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TWO-PHASE DEONTIC LOGIC

LEENDERT VAN DER TORRE AND YAO-HUA TAN

Abstract
We show that for the adequate representation of some examples of
normative reasoning a combination of different operators is needed,
where each operator validates different inference rules. The com-
bination of different modal operators imposes the restriction on the
proof theory of the logic that a proof rule can be blocked in a deriva-
tion due to the fact that another proof rule has been used earlier in
the derivation. In this paper we only use two operators and therefore
we call the restriction the two-phase approach in the proof theory,
which we formalize in two-phase labeled deontic logic (2LDL) and
in two-phase dyadic deontic logic (2DL). The preference-based se-
mantics of 2DL is based on an explicit deontic preference ordering
between worlds, representing different degrees of ideality. The two
different modal operators represent two different usages of the pref-
erence ordering, called minimizing and ordering.

1. Why deontic logic derivations must consist of two phases

1.1. Van Fraassen’s paradox

Van Fraassen (1973) presents a logical analysis of dilemmas. In a logic that
formalizes reasoning about dilemmas we cannot accept the conjunction rule,
because it derives ©(p∧¬p) from the dilemma ©p∧©¬p, whereas ‘ought
implies can’ ¬© (p ∧ ¬p). On the other hand we do not want to reject the
conjunction rule in all cases. For example, we want to derive ©(p∧ q) from
©p∧©q when p and q are distinct propositional atoms. That is, we have to
add a restriction on the conjunction rule such that we only derive ©(α1∧α2)
from ©α1 and ©α2 if α1 ∧ α2 is consistent. Van Fraassen calls the latter
inference pattern Consistent Aggregation, which we write as the restricted
conjunction rule (RAND). He encounters a problem in the formalization of
obligations, and wonders if he needs a language in which he can talk directly
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about the imperatives as well. A variant of this problem is illustrated in the
following example.

Example 1 : (Van Fraassen’s paradox) Assume a monadic deontic logic with-
out nested modal operators1 in which dilemmas like ©p∧©¬p are consis-
tent, but which validates ¬©⊥, where ⊥ stands for any contradiction like
p∧¬p. Moreover, assume that it satisfies replacement of logical equivalents
and at least the following two inference patterns Restricted Conjunction rule

(RAND), also called consistent aggregation, and Weakening (W), where
↔
♦φ

can loosely be read as φ is possible (or propositionally consistent).

RAND:
©α1,©α2,

↔
♦ (α1 ∧ α2)

©(α1 ∧ α2)
W:

©α1

©(α1 ∨ α2)

Moreover, assume the two premises ‘Honor thy father or thy mother!’
©(f ∨ m) and ‘Honor not thy mother!’ ©¬m. The derivation of Fig-
ure 1 illustrates how the desired conclusion ‘thou shalt honor thy father’ ©f

©(f ∨ m) ©¬m

©(f ∧ ¬m)
RAND

©f
W

Figure 1. Van Fraassen’s paradox (1)

can be derived from the premises. Unfortunately, the derivation of Figure 2
illustrates that we cannot accept restricted conjunction and weakening in a

©p

©(f ∨ p)
W

©¬p

©(f ∧ ¬p)
RAND

©f
W

Figure 2. Van Fraassen’s paradox (2)

monadic deontic logic, because we can derive the counterintuitive obliga-
tion ©f from a deontic dilemma ©p ∧ ©¬p. The point of this paradox is
that every ©(β), of which ©(f) is a special case, would be derivable.
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Van Fraassen asks himself whether restricted conjunction can be formal-
ized, and he observes interesting technical questions. In this paper we pursue
some of these technical questions.

‘But can this happy circumstance be reflected in the logic of
the ought-statements alone? Or can it be expressed only in
a language in which we can talk directly about the impera-
tives as well? This is an important question, because it is the
question whether the inferential structure of the ‘ought’ lan-
guage game can be stated in so simple a manner that it can be
grasped in and by itself. Intuitively, we want to say: there are
simple cases, and in the simple cases the axiologist’s logic
is substantially correct even if it is not in general – but can
we state precisely when we find ourselves in such a simple
case? These are essentially technical questions for deontic
logic, and I shall not pursue them here.’ (van Fraassen, 1973)

As far as we know, there is no discussion on Van Fraassen’s paradox in the
deontic logic literature.2 We analyze Van Fraassen’s paradox in Example 1
by forbidding application of RAND after W has been applied. This blocks
the counterintuitive derivation in Figure 2 and it does not block the intuitive
derivation in Figure 1, as we show below. Our formalization of two-phase
reasoning works as follows. In the logic, the two phases are represented
by two different types of obligations, written as phase-1 obligations ©1 and
phase-2 obligations ©2 . The premises are phase-1 obligations, the conclu-
sions are phase-2 obligations and the two phases are linked to each other
with the following inference pattern REL.

REL :
©1 (α)

©2 (α)

The two-phase approach blocks the derivation of the obligation ©f in Fig-
ure 1 by introducing sequencing of the derivations RAND and W, such that
the former is only valid in phase-1 (i.e. for ©1 ) and the latter only in phase-2
(for ©2 ). First of all, Figure 3 illustrates that ©2 f is entailed by ©1 (f ∨ m)
and ©1 ¬m. Second, the counterintuitive obligation ©2 f is not entailed from
a dilemma ©1 p∧©1 ¬p. The blocked derivations are represented in Figure 4,
where blocked derivation steps are represented by dashed lines. The counter-
intuitive obligation ©2 f is not entailed via the obligation ©1 (f ∨ p), because
in the first phase there is no weakening. Moreover, the obligation ©2 f is not
entailed via ©2 (f ∨ p) either, because in second-phase entailment ©2 does
not have restricted conjunction.
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©1 (f ∨ m) ©1 ¬m

©1 (f ∧ ¬m)
RAND1

©2 (f ∧ ¬m)
REL

©2 f
W2

Figure 3. Analysis of Van Fraassen’s paradox (1)

©1 p
−−−−−(W2)
©1 (f ∨ p) ©1 ¬p

©1 (f ∧ ¬p)
RAND1

©2 (f ∧ ¬p)
REL

©2 f
W2

©1 p

©2 p
REL

©2 (f ∨ p)
W2

©1 ¬p

©2 ¬p
REL

−−−−−−−−−− (RAND1)
©2 (f ∧ ¬p)

©2 f
W2

Figure 4. Analysis of Van Fraassen’s paradox (2)

1.2. Contrary-to-duty paradoxes

The distinction between two phases can also be used to analyze the notorious
contrary-to-duty (CTD) paradoxes in dyadic deontic logic. These paradoxes
contain so-called contrary-to-duty obligations, which are obligations which
are only in force if another obligation has been violated. Contrary-to-duty
obligations refer to sub-ideal circumstances. We discuss one paradox in both
Standard Deontic Logic (SDL)3 and dyadic deontic logic, and we discuss
another one only in dyadic deontic logic. In SDL, a conditional obligation
β → ©α is a contrary-to-duty (or secondary) obligation of the (primary)
obligation ©α1 if and only if β ∧α1 is inconsistent. The following example
is the notorious gentle murderer paradox (Forrester, 1984), a strengthened
version of the Good Samaritan paradox (Åqvist, 1967).

