain.

10 A logic is paraconsistent iff it does not validate all instances of A,∼A ` B.

11 See Section 4 for the precise meaning of “logic L1 contains logic L2”.

12 This is also the case if the lower limit logic LLL is such that all formulas of the form
∃(A∧∼A) are LLL-equivalent to disjunctions of members of Ω. By defining the upper limit
logic ULL in such a way that all members of Ω are logically false, one at once warrants that
all formulas of the form ∃(A ∧ ∼A) are logically false in ULL.
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50 DIDERIK BATENS

formulas of that form.13 In both cases, the upper limit logic is the same.
Even if combined with the same strategy, however, the resulting adaptive
logics are different. If Ω is the restricted set, one obtains a usual and well-
behaving adaptive logic. If Ω comprises the formulas of the form ∃(A∧∼A),
the rich paraconsistent logic PL will cause the adaptive logic to be a flip-flop
logic — one that behaves as the upper limit logic CL if the premise set is
∼-consistent and behaves as the lower limit logic PL if the premise set is
∼-inconsistent.14

Let us consider a further example. Where W is the set of closed formulas
of the usual (non-modal) predictive language, let the lower limit logic be
some standard modal logic ML and let Ω be either {♦A ∧ ∼A | A ∈ W}
or {�A | A ∈ W; 0ML �A}. In both cases, the upper limit is Triv — the
system in which A is logically equivalent to �A as well as to ♦A. However,
the resulting adaptive logics are very different — see [13] for one involving
the first set of abnormalities, and [14] for one involving the second set of
abnormalities.

A very important matter has to be brought up at this point. For all that was
said before, the reader might think that there is a well-defined set of formulas
that need to behave abnormally in view of the premises. This is not the
case. The complication derives from the fact that, except in the case of some
specific lower limit logics — see below where I mention the Simple strategy
— a set of premises may entail a disjunction of abnormalities (members of
Ω) without entailing any of its disjuncts.

Disjunctions of abnormalities15 will be called Dab-formulas. In the se-
quel, any expression of the form Dab(∆) will refer to the disjunction of the
members of a finite ∆ ⊆ Ω.16 The Dab-formulas that are derivable by the
lower limit logic from the premise set Γ will be called Dab-consequences of
Γ. If Dab(∆) is a Dab-consequence of Γ, then so is Dab(∆ ∪ Θ) for any

13 Where the lower limit logic is CluNs — see for example [8] — the restriction comes
to selecting those ∃(A ∧ ∼A) in which A is a primitive formula (does not contain a logical
symbol, except for identity).

14 Inattentive readers time and again misunderstood all adaptive logics as flip-flops. So, I
defined some flip-flop logics, which are indeed adaptive, in order to illustrate the difference
with usual adaptive logics. I always considered flip-flops as utterly uninteresting, until some
interesting prioritized adaptive logics turned out to be flip-flops — see [13].

15 I mean classical disjunctions of abnormalities — see Section 4.

16 So, Dab(∆) is the classical disjunction of the members of ∆ ⊆ Ω. In many previous
papers on specific adaptive logics, Dab(∆) functions in a slightly different way — where
p ∧ ∼p ∈ Ω we (our group) now write Dab({p ∧ ∼p}) where we wrote Dab({p}) before.
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finite Θ. For this reason, it is important to concentrate on the minimal Dab-
consequences of the premise set: Dab(∆) is a minimal Dab-consequence of
Γ iff Γ `LLL Dab(∆) and there is no Θ ⊂ ∆ such that Γ `LLL Dab(Θ). If
Dab(∆) is a minimal Dab-consequence of Γ, then Γ determines that some
member of ∆ behaves abnormally, but fails to determine which member of
∆ behaves abnormally. Adaptive logics are obtained by interpreting a set of
premises ‘as normally as possible’. As some minimal Dab-consequences of
Γ may contain more than one disjunct, this phrase is not unambiguous. It is
disambiguated by choosing a specific adaptive strategy.

The oldest known strategy is Reliability from [3], where it is discussed at
the propositional level. Let U(Γ) = {A | A ∈ ∆ for some minimal Dab-
consequence Dab(∆) of Γ} (the set of formulas that are unreliable on Γ).
The Reliability strategy considers a formula as behaving abnormally iff it is
a member of U(Γ). The effect of this on the semantics and proof theory will
be discussed in subsequent sections.

The Minimal Abnormality strategy (first presented in [2] for the discus-
sion of the propositional level in semantic terms) delivers some more conse-
quences than the Reliability strategy. Suppose that Dab(∆1),Dab(∆2), . . .
are the minimal Dab-consequences of Γ. Roughly — a more precise formu-
lation follows later — the Minimal Abnormality strategy picks one member
of each ∆i as behaving abnormally. Obviously, the strategy does not pick
out a specific combination, but considers all of them.