Example 2 : (Forrester’s paradox) Consider the following sentences of an
SDL theory T : ‘Smith should not kill Jones’ ©¬k, ‘if Smith kills Jones, then
he should do it gently’ k → ©g, ‘Smith kills Jones’ k, and ‘killing someone
gently logically implies killing him’ ` g → k. The second obligation is a CTD
obligation of the first obligation, because ¬k and k are contradictory. SDL
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allows so-called factual detachment, i.e.

|=SDL (β ∧ (β → ©α)) → ©α

and therefore we have T |=SDL ©g from the second and third sentence of T .
From the CTD obligation ©g the obligation ©k can be derived with the K

axiom of SDL (weakening). Hence, we have T |=SDL ©¬k and T |=SDL ©k.
The main problem of this paradox is that ©¬k and ©k are inconsistent in
SDL, although the set of premises is intuitively consistent.

In contrast to Van Fraassen’s paradox in the previous section, Forrester’s
paradox raised an extensive discussion in the deontic logic literature. We
first mention several consistent formalizations that have been proposed.

Scope. Scope distinctions, which have been proposed (see e.g. (Cas-
tañeda, 1981)) to solve the Good Samaritan paradox, seem to be ab-
sent from Forrester’s paradox. However, Sinnot-Armstrong (1985)
argues that also Forrester’s paradox rests on scope confusions. He
invokes Davidson’s account of the logical form of action statements
(Davidson, 1967), according to which adverbial modifiers like gen-
tly in the consequent of k → ©g are represented as predicates of
action-events. Hence, the obligation is translated to ‘there is an event
e, which is a murdering event, and it, e, is gentle’ – ∃e(Me ∧ Ge).
Because of the conjunction, we can distinguish between wide scope
©∃e(Me∧Ge) and narrow scope ∃e(Me∧©Ge). The narrow scope
representation consistently formalizes the paradox, because we can-
not derive ‘Smith ought to kill Jones’ from ‘the event e ought to be
gentle.’4

Weakening. Goble (1991) argues that Forrester’s paradox is caused by
weakening, following a suggestion of Forrester (1984, p.196). His
consistent formalization is based on rejection of the property weak-
ening.5 In his logic, ©¬k ∧©k is inconsistent whereas ©¬k ∧©g
is consistent.6

Defeasibility. Non-monotonic techniques can be used to consistently for-
malize the paradox (Ryu & Lee, 1993; McCarty, 1994; Nute & Yu,
1997). The problem of the paradox is that it is inconsistent, whereas
intuitively it is consistent. Hence, a pragmatic formalization of the
paradox can make use of ‘restoring consistency’ techniques in case of
a paradox.7 Non-monotonic techniques were already used by Loewer
and Belzer (1983; 1986), who solve the Forrester paradox in their
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temporal deontic logic ‘Dyadic Deontic Detachment’ (3D).8 More-
over, it is observed in (van der Torre & Tan, 2000) that approaches
based on contextual reasoning (e.g. (Prakken & Sergot, 1996)) use
non-monotonic techniques, when ‘α ought to be (done) in context γ’
is defined by ‘α ought to be (done), unless ¬γ.’

Dyadic operators. Dyadic deontic logics were developed to formalize
contrary-to-duty reasoning (Hansson, 1971; Lewis, 1974) and to an-
alyze the Good Samaritan paradox, and they can also be used for
the formalization of the Forrester paradox (van der Torre & Tan,
1999a; Prakken & Sergot, 1997). The two obligations are simply
represented by the dyadic obligations ©(¬k |>) and ©(g |k). The
second obligation is a CTD obligation of the first one, because in
dyadic deontic logic an obligation ©(α |β) is a CTD obligation of
the primary obligation ©(α1 |β1) if and only if α1 ∧ β is inconsis-
tent, see Figure 5. However, the problem of this representation is

©(α1|β1)

inconsistent

©(α|β)
A

AKA
AU

Figure 5. ©(α | β) is a contrary-to-duty obligation of
©(α1|β1)

what properties the dyadic obligations have. For example, we obvi-
ously cannot accept the dyadic variant of factual detachment rule FD:
©(α|β)∧β → ©α, or the paradox is immediately reinstated. From
the two premises ©(¬k|>) and ©(g|k) and the fact k we can derive
the contradictory ©¬k and ©g. Moreover, the logic cannot have
strengthening of the antecedent and weakening of the consequent, as
shown below.

The following formalization of Forrester’s paradox in dyadic deontic logic
illustrates how two-phase reasoning can be used to analyze it. The example
illustrates that combining strengthening of the antecedent and weakening of
the consequent is problematic. However, both properties are desirable for a
dyadic deontic logic. For example, strengthening of the antecedent is used
to derive ‘Smith should not kill Jones in the morning’ ©(¬k|m) from the
obligation ‘Smith should not kill Jones’ ©(¬k | >) and weakening of the
consequent is used to derive ‘Smith should not kill Jones’ ©(¬k | >) from
the obligation ‘Smith should drive on the right side of the street and not kill
Jones’ ©(r ∧ ¬k|>).
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Example 3 : (Forrester paradox, continued) Assume a dyadic deontic logic
without nested modal operators that has at least substitution of logical equiv-
alents and the following inference patterns Strengthening of the Antecedent
(SA), the Conjunction rule for the Consequent (ANDC) and Weakening of the
Consequent (WC) .

SA :
©(α|β1)

©(α|β1 ∧ β2)
ANDC :

©(α1|β),©(α2|β)

©(α1 ∧ α2|β)
WC :

©(α1|β)

©(α1 ∨ α2|β)

Furthermore, assume the following premise set with background knowledge
` g → k.

S = {©(¬k|>),©(g|k), k}

The set S represents the Forrester paradox when k is read as ‘Smith kills
Jones’ and g as ‘Smith kills Jones gently.’ Figure 6 below illustrates how
the counterintuitive obligation ©(¬k ∧ g |k), i.e. ©(⊥|k), can be derived
from S by SA and ANDC. The derivation is blocked when SA is replaced by

©(¬k|>)

©(¬k|k)
SA

©(g|k)

©(¬k ∧ g|k)
ANDC

Figure 6. Forrester’s paradox (1)

the following inference pattern Restricted Strengthening of the Antecedent
(RSA).

RSA :
©(α|β1),

↔
♦ (α ∧ β1 ∧ β2)

©(α|β1 ∧ β2)

Unfortunately, the counterintuitive obligation ©(⊥|k) can still be derived
from S by WC, RSA and ANDC. This paradoxical derivation from the set of
obligations is represented in Figure 7. Moreover, in many dyadic deontic
logics the obligation ©(⊥ | k) is inconsistent because ‘ought implies can’
¬© (⊥|α), whereas the premise set S is intuitively consistent.

Forrester’s paradox in Example 3 shows that combining strengthening of
the antecedent and weakening of the consequent is problematic for any de-
ontic logic. The underlying problem of the counterintuitive derivation in
Figure 7 is the derivation of ©(¬g |k) from the first premise ©(¬k |>) by
WC and RSA, because it derives a contrary-to-duty obligation from its own
primary obligation. Note that the fulfillments of the two obligations are re-
spectively ¬k and ¬g ∧ k. Hence, the derived obligation cannot be fulfilled
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©(¬k|>)

©(¬g|>)
WC

©(¬g|k)
RSA

©(g|k)

©(¬g ∧ g|k)
ANDC

Figure 7. Forrester’s paradox (2)

together with the premise it is derived from, which is counterintuitive. The
two-phase approach blocks the derivation of the obligation ©(⊥|k) in Fig-
ure 6 and 7 by introducing sequencing of the derivations RSA and WC, such
that the former is only valid in phase-1 and the latter is only valid in phase-2.
In dyadic deontic logic the two phases are linked to each other with the fol-
lowing inference pattern REL.

REL :
©1 (α|β)

©2 (α|β)

The blocked derivations are represented in Figure 8. First of all, the obliga-
tion ©1 (¬k | k) is not entailed by ©1 (¬k | >) due to the restriction in RSA.
Secondly, ©2 (¬g |k) is not entailed via the obligation ©1 (¬g |>), because in
the first phase there is no weakening of the consequent. Finally, the obliga-
tion ©2 (¬g |k) is not entailed via ©2 (¬g |>) either, because in second-phase
entailment ©2 does not have strengthening of the antecedent.

©1 (¬k|>)
−−−−− (RSA1)
©1 (¬k|k)

©1 (¬k|>)
−−−−−− (WC2)

©1 (¬g|>)

©1 (¬g|k)
RSA1

©2 (¬g|k)
REL

©1 (¬k|>)

©2 ¬k|>)
REL

©2 (¬g|>)
WC2

−−−−− (RSA1)
©2 (¬g|k)

Figure 8. Analysis of Forrester’s paradox

The second CTD paradox we consider is Chisholm’s paradox (Chisholm,
1963). It consists of the three obligations of a certain man ‘to go to his
neighbors assistance,’ ‘to tell them that he comes if he goes,’ and ‘not to
tell them that he comes if he does not go,’ together with the fact ‘he does
not go.’ In particular, Chisholm shows that in SDL the sentences are either
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inconsistent or logically dependent. There is no example in deontic logic
literature that provoked so much discussion as Chisholm’s paradox. Monadic
modal logic was extended with additional semantic features, such as time
and actions.

Time. Variants of Chisholm’s paradox have been formalized in tempo-
ral deontic logic (van Eck, 1982; Loewer & Belzer, 1983), which
usually assume a temporal lag between antecedent and consequent.
However, additional machinery has to be introduced to represent the
paradox itself (van der Torre & Tan, 1998).9

Action. A related formalization distinguishes two (propositional) base
languages, one for the antecedent and one for the consequent (Meyer,
1988; Alchourrón, 1993), following Castañeda’s distinction between
assertions and actions (Castañeda, 1981).10

Moreover, the formalizations we mentioned already at the discussion of
Forrester’s paradox were also proposed for Chisholm’s paradox. In this pa-
per we only consider the paradox in dyadic deontic logic, see e.g. (Tomber-
lin, 1981) for a discussion. Example 4 illustrates that the unrestricted combi-
nation of strengthening of the antecedent and weakening of the consequent
again causes problems. Chisholm’s paradox is more complicated than For-
rester’s paradox, because it also contains an According-To-Duty (ATD) obli-
gation. Figure 9 illustrates that a conditional obligation ©(α|β) is an ATD
obligation of ©(α1|β1) if and only if β logically implies α1. The condition

©(α1|β1)

implies

©(α|β)
A

AK

Figure 9. ©(α | β) is an according-to-duty obligation of
©(α1|β1)

of an ATD obligation is satisfied only if the primary obligation is fulfilled.
The definition of ATD is analogous to the definition of CTD in the sense
that an ATD obligation is an obligation conditional to a fulfillment of an
obligation and a CTD obligation is an obligation conditional to a violation.

It is well known (see e.g. (Prakken & Sergot, 1996; van der Torre & Tan,
1998)) that the main problem of Chisholm’s paradox is caused by deontic
detachment, or deontic transitivity, formalized by the following inference
pattern DD0.

DD0 :
©(α|β),©(β|γ)

©(α|γ)
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We split the inference pattern in the three derivation steps SA, DD and WC.

SA :
©(α|β)

©(α|β ∧ γ)
DD :

©(α|β ∧ γ),©(β|γ)

©(α ∧ β|γ)
WC :

©(α ∧ β|γ)

©(α|γ)

Notice that ANDC can be derived from SA and DD as follows. RANDC can
be derived analogously from RSA and DD.

©(α1|β)

©(α1|β ∧ α2)
SA

©(α2|β)

©(α1 ∧ α2|β)
DD

Now we have split deontic detachment in three inference steps, we can use
our two-phase technique to block the counterintuitive derivation of Chis-
holm’s paradox in the following example.

Example 4 : (Chisholm’s Paradox) Assume a dyadic deontic logic that val-
idates at least substitution of logical equivalents and the (intuitively valid)
inference patterns RSA, ANDC, WC and DD. Furthermore, consider the fol-
lowing premise set S.