Consider a simple propositional example for an inconsistency-adaptive
logic: Γ = {∼p,∼q, p∨ q, p∨ r, q ∨ r}. If the lower limit logic validates all
of full positive logic, (p∧∼p)∨ (q ∧∼q) is a minimal Dab-consequence of
Γ. On the Reliability strategy, both p∧∼p and q∧∼q are unreliable with re-
spect to Γ — or both p and q are unreliable with respect to Γ if one prefers a
different mode of speech (see footnote 26) — and hence r is not an adaptive
consequence of Γ. However, if the Minimal Abnormality strategy is chosen,
then r is an adaptive consequence of Γ. Indeed, if p ∧ ∼p behaves abnor-
mally (is true), then q ∧ ∼q behaves normally (is false) and hence r is true
in view of ∼q and q ∨ r; if q ∧∼q behaves abnormally, then p∧∼p behaves
normally and hence r is true in view of ∼p and p∨r. Both strategies are sim-
ple and perspicuous from a semantic point of view, but while the Reliability
strategy leads to simple dynamic proofs, the dynamic proofs determined by
the Minimal Abnormality strategy are rather complicated. Which strategy
is adequate in a specific context of application is obviously a very different
matter.

Some lower limit logics and sets of abnormalities are such that ∆ is a sin-
gleton whenever Dab(∆) is a minimal Dab-consequence of a premise set.
If this is the case, the Reliability and Minimal Abnormality strategies lead to
the same result and coincide with what is called the Simple strategy: a for-
mula behaves abnormally just in case the abnormality is derivable from the
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52 DIDERIK BATENS

premise set — see [14] , [24] and [25] for examples. Several other strategies
have been studied. Most of them were the result of characterizing an existing
consequence relation by an adaptive logic. Examples may be found in [9],
[12], [22] and [31].

3. Prioritized Adaptive Logics

Let us start with combined adaptive logics. If AL1 and AL2 are adaptive log-
ics that have Ω1 and Ω2 as their respective sets of abnormalities and share
their lower limit logic and strategy, a combined adaptive logic AL3 is obvi-
ously defined by the common lower limit logic and strategy and by the set of
abnormalities Ω1 ∪ Ω2.

In more interesting cases, the lower limit logics or the strategies are also
different. Many combinations are possible in this case. In one of them,
the consequence set of the combined adaptive logic L1 may be defined by
CnL2(CnL3(Γ)) in which L2 and L3 are themselves adaptive logics. L3 may,
for example, select the consistent consequences17 of Γ whereas L2 selects
all inductive consequences (in the sense of ILr from [13]) of a premise set. I
shall say no more on this as I have no clear idea of the possible combinations
that have useful applications.

Prioritized adaptive logics are a specific kind of combination of adaptive
logics. The present standard format is as follows. First, one introduces an
operator to express the priorities. I shall write this operator as ♦ because its
logical structure turns out to be that of possibility. It may be read, for exam-
ple, as “it is likely that”, where “it is likely that it is likely that” is obviously
weaker than “it is likely that”. Indefeasible premises are represented by CL-
formulas; premises of the next highest priority are represented by a formula
of the form ♦A in which A is a CL-formula; premises of the next highest
priority by a formula of the form ♦♦A in which A is a CL-formula; etc.

Just as flat adaptive logics, prioritized adaptive logics are defined from a
lower limit logic, a set of abnormalities and a strategy. They differ from flat
adaptive logics in two respects. First, the set of abnormalities is defined as
a union of sets: Ω = Ω1 ∪ Ω2 ∪ . . . — there is no need to have a finite
bound to this — each of them characterized by some formula of increasing
complexity (containing increasing sequences of the symbol ♦). Typically,
Ω1 will be characterized by such formulas as ♦A ∧ ∼A or ♦A ∧ ♦∼A, Ω2

by such formulas as ♦♦A∧∼A or ♦♦A∧♦♦∼A, etc. The second difference
pertains to the strategy. One way to look at the difference is by saying that the

17 This may for example proceed as follows: Γ is closed by some paraconsistent logic L4,
and L3 selects those A ∈ CnL4(Γ) for which {A}∪∆ is consistent whenever ∆ ⊆ CnL4(Γ)
is consistent. In more interesting cases, L4 is itself an inconsistency-adaptive logic.
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strategy first interprets the premises ‘as normally as possible’ with respect to
Ω1, next with respect to Ω2, and so on.

A prioritized adaptive logic AL may be seen as a superposition of adaptive
logics AL1, AL2, . . . that share their lower limit logic and strategy with AL
and differ from each other in that their respective sets of abnormalities are
Ω1, Ω2, . . . . If ♦n is the longest sequence of diamonds occurring in the
modal premise set Γ, a finite characterization is obtained by choosing Ωn ∪
Ωn+1 ∪ . . . as the set of abnormalities of ALn. One then has:

CnAL(Γ) = CnALn
(. . . (CnAL2

(CnAL1
(Γ))) . . .) .

While this is nice as a definition, it is essential that the dynamic proof theory
of AL does not follow this line — see Section 6.

Obviously, all three components of prioritized adaptive logics may be var-
ied, but even varying the lower limit logic allows one to see the enormous
scope of the variation, even for modal logics extending CL. Here are some
examples: a predicative version of T is the lower limit logic in [17] and [31],
a predicative version of S5 and a very non-standard modal extension of CL,
viz. IM, are the lower limit logics of systems studied in [13]. In all these
cases, the upper limit logic is the modal system Triv.