S = {©(a|>),©(t|a),©(¬t|¬a),¬a}

The set S formalizes Chisholm’s paradox (Chisholm, 1963) when a is read
as ‘a certain man goes to the assistance of his neighbors’ and t as ‘the
man tells his neighbors that he will come.’ The second obligation is an ATD
obligation and the third obligation is a CTD obligation of the first obligation,
see Figure 10. Figure 11 illustrates how the counterintuitive ©(⊥|¬a) can

©(a|>)

implies

©(t|a)
A

AK

©(a|>)

inconsistent

©(¬t|¬a)
A

AKA
AU

Figure 10. ©(t|a) is an ATD of ©(a|>) and ©(¬t|¬a) is
a CTD of ©(a|>)

be derived from S.

The blocked derivation in Figure 12 shows how the two-phase approach
analyzes Chisholm’s paradox. The problematic proof rule DD0 is split into
SA, DD and WC, where SA and DD are phase-1 rules and WC is a phase-2 rule.
Hence, we can first apply DD and then WC, but not vice versa. Moreover,
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©(t|a) ©(a|>)

©(a ∧ t|>)
DD

©(t|>)
WC

©(t|¬a)
RSA

©(¬t|¬a)

©(t ∧ ¬t|¬a)
AND

Figure 11. Chisholm’s paradox

if we have applied DD and WC, then we can no longer use other phase-1
rules like SA. This blocks the counterintuitive derivation of ©2 (t |¬a) from
©2 (t|>).

©1 (t|a) ©1 (a|>)

©1 (a ∧ t|>)
DD1

©2 (a ∧ t|>)
REL

©2 (t|>)
WC2

−−−−−− (RSA1)
©2 (t|¬a)

Figure 12. Analysis of Chisholm’s paradox

When we compare the two derivations of the contrary-to-duty paradoxes
in dyadic deontic logic, we find the following similarity. The underlying
problem of the counterintuitive derivations is the derivation of the obligation
©(α1 | ¬α2) from ©(α1 ∧ α2 | >) by WC and RSA. It is respectively the
derivation of ©(¬g | k) from ©(¬k | >) in Figure 7 and ©(t | ¬a) from
©(a ∧ t|>) in Figure 11. Moreover, similar derivations of ©(¬(r ∧ g)|r)
from ©(¬r ∧¬g|>) and ©(p|a) from ©(¬a∧ p|>) can be made from the
following two sets of premises.

S = {©(¬r ∧ ¬g|>),©(r ∧ g|r),©(r ∧ g|g)}

S′ = {©(¬a|>),©(a ∨ p|>),©(¬p|a)}

The set S formalizes a variant of the Reykjavik Scenario (Belzer, 1986),
when r is read as ‘telling the secret to Reagan’ and g as ‘telling the secret to
Gorbatchov,’ see e.g. (van der Torre, 1994). S ′ formalizes an extension of the
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apples-and-pears example introduced in (Tan & van der Torre, 1996), when
a is read as ‘buying apples’ and p as ‘buying pears.’

The underlying problem of the contrary-to-duty paradoxes is that a con-
trary-to-duty obligation can be derived from its primary obligation. It is no
surprise that this derivation causes paradoxes. The derivation of a secondary
obligation from a primary obligation clearly confuses the different contexts
found in contrary-to-duty reasoning.11 The context of primary obligation
is the ideal state, whereas the context of a contrary-to-duty obligation is a
violation state. Preference-based deontic logics were developed to seman-
tically distinguish the different violation contexts in a preference ordering.
In this paper we show that in the preference-based two-phase framework
2DL it is not possible to derive secondary obligations from primary obliga-
tions. However, first we discuss a third phenomena — besides dilemmas
and contrary-to-duty reasoning — which can be analyzed with a two-phase
approach.

1.3. Reasoning by cases

Reasoning by cases is a desirable property of reasoning with conditionals.
In this reasoning scheme, a certain fact is proven by proving it for a set of
mutually exclusive and exhaustive circumstances. For example, assume that
you want to know whether you want to go to the beach. If you desire to go
to the beach when it rains, and you desire to go to the beach when it does not
rain, then you may conclude by this scheme ‘reasoning by cases’ that you
desire to go to the beach under all circumstances. The two cases considered
here are rain and no rain. This kind of reasoning schemes can be formalized
by the following derivation: If ‘α if β’ and ‘α if not β,’ then ‘α regardless of β.’
Formally, if we write the conditional ‘α if β’ by β > α, then it is represented
by the following disjunction rule for the antecedent.

ORA:
β > α,¬β > α

> > α

The following example illustrates that the disjunction rule for the antecedent
combined with strengthening of the antecedent derives counterintuitive con-
sequences in dyadic deontic logic.12

Example 5 : (Disarmament paradox) Assume a dyadic deontic logic that val-
idates at least substitution of logical equivalents and the two inference pat-
terns RSA and the Disjunction rule for the Antecedent (ORA),

ORA :
©(α|β1),©(α|β2)

©(α|β1 ∨ β2)
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and assume as premises the obligations ‘we ought to be disarmed if there
will be a nuclear war’ ©(d|w), ‘we ought to be disarmed if there will be no
war’ ©(d |¬w), and ‘we ought to be armed if we have peace if and only if
we are armed’ ©(¬d|d ↔ w). The derivation in Figure 13 shows how we
can derive the counterintuitive ©(d∧¬d|d ↔ w). The derived obligation is

©(d|w) ©(d|¬w)

©(d|>)
ORA

©(d|d ↔ w)
RSA

©(¬d|d ↔ w)

©(d ∧ ¬d|d ↔ w)
AND

Figure 13. The disarmament paradox

inconsistent in most deontic logics, whereas intuitively the set of premises is
consistent. The derivation of ©(d|d ↔ w) is counterintuitive, because it is
not possible to fulfill this obligation together with the obligation ©(d|¬w)
it is derived from. The contradictory fulfillments are respectively d ∧ w and
d ∧ ¬w.13

Reasoning by cases has not been discussed in deontic logic, but it has
received some attention in conditional logic and default logic. However,
as far as we know the problem above has not been discussed before. The
blocked derivations in Figure 14 show how the two-phase approach analyzes
the paradox. We can first apply RSA and then ORA, but not vice versa.