In other approaches, the premises are represented by an n-tuple of sets
each of which has a different priority. For example, the premises may be
written as

Σ = 〈Γ0, Γ1, . . . , Γm〉 (1)
in which the members of Γ0 (the ‘real’ premises) receive maximal priority,
the members of Γ1 receive a lower priority, etc. The idea underlying such
constructions is to define a consequence set that is the deductive closure in
terms of some monotonic logic (usually CL) of Γ0 plus as much of Γ1 as
may consistently be added to Γ0, plus as much of Γ2 as may be consistently
added to the union of Γ0 with the retained subset of Γ1, etc.

Several different such constructions are possible — see for example [20]
for an extensive study. It is fairly simple to characterize consequence rela-
tions defined along these lines in terms of prioritized adaptive logics. Where
♦iA abbreviates A preceded by i occurrences of ♦, a sequence of CL-
premise sets such as (1) is ‘translated’ to the modal premise set

{♦iA | A ∈ Γi} (0 ≤ i ≤ m) (2)

or to something of the same sort.
The characterization of such consequence relations in terms of a priori-

tized adaptive logic has two major advantages. The first is that the conse-
quence relations are supplied with a proof theory (which explicates actual
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54 DIDERIK BATENS

reasoning according to the consequence relations). The second is that the
adaptive characterization immediately leads to interesting variants of conse-
quence relations. While the prioritized consequence relations defined for
(1) define the deductive closure by some monotonic logic L of a subset
of Γ0 ∪ Γ1 ∪ . . . ∪ Γm, the variants define the L-closure of a subset of
CnL’(Γ0)∪ . . .∪CnL’(Γm), in which L’ may be identical to L, but also differ-
ent from L. For many applications, this leads to a more adequate approach —
see for example [31] and [13]. Moreover, even the formulation (2) is supe-
rior to (1). Indeed, it is odd that the priorities of the members of the different
Γi are suppressed to the (informal) metalanguage. If different premises have
really a different status, it seems desirable that this shows in the object lan-
guage.

4. The Role of Classical Logic

The Dab-formulas mentioned in the two preceding sections were said to
be classical disjunctions of abnormalities. If the lower limit logic does not
contain classical disjunction, one adds it (using a symbol that is different
from the ‘local’ disjunction). It is even advisable to go further. Let us say
that a lower limit logic LLL contains CL iff there is a fragment L′ of the
language L of LLL such that, whenever Γ and A are formulas of L′, then
Γ `LLL A iff Γ `CL A.

Let me clarify this by an example. Let ∼ be the standard negation of
the standard CL-language L′ and let PL be a paraconsistent logic in which
all logical symbols of L′ have the same meaning as in CL, except that ∼
is weaker in being paraconsistent. Suppose now that one extends L′ to L
by adding ¬ and giving it exactly the meaning that ∼ has in CL.18 In the
context of CL, ¬A is equivalent to ∼A. In the context of PL, ∼ is the
paraconsistent negation whereas ¬ is classical negation. With respect to the
extended language, PL is still weaker than CL because, for example, p ∨
q,∼p `CL q whereas p ∨ q,∼p 0PL q. However, PL contains CL in the
following sense. Let f(A) be the result of replacing every occurrence of ∼
in A by ¬ and let f(Γ) = {f(A) | A ∈ Γ}. Then obviously Γ `CL A iff
f(Γ) `PL f(A).

In general, if LLL does not contain CL in this sense, then it is advisable
to extend both the language and the lower limit logic with a set of new logi-
cal symbols to the effect that LLL contains CL — see [7] for an example in

18 One way to obtain this result is first extending L′ with ⊥, characterized by the axiom
⊥ ⊃ A, and defining ¬A =df A ⊃ ⊥.
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which all ‘original’ logical symbols are non-classical but have classical al-
ternatives. This not only makes it possible to characterize the adaptive logic
in the standard way described in the two preceding sections. It also greatly
simplifies metatheoretic proofs.

Often this move has a merely technical effect, viz. in case the premises
are formulated in a fragment of the language that does not contain all clas-
sical logic symbols. This is the case for the originally intended application
contexts of most adaptive logics. Of course, nothing prevents one, when it
makes sense with respect to the application context, to employ the full (ex-
tended) language in the proof or even in the premises. In the following two
sections, I shall suppose that the lower limit logic contains CL in the sense
of the previous paragraph, and that the logical symbols that occur in the text
have the meaning they have in CL.

5. The Semantics

The semantics of all adaptive logics is defined in the same way in terms of
the lower limit logic LLL, the set of abnormalities Ω and the strategy — let
ULL be the upper limit logic defined by LLL and Ω. I shall start with flat
adaptive logics.

M |= A will denote that M assigns a designated value to A, in other
words that M verifies A. If the semantics is two-valued — and it is shown
in [27] that any semantic system may be rephrased in two-valued terms —
then M |= A comes to vM (A) = 1. M |= Γ will denote that M verifies all
members of Γ.