©1 (d|w)

©2 (d|w)
REL

©1 (d|¬w)

©2 (d|¬w)
REL

©2 (d|>)
ORA2

−−−−−− (RSA1)
©2 (d|d ↔ w)

Figure 14. Analysis of the disarmament paradox

Table 1 below summarizes the distinctions we made in the four examples
above. If strengthening of the antecedent and the conjunction rule for the
consequent are formalized as properties of phase-1 obligations, and weaken-
ing of the consequent and the disjunction rule for the antecedent are formal-
ized as properties of phase-2 obligations, then all counterintuitive derivations
discussed so far are blocked.
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Phase-1 Phase-2
Strengthening of the antecedent Weakening of the consequent

SA: ©(α|β1)
©(α|β1∧β2)

WC: ©(α1|β)
©(α1∨α2|β)

Conjunction rule for the consequent Disjunction rule for the antecedent

ANDC: ©(α1|β),©(α2|β)
©(α1∧α2|β) ORA: ©(α|β1),©(α|β2)

(©(α|β1∨β2)

Table 1. Inference patterns

SDL has all the properties shown in the table, which suggests that all in-
ference patterns are intuitive and in principle an ideal deontic logic has to
validate all of them. However, it is well-known that SDL has only one phase
and that it has many paradoxes. The standard approach to formalize the
paradoxes is to argue that SDL is too strong. Hence, in dyadic deontic logic
not all of SDL’s inference patterns like SA and WC, ORA and ANDC are ac-
cepted, but some of them are rejected. However, we think that SDL has
so many paradoxes because it only has one phase. In this paper we show
that the inference patterns can all be accepted if the distinction between two
phases is introduced.

In this paper we consider two two-phase deontic logics. First we discuss
phased labeled deontic logic (PLDL). This logic illustrates that two phases
are necessary to ensure that it is always possible to fulfill an obligation to-
gether with the obligations it is derived from. Moreover, the preference-
based two-phase deontic logic (2DL) shows that the two phases correspond
to two different uses of a deontic preference ordering. The logic 2DL has
a possible worlds semantics that, in contrast to PLDL, can also represent
disjunctions and negations of obligations, as well as facts and therefore vio-
lations.

2. Phased labeled deontic logic

In this section we introduce phased labeled deontic logic (PLDL). We only
use logics in which dilemmas like ©p ∧ ©¬p are consistent, because Van
Fraassen’s paradox can only be analyzed in such logics. However, the PLDL-
analyses of the contrary-to-duty paradoxes and the disarmament paradox is
completely analogous to the analyses in a two-phase logic in which dilem-
mas are inconsistent.14 Drawbacks of PLDL are that it does not have a (pos-
sible worlds) semantics, which has been very useful in the development of
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deontic logic, and that its language does not contain facts (and it therefore
cannot represent violations) and negations and disjunctions of obligations.

Phased labeled deontic logics are versions of a labeled deductive system
as it was introduced by Gabbay (1996) and extensions of the labeled deontic
logics introduced in (van der Torre & Tan, 1995; van der Torre & Tan, 1997;
Makinson, 1999). Labels are used to impose restrictions on the proof theory
of the logic. In PLDL, a proof rule can be blocked in a derivation due to the
fact that another proof rule has been used earlier in the derivation. We call
a set of proof rules that may be used simultaneously a phase in the proof
theory. Roughly speaking, the label L of an obligation ©(α|β)L consists of
a record of the fulfillments (F ) of the premises that are used in the derivation
of ©(α|β), and the phase (p) in which it is derived. Where there is no appli-
cation of reasoning by cases, F can be taken to be a set of boolean formulas,
that grows by joining sets as premises are combined. But in general, to cover
the parallel tracks created through reasoning by cases, we need to consider
sets of sets of boolean formulas (Makinson, 1999).

Definition 1 : (Language) Let L be a propositional base logic. The language
of PLDL consists of the labeled dyadic obligations ©(α|β)L, with α and β
sentences of L, and L a pair (F, p) that consists of a set of sets of sentences
of L (fulfillments) and an integer (the phase). We write |= for entailment in
L.

Each formula occurring as a premise has a label that consists of its own
fulfillment and phase 0.

Definition 2 : (Premise) A formula ©(α|β)({{α∧β}},0) is called a premise of
PLDL when α ∧ β is consistent in L.

The phase of an obligation is determined by the proof rule used to derive
the obligation, and the set of fulfillments is the union (ORA) or the product
(SA, DD) of the labels of the premises used in this inference rule, where the
product is defined by

{S1, . . . , Sn} × {T1, . . . , Tm} = {S1 ∪ T1, . . . , S1 ∪ Tm, . . . , Sn ∪ Tm}.

The labels are used to check that fulfillments are consistent and that the phase
of reasoning is non-decreasing. The consistency check realizes a variant of
the Kantian principle that ‘ought implies can.’

Definition 3 : (PLDL) Let ρ be a phasing function that associates with each
proof rule below an integer called its phase. The phased labeled deontic
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logic PLDL for ρ consists of the inference rules below, extended with the
following two conditions R = RF + Rp.

RF : ©(α |β)(F,p) may only be derived if each Fi ∈ F is consistent: it
must always be possible to fulfill a derived obligation and each of the
obligations it is derived from, though not necessarily all of them at
the same time.

Rp: ©(α | β)(F,p) may only be derived if p ≥ pi for all obligations
©(αi|βi)(Fi,pi) it is derived from.

The inference rules of PLDL are replacements by logical equivalents and
the following four rules.

RSAL :
©(α | β1)(F,p), R

©(α | β1 ∧ β2)(F×{β2},ρ(SA))

RDDL :
©(α|β ∧ γ)(F1,p1),©(β|γ)(F2,p2), R

©(α ∧ β | γ)(F1×F2,ρ(TRANS))

WCL :
©(α1 | β)(F,p), R

©(α1 ∨ α2 | β)(F,ρ(WC))

ORAL :
©(α | β1)(F1,p1),©(α | β2)(F2,p2), R

©(α | β1 ∨ β2)(F1∪F2,ρ(ORA))

We say {©(αi | βi) | 1 ≤ i ≤ n} `PLDL ©(α | β) if there is a la-
beled obligation ©(α |β)L that can be derived from the set of obligations
{©(αi|βi)({{αi∧βi}},0) | 1 ≤ i ≤ n}.

In this paper, we are interested in the following two phased labeled deontic
logics.

Definition 4 : (LDL, 2LDL) Two labeled deontic logics LDL and 2LDL (with
`LDL and `2LDL) are defined as follows.

• The logic LDL is the PLDL with the phasing function ρ defined by
ρ(RSA) = 1, ρ(RDD) = 1, ρ(WC) = 1, ρ(ORA) = 1.

• The logic 2LDL is the PLDL with the phasing function ρ defined by
ρ(RSA) = 1, ρ(RDD) = 1, ρ(WC) = 2, ρ(ORA) = 2.
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Notice that the following phase-1 conjunction rule for the consequent

RANDCL :
©(α1 | β)(F1,p1),©(α2 | β)(F2,p2), R

©(α1 ∧ α2 | β)(F1×{α2}×F2,1)

is implied by LDL and 2LDL, because we can first strengthen ©(α1 |β) to
©(α1|β ∧ α2), and then apply RDD to derive ©(α1 ∧ α2|β).

©(α1|β)(F1,p1)

©(α1|β ∧ α2)(F1×{α2},1)

RSAL
©(α2|β)(F2,p2)

©(α1 ∧ α2|β)(F1×{α2}×F2,1)

RDDL

The following example illustrates that the two-phase technique can be seen
as a device to effect a complex inductive definition with several arguments.
It discusses the PLDL-variant of the notorious SDL theorem

©p ∧©q ↔ ©(p ∧ q),

see e.g. (von Wright, 1971).

Example 6 : Let S1 = {©(p |>),©(q |>)} and S2 = {©(p ∧ q |>)}. We
have S1 `2LDL ©(p ∧ q | >), S2 `2LDL ©(p | >) and S2 `2LDL ©(q | >).
Hence, S1 derives the obligations from S2 and vice versa, but S1 and S2 are
not equivalent. The first set derives ©(p|¬q), whereas the latter does not.15

The following example illustrates the PLDL analysis of the disarmament
paradox. For further examples see (van der Torre & Tan, 1995; van der Torre
& Tan, 1997; Makinson, 1999; van der Torre, 1998a; van der Torre, 1998b).

Example 7 : (Disarmament, continued) The derivation in Figure 15 illus-
trates why we have ©(d | w),©(d | ¬w) 6`2LDL ©(d | d ↔ w). It is not
possible to fulfill ©(d | ¬w) and ©(d | d ↔ w) at the same time, and the
latter can therefore not be derived from the former.

In (van der Torre, 1998b) the following Theorem 1 and 2 are proven. The
first theorem shows that for each LDL derivation there is an equivalent 2LDL
derivation. In other words, the two phases are already implicit in LDL due
to the condition RF and the construction of new sets of fulfillments F by
the proof rules. Consequently, deontic logic derivations must consist of two
phases to ensure that it is always possible to fulfill an obligation together
with the obligations it is derived from. The derivation in Van Fraassen’s
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©(d|w)({{d∧w}},0) ©(d|¬w)({{d∧¬w}},0)

©(d|>)({{d∧w},{d∧¬w}},2)

ORAL

−−−−−−−−−−−−−−−− (RSAL)
©(d|d ↔ w)({{d∧w},{d∧¬w}},1)

Figure 15. Analysis of the disarmament paradox

paradox is blocked, because it is not possible to fulfill the two obligations
of a dilemma. Moreover, in the contrary-to-duty paradoxes it is not possible
to fulfill a primary obligation together with one of its secondary obligations.
Finally, in the disarmament paradox it is not possible to fulfill the derived
obligation together with one of the cases it is derived from. We start with a
lemma.

Lemma 1 : For each obligation ©(α |β)(F,p) derived in PLDL we have for
each Fi ∈ F that Fi |= α ∧ β.

Proof By induction on the structure of the proof tree. The property trivially
holds for the premises, and it is easily seen that the proof rules retain the
property.

Theorem 1 : (Equivalence LDL and 2LDL) Let S be a set of conditional
obligations. We have S `LDL ©(α|β) if and only if S `2LDL ©(α|β).

Proof (outline) It is shown in (van der Torre, 1998b) that we can take any
LDL derivation and construct an equivalent 2LDL derivation, by iteratively
replacing two subsequent steps in the wrong order by several steps in the
right order. The six relevant replacements are given in Figure 16. From
Lemma 1 follows that the replacements do not violate the consistency check
RF .16

The second theorem shows that in 2LDL we can replace the consistency
check on the fulfillments F by a consistency check on antecedent and con-
sequent. Consequently, the set F is superfluous in the label of 2LDL obliga-
tions. The theorem also explains why we restrict ourselves to a consistency
check on the conjunction of the antecedent and consequent in the preference-
based deontic logic 2DL developed later in this paper.
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©(α1|β1)

©(α1 ∨ α2|β1)
WC

©(α1 ∨ α2|β1 ∧ β2)
SA

©(α1|β1)

©(α1|β1 ∧ β2)
SA

©(α1 ∨ α2|β1 ∧ β2)
WC

©(α1|β ∧ γ)

©(α1 ∨ α2|β ∧ γ)
WC

©(β|γ)

©((α1 ∨ α2) ∧ β|γ)
DD

©(α1|β ∧ γ) ©(β|γ)

©(α1 ∧ β|γ)
DD

©((α1 ∨ α2) ∧ β|γ)
WC

©(α|(β1 ∨ β2) ∧ γ)

©(β1|γ)

©(β1 ∨ β2|γ)
WC

©((α ∧ (β1 ∨ β2)|γ)
DD

©(α|(β1 ∨ β2) ∧ γ)

©(α|β1 ∧ γ)
SA

©(β1|γ)

©(α ∧ β1|γ)
DD

©((α ∧ (β1 ∨ β2)|γ)
WC

©(α|β1) ©(α|β2)

©(α|β1 ∨ β2)
OR

©(α|(β1 ∨ β2) ∧ β3)
SA

©(α|β1)

©(α|β1 ∧ β3)
SA

©(α|β2)

©(α|β2 ∧ β3)
SA

©(α|(β1 ∧ β3) ∨ (β2 ∧ β3))
OR

©(α|β1 ∧ γ) ©(α|β2 ∧ γ)

©(α|(β1 ∨ β2) ∧ γ)
OR

©(β1 ∨ β2|γ)

©(α ∧ (β1 ∨ β2)|γ)
DD

©(α|β1 ∧ γ)

©(β1 ∨ β2|γ)

©(β1 ∨ β2|γ ∧ (β1 ∨ ¬β2))
SA

©(α ∧ (β1 ∨ β2)|γ ∧ (β1 ∨ ¬β2))
DD

©(α|β2 ∧ γ)

©(β1 ∨ β2|γ)

©(β1 ∨ β2|γ ∧ (β2 ∨ ¬β1))
SA

©(α ∧ (β1 ∨ β2)|γ ∧ (β2 ∨ ¬β1))
DD

©(α ∧ (β1 ∨ β2)|γ)
OR

©(α|β ∧ (γ1 ∨ γ2))

©(β|γ1) ©(β|γ2)

G(β|γ1 ∨ γ2)
OR

©(α ∧ β|γ1 ∨ γ2)
DD

©(α|β ∧ (γ1 ∨ γ2))

©(α|β ∧ γ1)
SA

©(β|γ1)

©(α ∧ β|γ1)
DD

©(α|β ∧ (γ1 ∨ γ2))

©(α|β ∧ γ2)
SA

©(β|γ2)

©(α ∧ β|γ2)
DD

©(α ∧ β|γ1 ∨ γ2)
OR

Figure 16. Reversing the order

Theorem 2 : Consider any potential derivation of 2LDL, satisfying the con-
dition Rp but not necessarily RF . Then the following four conditions are
equivalent:

(1) The derivation satisfies condition RF throughout phase 1,
(2) The derivation satisfies RF everywhere,
(3) Each consequent is consistent with its antecedent throughout phase

1,
(4) Each consequent is consistent with its antecedent everywhere.