For any LLL-model, we define its abnormal part:

Definition 1 : Ab(M) = {A ∈ Ω | M |= A}

Where Dab(∆1), Dab(∆2), . . . are the minimal Dab-consequences of
the premise set Γ,19 U(Γ) = ∆1 ∪ ∆2 ∪ . . . is the set of formulas that are
unreliable with respect to Γ. Let ALr and ALm be the adaptive logics defined
from LLL and Ω by the Reliability strategy and the Minimal Abnormality
strategy respectively.

Definition 2 : A LLL-model M of Γ is reliable iff Ab(M) ⊆ U(Γ).

19 The minimal Dab-consequences of Γ may be semantically defined in view of the sound-
ness and completeness of LLL with respect to its semantics.
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In other words, M is a reliable model of Γ iff all abnormalities verified
by M are unreliable with respect to Γ. Intuitively, U(Γ) comprises the ab-
normalities that, in view of the Reliability strategy, cannot be avoided if all
members of Γ are supposed to be true. A reliable model is one that verifies
no other abnormalities.

Definition 3 : Γ �ALr A iff A is verified by all reliable models of Γ.

Definition 4 : A LLL-model M of Γ is minimally abnormal iff there is no
LLL-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

In other words, M is a minimally abnormal model of Γ iff no other lower
limit model of Γ is (set theoretically) less abnormal than M .20

Definition 5 : Γ �ALm A iff A is verified by all minimally abnormal models
of Γ.

The special status of adaptive logics appears from their semantics. It does
not make sense to say that a model is reliable or minimally abnormal, but
only to say that a LLL-model is a reliable model (or a minimally abnormal
model) of Γ.21

Let us now turn to prioritized adaptive logics. First remember that their
set of abnormalities is a union of sets: Ω = Ω1 ∪ Ω2 ∪ . . .. Next, the lower
limit logic LLL and the upper limit logic ULL are only different with respect
to modal premises (premises of the form ♦iA). In other words, if A and
all members of Γ are closed formulas of the standard CL-language, then
Γ `LLL A iff Γ `ULL A. Finally, for every LLL-model M and for every
priority level i ∈ N − {0}, we define Ab

i(M) =df {A ∈ Ωi | M |= A}.
There is a simple way to characterize the semantics. For any priority level

i ∈ N (remark that zero is included here), we define a set Mi of selected
LLL-models of Γ. Let Dab

i(∆) (i ≥ 1) denote a Dab-formula Dab(∆) with
∆ ⊆ Ωi. For each priority level i ∈ N, Mi determines a set of minimal
Dab

i+1-consequences of Γ. These are the minimal Dab
i+1-formulas that

are verified by all members of Mi. Where Dab
i(∆1), Dab

i(∆2), . . . are the

20 As I see it, this definition makes only sense if it can be demonstrated that, for any
model M that is not minimally abnormal, there is a minimally abnormal model M ′ such that
Ab(M ′) ⊂ Ab(M) — see [8] and, for a generalization, [10].

21 For stubborn readers: no LLL-model is reliable or minimally abnormal with respect to
all premise sets, and only the ULL-models are reliable and minimally abnormal with respect
to the empty set. For the same reason, adaptive logics have no valid formulas and no theorems
of their own: CnAL(∅) = CnULL(∅) and the intersection of CnAL(Γ) for all Γ is CnLLL(∅).
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minimal Dab
i-consequences of Γ, U i(Γ) =df ∆1 ∪ ∆2 ∪ . . .. The reliable

models of Γ are obtained as follows, M being a variable for LLL-models:

Mr

0 =df {M | M |= Γ}

and
Mr

i+1 =df {M ∈ Mr

i | Ab
i+1(M) ⊆ U i+1(Γ)} .

M is a reliable model of Γ iff M ∈ Mr
0 ∩ Mr

1 ∩ . . .. If there is a longest
sequence of symbols ♦ in Γ and its length is n, then U i(Γ) = ∅ for all i > n.
Finally, Γ �ALr A iff A is verified by every reliable model of Γ.

It is even simpler to obtain the minimally abnormal models of Γ:

Mm

0 =df {M | M |= Γ}

and

Mm

i+1 =df {M ∈ Mm

i | for no M ′ ∈ Mm

i , Ab
i+1(M ′) ⊂ Ab

i+1(M)}

M is a minimally abnormal model of Γ iff M ∈ Mr
0 ∩Mr

1 ∩ . . .. Γ �ALm A
iff A is verified by every minimally abnormal model of Γ.

The following are easily seen to obtain for flat as well as for prioritized
adaptive logics. In general,

CnLLL(Γ) ⊆ CnALr (Γ) ⊆ CnALm (Γ) ⊆ CnULL(Γ) .

If Γ is normal, then

CnLLL(Γ) ⊂ CnALr (Γ) = CnALm (Γ) = CnULL(Γ) ;

if Γ is abnormal, then, in all interesting cases,22

CnLLL(Γ) ⊂ CnALr (Γ) ⊂ CnALm (Γ) ⊂ CnULL(Γ) .

22 As Γ is abnormal, CnULL(Γ) is the trivial set (the set of all formulas). The other conse-
quence sets are non-trivial, except if CnLLL(Γ) is trivial (Reassurance Theorem), which for
example is the case if Γ is itself the trivial set.
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6. The Dynamic Proof Theory

Dynamic proofs differ from usual proofs in two respects. The first pertains
to annotated proofs.23 Apart from (i) a line number, (ii) a formula, (iii) the
line numbers of the formulas from which the formula is derived, and (iv) the
rule by which the formula is derived (the latter two are the justification of
the line), dynamic proofs also contain (v) a condition. If, as our research
group now prefers, the condition is a set of abnormalities, then the meaning
of the condition may be understood as follows: the formula (second element
of the line) is derived unless one of the elements of the condition is true —
that is, provided the elements of the condition may be taken to be false on
the premises.

The second difference with respect to usual proofs is that dynamic proofs
are not only defined by a set of deduction rules, but also by a marking defi-
nition. The deduction rules allow one to add lines to the proof, the marking
definition defines which lines are marked at a stage of the proof — I discuss
“a stage of a proof” in detail later, but its meaning is intuitively clear: adding
a new line brings the proof to its next stage.

The second element of a line is considered as derived from the premises
at some stage of the proof iff the line is unmarked at that stage. A formula
may be derived at one stage, not derived at a later one, and again derived at a
still later one. In view of this, I later introduce a ‘more stable’ kind of deriv-
ability: final derivability.24 Intuitively, this is reached when the dynamics of
a proof has stopped. Γ `AL A will indicate that A is finally derivable from
Γ. This notion is provably sound and complete with respect to the semantics
and is proof-independent: in whichever way a specific proof from Γ starts
off, if Γ `AL A, then A can be finally derived in that specific proof.

Let us first have a look at the deduction rules. If they are formulated in
generic format, they are identical for all adaptive logics in standard format.
Let Γ be the set of premises as before.25

23 Non-annotated dynamic proofs are sequences of formulas as usual, except that some
formulas may be marked as the proof proceeds. The marking definitions for such proofs are
more complex than those for annotated proofs, which I present below.

24 Of course, “derivability at a stage” is itself a stable notion, but it is not proof-
independent: if A is “derivable at a stage” from Γ, there is a proof from Γ and a stage s
such that A is derived at stage s of that proof. Still, A need not be derivable at a stage in any
extension of a different proof from Γ.

25 The only rule that introduces non-empty conditions is RC. In other words, before RC is
applied in a proof, the condition of every line will be ∅.
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PREM If A ∈ Γ, one may add a line comprising the following elements:
(i) an appropriate line number, (ii) A, (iii) −, (iv) PREM, and (v) ∅.

RU If A1, . . . , An `LLL B and each of A1, . . ., An occur in the proof on
lines i1, . . . , in that have conditions ∆1, . . ., ∆n respectively, one
may add a line comprising the following elements: (i) an appropri-
ate line number, (ii) B, (iii) i1, . . . , in, (iv) RU, and (v) ∆1∪. . .∪∆n.

RC If A1, . . . , An `LLL B ∨ Dab(Θ) and each of A1, . . ., An occur
in the proof on lines i1, . . . , in that have conditions ∆1, . . ., ∆n

respectively, one may add a line comprising the following elements:
(i) an appropriate line number, (ii) B, (iii) i1, . . . , in, (iv) RC, and
(v) ∆1 ∪ . . . ∪ ∆n ∪ Θ.

Where
A ∆

abbreviates that A occurs in the proof on the condition ∆, the rules may be
phrased more transparently as follows:

PREM If A ∈ Γ: . . . . . .
A ∅

RU If A1, . . . , An `LLL B: A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪ ∆n

RC If A1, . . . , An `LLL B ∨ Dab(Θ) A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪ ∆n ∪ Θ

There is a striking correspondence between dynamic proofs and LLL-
proofs. Suppose that one transforms each line

A ∆

from a dynamic proof into

A ∨ Dab(∆) ,

where “∨Dab(∅)” is defined as the empty string. It is easy enough to estab-
lish, by an obvious induction on the length of the proof, that the resulting
sequence of formulas is a LLL-proof obtained by applications of PREM and
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RU only. This result is extremely useful from a metatheoretic point of view.
It also clarifies what is going on in a dynamic proof. The whole point of the
proof format lies in the marking definition and its interpretation, viz. a line i
at which A has been derived on the condition ∆ justifies one in considering
A as derived from the premises unless and until line i is marked.

We now turn to the marking definitions. I shall start with the definitions for
flat adaptive logics — prioritized adaptive logics need special treatment. At
any stage of the proof, zero or more Dab-formulas are derived on the empty
condition. Given a dynamic proof, we shall say that Dab(∆) is a minimal
Dab-formula at stage s of the proof if, at that stage, Dab(∆) occurs in the
proof on the empty condition and, for any ∆′ ⊂ ∆, Dab(∆′) does not occur
in the proof on the empty condition. Where Dab(∆1), . . . , Dab(∆n) are
the minimal Dab-formulas at stage s of the proof, Us(Γ) = ∆1 ∪ . . . ∪ ∆n

is the set of unreliable formulas at stage s.26 The underlying idea of the
marking definition is clear. The present stage of the proof provides a certain
understanding of the premises. If this understanding is correct, the formulas
derived at unmarked lines are finally derived from the premises.