Proof (outline) Clearly (2) ⇒ (1) and (4) ⇒ (3). Through phase 1, for
each formula the conjunction of consequent and antecedent is equivalent to
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the unique element of its label. Hence (1) ⇔ (3). In phase 2 the rules
preserve the consistency of consequent and antecedent, and that they also
preserve the property that each element of the label is consistent. From
this we have (3) ⇒ (4) and (1) ⇒ (2). Putting this together gives us
(1) ⇔ (2) ⇔ (3) ⇔ (4) and we are done.

Phasing has been studied in a more general setting in input/output logics
(Makinson & van der Torre, 2000; Makinson & van der Torre, 2001). One
of the drawbacks of labelled deontic logic is the lack of a semantics. In the
following section we consider phasing in preference-based semantics.

3. Preference-based two-phase deontic logic 2DL

In this section we give a preference-based semantics for the two-phase de-
ontic logic 2DL. A preference ordering can be used in two ways to eval-
uate formulas, which we call ordering and minimizing. Ordering uses all
preference relations between relevant worlds, whereas minimizing uses the
most preferred worlds only. We show that ordering corresponds to the in-
ference pattern strengthening of the antecedent and the conjunction rule for
the consequent, and minimizing to the inference pattern weakening of the
consequent and the disjunction rule for the antecedent. In the first phase the
preference ordering is constructed, and in the second phase the ordering is
used for minimization.

In preference-based deontic logics dyadic obligations are defined by
©(α |β) =def α ∧ β � ¬α ∧ β. An example of a preference-based deon-
tic logic is the well-known Hansson-Lewis dyadic deontic logic (Hansson,
1971; Lewis, 1974), in which an obligation ©(α|β) is defined by (a variant
of) ‘the (deontically) preferred β worlds are α worlds’ in a suitably defined
preference-based logic, as discussed below. This is equivalent to ‘the pre-
ferred β∧α worlds are preferred to the preferred β∧¬α worlds.’ It is easily
checked that the definition of preference-based obligations implies the the-
orem ©(α | β ∧ γ) ↔ ©(α ∧ β | β ∧ γ), regardless of the interpretation
and properties of the preference operator �. The theorem is counterintuitive
on first reading, and it has also been discussed in the deontic logic literature
following the Hansson-Lewis logics. For example, Hansson (1971) argues
that the theorem represents that circumstances are fixed. As a consequence
of this theorem, the logic 2DL developed in this section is stronger than the
logic 2LDL developed in the previous section.
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3.1. Preference-based semantics

We first discuss how obligations can be defined in terms of deontic pref-
erences. Preference-based deontic logics are deontic logics of which the
semantics contains a deontic preference ordering (usually on worlds of a
Kripke style possible worlds model). This preference ordering reflects dif-
ferent degrees of ‘ideality’: a world is deontically preferred to another world
if it is, in some sense, more ideal than the other world. We can distinguish
three different levels of preference-based deontic logics.

Ideality (deontic preference) ordering on worlds. The semantics of a
preference-based logic contains a preference ordering, representing
different degrees of ideality. For example, consider possible worlds
models M = 〈W,≤, V 〉 that consist of a set of worlds W , a binary
accessibility relation ≤ on the worlds of W and a valuation function
V for the atomic propositions relative to the worlds. The expression
w1 ≤ w2 expresses that world w1 ∈ W is at least as ideal as world
w2 ∈ W , or that world w2 is not more ideal than world w1. The two
most discussed properties of preference relations are transitivity and
connectedness.

– Transitivity. Probably the most popular relation is a partial pre-
ordering or quasi-ordering, which has a reflexive (for all worlds
w we have w ≤ w) and transitive (for all worlds w1, w2, w3 ∈ W
with w1 ≤ w2 and w2 ≤ w3 we have w1 ≤ w3) accessibility
relation. Transitivity is a necessary property to define ‘most pre-
ferred’ worlds.17

– Connectedness. A partial pre-ordering is totally connected if for
all worlds w1 and w2 we have w1 ≤ w2 or w2 ≤ w1. With
transitive totally connected orderings, we have that there is no
world preferred to a certain world w if and only if world w is
at least as preferred as all other worlds. It represents that there
are no dilemmas (van Fraassen, 1973), because the agent can
always choose between any two alternatives. For example, the
dilemma ©p ∧©¬p is inconsistent.

An example of a preference-based semantics is an utilitarian se-
mantics (Jennings, 1974; Pearl, 1993), in which a real number (its
utility) is associated with each world. Connectedness is a property of
the preference ordering associated with probability theory and util-
ity theory (von Neumann & Morgenstern, 1944; Keeney & Raiffa,
1976). If forced, the rational agent can choose (based on probability
and utility) between each two possibilities.
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Deontic betterness relation on propositions. Different kinds of deontic
betterness relations between propositions — sets of worlds — can
be derived from the deontic preferences between worlds. We write
α1 � α2 for ‘α1 is better than α2.’ There are many different ways
to lift preferences between worlds to preferences between sets of
worlds. We say that a betterness relation � formalizes strong prefer-
ences when a preference α1 � α2 logically implies α′

1 � α′
2 when

α′
1 logically implies α1 and α′

2 logically implies α2. We call them
weak preferences otherwise.18 In this paper, ordering obligations are
defined by strong preferences, and minimizing obligations are de-
fined by weak preferences. It is generally accepted that the deontic
betterness relation, in contrast to the ideality relation, is not transi-
tive, see e.g. (Goble, 1989; Goble, 1993).

Obligations defined in terms of the betterness relation. The deontic bet-
terness relations between propositions are used to formalize different
kinds of obligations: ©α is some kind of deontic preference of α
over ¬α, and ©(α |β) is some kind of deontic preference of α ∧ β
over ¬α ∧ β.