Definition 6 : Marking for Reliability: Line i is marked at stage s iff, where
∆ is its condition, ∆ ∩ Us(Γ) 6= ∅.

Marking for the Minimal Abnormality strategy is slightly more tiresome.
Let Φ◦

s(Γ) be the set of all sets that contain one disjunct out of each minimal
Dab-formula at stage s. Let Φ?

s(Γ) contain, for any ϕ ∈ Φ◦

s(Γ), the set
CnLLL(ϕ) ∩ Ω. Finally let Φs(Γ) contain those members of Φ?

s(Γ) that are
not proper supersets of other members of Φ?

s(Γ).27 The underlying idea of
the marking definition is as before. If the proof at its present stage offers a
correct understanding of the premises, then the unmarked formulas are final
consequences of the premises whereas the marked formulas are not.

26 So, where Ω is, for example, characterized by the form ∃(A ∧∼A) and ∃(A ∧∼A) ∈
Us(Γ), ∃(A ∧ ∼A) is said to be unreliable. Intuitively it is more attractive to say that A is
unreliable in this case, and this way of speech was followed in most older papers. In line
with this, it was there said that A ∈ Us(Γ), and this turns out less transparent for the general
approach of the present paper.

27 The underlying idea is most easily seen if one replaces the minimal Dab-formulas at
stage s by the minimal Dab-consequences of Γ — this is the situation that is reached in
a proof when its dynamics comes to an end. Define Φ(Γ) from these in the same way as
Φs(Γ) is defined in the text from the minimal Dab-formulas at stage s. It can be proved that
ϕ ∈ Φ(Γ) iff there is a minimally abnormal model M of Γ such that Ab(M) = ϕ — see [6]
for two specific cases and forthcoming work for the generalization of the proof.
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Definition 7 : Marking for Minimal Abnormality: Line i is marked at stage
s iff, where A derived on the condition ∆ at line i, (i) there is no ϕ ∈ Φs(Γ)
such that ϕ∩∆ = ∅, or (ii) for some ϕ ∈ Φs(Γ), there is no line at which A
is derived on a condition Θ for which ϕ ∩ Θ = ∅.

In other words, a line at which A is derived on the condition ∆ is not
marked iff (i) there is a ϕ ∈ Φs(Γ) such that ϕ ∩ ∆ = ∅ and (ii) for any
ϕ ∈ Φs(Γ), there is a line at which A has been derived on a condition Θ for
which ϕ ∩ Θ = ∅.28

The formulas derived from Γ at a stage of the proof are those that are
derived at a line that is unmarked at that stage. As the proof proceeds, un-
marked lines may be marked and vice versa. So, it is important that one
defines a different, stable, kind of derivability:

Definition 8 : A is finally derived from Γ on line i of a proof at stage s iff
(i) A is the second element of line i, (ii) line i is not marked at stage s,
and (iii) any extension of the proof in which line i is marked may be further
extended in such a way that line i is unmarked.

Definition 9 : Γ `AL A (A is finally AL-derivable from Γ) iff A is finally
derived on a line of a proof from Γ.

Remark that these are definitions, and that they are not intended to be of
any direct computational use — see below.

Let us now turn to prioritized adaptive logics. As mentioned before, the
deduction rules PREM, RU and RC are as for flat adaptive logics. Their set
of abnormalities is a union of sets: Ω = Ω1, Ω2, . . .. The easiest way to char-
acterize their marking definitions is as follows. Suppose that the following
line occurs unmarked in a proof at stage s

i Dab
i(∆) . . . . . . Θ

and that the level of each abnormality in Θ is lower than i (that the length of
sequences of the symbol ♦ is less than i). We shall then say that Dab

i(∆)
is a minimal Dab

i-formula at stage s of the proof.29 For each priority level

28 Suppose that Φs(Γ) = Φ(Γ) — see the previous footnote. It follows that line i is not
marked iff two conditions are fulfilled. The first is that all members of the condition of line
i are falsified by some minimally abnormal model of Γ. This entails that A is verified by
that minimally abnormal model. The second condition is that, for every minimally abnormal
model M of Γ, the proof contains a line which shows that M verifies A.

29 The underlying idea is that, as the line is unmarked, Dab
i(∆) is considered as derived

at stage s of the proof.
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i ∈ N−{0}, one defines U i
s(Γ) and Φi

s(Γ) from the minimal Dab
i-formulas

at stage s in the same way as Us(Γ) and Φs(Γ) were defined for the flat case.
Marking is governed by Definitions 6 and 7, except that it proceeds stepwise:
at any stage, the definitions are first applied to mark lines in view of U 1

s (Γ)
(or Φ1

s(Γ)), next to mark lines in view of U 2
s (Γ) (or Φ2

s(Γ)), and so on.30

Final derivability is governed by Definitions 8 and 9 as for the flat case.
For flat adaptive logics as well as for prioritized adaptive logics, it can

be shown that final derivability is sound and complete with respect to the
adaptive semantics (for Reliability and Minimal Abnormality respectively).

Several points deserve some further clarification. Let us start with the
notions of a proof and of a stage of a proof. By a proof31 I mean a sequence
of lines written according to a set of instructions, viz. the deduction rules.32

As for usual proofs, these rules express permissions to add lines to the proof.
There is a ‘deeper’ account of the notion of a proof. On this account, a

stage of a proof is a sequence S of lines and a proof is a sequence or chain Σ
of stages. In all cases that interest us here, proofs start from stage zero, which
is the empty sequence, in other words from the empty chain. The inference
rules describe which chains are permissible. In all cases that interest us here,
a stage is obtained by extending the previous stage, but possibly with the
marks of its lines changed, with exactly one line.33 Remark that the inference
rules may also be seen as describing the permissible transformations on a
chain Σ, and that a proof at a stage may be seen as a specific sequence of
transformations, the first on stage zero, the second on the result of the first,
and so on.

A chain Σ (or its last S) establishes that certain formulas are derivable at a
stage from certain premises. For the dynamic proofs discussed in this paper,

30 As any proof is finite, even the actual process by which the marks are added ends after
finitely many steps.

31 Some readers may be surprised that this notion needs any discussion at all. They should
remember that the ‘traditional’ (Hilbertian) definition of a proof excludes proofs for non-
monotonic logics and hence is bound to be too restrictive.

32 There is no need to make the notion of a proof parasitic on the notion of a proof of
a formula from a set of formulas. In this paper, I phrased the premise rule in such a way
that it refers to a given set of premises. One may just as well phrase it as a rule permitting to
introduce any formula. Of course, all the proof establishes is that some formulas are derivable
from some premise set. This is the set Γ of formulas that are introduced in the proof by the
premise rule. In the specific case of monotonic logics, the proof moreover establishes that
those formulas are derivable from all supersets of Γ.

33 If the number of lines of the previous stage is finite, it is natural to append the new line.
However, there are some weird cases where we have to consider infinite proofs — see [6, §7]
— in which case the new line is inserted.
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these are the second elements of unmarked members of S. For Hilbertian
proofs, they are the second elements of all members of S. That A is finally
derived from Γ in S, or by the chain Σ that ends with S, is defined with
respect to all permissible transformations on Σ, in other words with respect
to all chains Σ′ that extend the Σ.34 Again, Hilbertian proofs are a border
case in that one need not refer to the permissible transformations on Σ, but
only to Σ itself, in order to establish that A is finally derived from Γ by the
chain Σ.

So, final derivability is well defined. But is it possible to establish that
some formula has been finally derived from a premise set? Next, in cases
where it is impossible to establish this, what is the use of derivability at a
stage?

As the consequence relations lack a positive test, there is no algorithm for
establishing in general that A is finally derivable from Γ even if it is. Still,
this does not prevent the existence of criteria that enable one to establish,
for specific A and Γ that A has been finally derived from Γ in a given proof.
Some criteria were presented in [5], [15] and [16], and more criteria may be
derived from results presented in those papers. Unfortunately, most of these
criteria are awfully complex and only transparent for people that are well
acquainted with the dynamic proofs. Recently, work was started in terms of
goal directed proofs. The idea is not to formulate a specific criterion, but
rather to articulate a proof procedure that functions as a criterion. The proof
procedure is applied to Γ `AL A. Whenever the proof procedure stops, it
establishes that Γ `AL A or that Γ 0AL A. Preparatory work on the propo-
sitional fragment of CL is presented in [18] and some first results on the
proof procedure for inconsistency-adaptive logics are presented in [11]. An
interesting aspect of the proof procedure is that one may start ‘exploring’ the
premise set Γ in terms of the proof format described in this paper and, after
some formula A was derived on an unmarked line, switch to the dynamic
proofs in order to establish whether A is finally derivable from Γ.

Let us now turn to the second question. What if no criterion enables one
to conclude from a proof whether some formula is or is not finally derivable
from the premise set? The answer or rather the answers to this question are
presented in [5]. Roughly, the answers go as follows. First, there is a char-
acteristic semantics for derivability at a stage. Next, it can be shown that, as
a dynamic proof proceeds, the insight in the premises provided by the proof
never decreases and may increase. In other words, derivability at a stage
provides an estimate for final derivability, and, as the proof proceeds, this
estimate may become better, and never becomes worse. In view of all this,

34 One might define a proof A from Γ as this set of permissible transformations on Σ.
However, I will continue to reserve “proof” for a proof at a stage.
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derivability at a stage gives one exactly what one might expect, viz. a falli-
ble but sensible estimate of final derivability. At any stage of the proof, one
has to decide (obviously on the basis of pragmatic considerations) whether
one will continue the proof or will act on the basis of present insights. This
is fully in line with present-day views on rationality. A different matter is
whether the proof is carried out in an efficient way, that is: efficient with
respect to obtaining a reliable (but fallible) estimate of final derivability. The
goal directed proofs mentioned in the previous paragraph offer means to ob-
tain efficient proofs, but clearly more research on this problem is desirable.

Some purists will prefer to read the dynamic proofs of adaptive logics as
lower limit proofs in disguise, and will at best accept that an adaptive con-
sequence is derivable from the premises if its derivability is warranted by
a criterion as meant two paragraphs ago. In doing so, they clearly recog-
nize the sense of adaptive logics and depart from traditional lines that purer
purists would stick to. Nevertheless, they are still mistaken. Humans do not
postpone judgement indefinitely, not even in logical matters. Humans decide
on provisional and fallible insights, even in logical matters. And, in view of
the facts and of present best insights, humans cannot afford to behave differ-
ently. That fallible forms of reasoning can be caught in a formally stringent
frame and that their properties can be established by formally decent means
— see [6] and many other papers — are facts that no purist can deny.

Before ending this section, let me briefly mention direct dynamic proofs.
Such proofs were first presented in [19]. They do not follow the standard
adaptive format, but proceed in terms of more common formulations — in
general in terms of the CL-language. An example of a direct dynamic proof
format is presented and compared to the connected official adaptive format
in [25] and [31].

7. Corrective and Ampliative Adaptive Logics

Many logicians believe that there is a standard of deduction — for most CL,
for others a relevant logic, a paraconsistent logic, or perhaps intuitionistic
logic. Even those who (like me) think that logics are basically instruments
that are more or less suitable in specific circumstances, will adopt some logic
as the standard of deduction in a specific situation.

Suppose that we are dealing with a context in which CL is taken as the
standard of deduction. If the lower limit logic of AL is CL (or, for example,
a modal extension of CL), it is said that AL is ampliative. This is the case for
inductive generalization (without background knowledge), for compatibility,
etc. If the lower limit logic is weaker than CL (in the sence of Section 4),
as is the case for inconsistency-adaptive logics, the adaptive logic is called
corrective — the theory was intended to be interpreted in terms of CL, but
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turned out to be inconsistent and hence is interpreted as consistently as pos-
sible.

Not all adaptive logics that are corrective (with respect to CL) are also
inconsistency-adaptive. Paraconsistent logics allow for negation-gluts and
inconsistency-adaptive logics interpret a premise set as consistently as pos-
sible — that is, they reduce the gluts in as far as logical means allow for
such a reduction. It is just as sensible, given certain premises, to start from a
lower limit logic that allows for gaps or for gluts as well as gaps with respect
to negation, or that allows for gluts or gaps or both with respect to any other
logical symbol. In some cases, it is more suitable to apply a lower limit logic
that allows for ambiguities in the non-logical symbols. The corresponding
adaptive logics will interpret premise sets as normally as possible with re-
spect to those abnormalities — see [28] for an ambiguity-adaptive logic and
[7] for combinations, including the extreme lower limit zero logic CL0.

From a technical viewpoint, the distinction between corrective and am-
pliative adaptive logics is immaterial. The formal characterization is always
the same, as may be seen from the fact that the distinction was not even men-
tioned in the previous sections. In other words, the distinction reduces to the
user’s choice of a standard of deduction (in a specific situation). Of course,
this choice is quite important as it has effects on the justification for applying
a specific adaptive logic in given circumstances.

8. Some Warnings

As more adaptive logics were studied, their systematization had to be mod-
ified several times. There is no warrant that the characterizations presented
in this paper are final.

The second warning is that, although the properties of adaptive logics are
very different from those of more common logics, there is no reason not
to apply the usual metatheoretic means to study these properties. This is
what the whole adaptive programme is about: to arrive at a formally de-
cent characterization of a specific non-standard kind of logics and of their
metatheoretic properties.

There is no general proof, at this moment, that all consequence relations
for which there is no positive test may be turned into an adaptive logic and
hence may be given a dynamic proof theory. However, as the study of adap-
tive logics proceeded, more and more such consequence relations were mas-
tered — see [4], [9], [12], [19], [22], [29], [30], [32] — and we did not come
across a sensible consequence relation that appeared beyond reach. Apart
from defining and studying further adaptive logics, the most urgent matter at
this moment seems to be the generalization of the metatheory in terms of the
general characterizations that are presented in this paper.
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The idea behind the adaptive logic programme is to return to the original
aim that underlies the study of logic: to explicate human reasoning. The last
hundred and fifty years of the history of logic were a success story. Still, time
and again, people pursuing that original aim — modal logicians, relevant
logicians and paraconsistent logicians are just three examples — had to fight
those who, impressed by the established results, wanted to restrict logic to
them. The empirical study of forms of reasoning is useful, relevant and
important. This, however, is not what the fight is about. The fight is about
the separation between sound and fallacious reasoning. Nevertheless, once
this separation will be correctly made, a much larger part of actual reasoning
will presumably turn out to be sound.35
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