©(α|β) =def α ∧ β � ¬α ∧ β

A crucial idea in the formalization of the two-phase deontic logic is that
the two modal operators ©1 and ©2 represent two different ways in which the
deontic betterness relation is defined in the underlying deontic preference
relation on worlds. One way, which we call ordering, is to use the whole
ordering to evaluate a formula. The other way, which we call minimizing, is
to use the ordering to select the minimal elements that satisfy a formula. The
crucial distinction between the two logics is that ordering obligations have
different properties than minimizing obligations. Ordering obligations have
the inference pattern strengthening of the antecedent and the conjunction
rule for the consequent,19 and minimizing have the inference pattern weak-
ening of the consequent and the disjunction rule for the antecedent.20 We
loosely say that phase-1 obligations construct a deontic preference ordering
and phase-2 obligations minimize in the constructed preference ordering.

In this paper we show that typical 2DL-models of the examples are given
in Figure 17. This figure represents preference models 〈W,≤, V 〉 that should
be read as follows. A circle represents a nonempty set of worlds, that satisfy
the propositions written within them. An arrow from a circle to another one
represent that the worlds represented by the first circle are strictly preferred
to the worlds represented by the second circle. The transitive closure is left
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implicit. The first phase of 2DL constructs the orderings and the second
phase of 2DL uses the ordering for minimization.

Van Fraassen’s paradox. The set S = {©1 p,©1 ¬p} represents a dilemma,
because the consequents of the obligations are contradictory. The
model in Figure 17.a illustrates that the dilemma S corresponds se-
mantically to incomparable p and ¬p worlds. The ordering consists
of two states. The optimal states consist of respectively p or ¬p
worlds, both associated with a violation of a premise.

Forrester’s paradox. The ordering of the model of the set of 2DL-formu-
las S = {©1 (¬k|>),©1 (g|k), k,` g → k} in Figure 17.b consists of
three states. The ideal state consists of ¬k worlds and represents that
ideally Smith does not kill Jones. The sub-ideal states are ordered
such that gentle killing is preferred to non-gentle killing.

Chisholm’s paradox. The ordering of the model of the set of 2DL-for-
mulas S = {©1 (a | >),©1 (t | a),©1 (¬t | ¬a),¬a} in Figure 17.c
consists of four states. The ideal state consists of a ∧ t worlds and
represents that ideally the man goes to the assistance of his neighbors
and he tells them that he will come. The sub-ideal states are ordered
such that not going and not telling ¬a ∧ ¬t is preferred to not going
and telling ¬a ∧ t.

Disarmament paradox. The ordering of the model of the set of 2DL-
formulas S = {©1 (d|w),©1 (d|¬w),©1 (¬d|d ↔ w)} in Figure 17.d
consists of four states. The ideal state consists of d ∧ ¬w worlds and
represents that ideally you are disarmed and there is no war. (Un-
fortunately, this is an unlikely state!) The three sub-ideal states are
ordered such that not disarmed and no war is preferred to disarmed
and war.

3.2. The two-phase deontic logic 2DL

In this section we introduce the modal preference-based deontic logic 2DL.
The binary accessibility relation of the Kripke models of modal logic is inter-
preted as a deontic preference relation. In (van der Torre & Tan, 1999a) we
showed in Prohairetic Deontic Logic how ordering conditionals can be for-
malized in modal logic and in (Lamarre, 1991; Boutilier, 1994b) it has been
shown how minimizing conditionals can be formalized in modal logic.21
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d. the disarmament paradox

Figure 17. Preference-based models

3.2.1. Modal preference logic

Dyadic obligations are formalized in a bimodal logic, that contains an S5 op-
erator

↔
�, and an S4 operator �, where the relation between the two operators

is axiomatized by
↔
�α → �α. As is well-known, the standard system S4 is

characterized by a partial pre-ordering: the axiom T: �α → α characterizes
reflexivity and the axiom 4: �α → ��α characterizes transitivity (Hughes
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& Creswell, 1984; Chellas, 1980). Moreover, S5 is characterized by an
equivalence relation and additionally contains the axiom ¬

↔
�α →

↔
�¬

↔
�α.

The Kripke models M = 〈W,≤, V 〉 contain a binary accessibility relation
≤, that is interpreted as a reflexive and transitive preference relation.

Definition 5 : (2DL) The bimodal language L is formed from a denumerable
set of propositional variables together with the connectives ¬, →, and the
two normal modal connectives � and

↔
� . Dual ‘possibility’ connectives ♦

and
↔
♦ are defined as usual by ♦α =def ¬ � ¬α and

↔
♦α =def ¬

↔
�¬α.

The logic 2DL is the smallest S ⊂ L such that S contains classical logic
and the following axiom schemata, and is closed under the following rules
of inference.

K �(α → β) → (�α → �β) K′
↔
�(α → β) → (

↔
�α →

↔
�β)

T �α → α T′
↔
�α → α

4 �α → ��α 4′
↔
�α →

↔
�

↔
�α

R
↔
�α → �α 5′ ¬

↔
�α →

↔
�¬

↔
�α

Nes From α infer
↔
�α

MP From α → β and α infer β

Definition 6 : (2DL Semantics) Kripke models M = 〈W,≤, V 〉 for 2DL con-
sist of W , a set of worlds, ≤, a binary transitive and reflexive accessibility
relation, and V , a valuation of the propositional atoms in the worlds. The
partial pre-ordering ≤ expresses preferences: w1 ≤ w2 if and only if w1 is
at least as preferable as w2. The modal connective � refers to accessible
worlds and the modal connective

↔
� to all worlds.

M, w |= �α iff ∀w′ ∈ W if w′ ≤ w, then M, w′ |= α

M, w |=
↔
�α iff ∀w′ ∈ W we have M, w′ |= α (i.e. iff M |= α)

As a consequence of the definition in a standard bimodal logic, the sound-
ness and completeness of 2DL are trivial.

Proposition 1 : (Soundness and completeness of 2DL) Let `2DL and |=2DL

stand for derivability and logical entailment in the logic 2DL. We have
`2DL α if and only if |=2DL α.
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Proof Follows directly from standard modal soundness and completeness
proofs (Hughes & Creswell, 1984; Chellas, 1980; Fagin et al., 1995).

The advantages of our formalization in a modal framework are twofold.
First, when a dyadic operator is given by a definition in an underlying logic,
then we get an axiomatization for free! We do not have to look for a sound
and complete set of inference rules and axiom schemata, because we sim-
ply take the axiomatization of the underlying logic together with the new
definition. In other words, the problem of finding a sound and complete ax-
iomatization is translated into the problem of finding a definition of a dyadic
obligation in terms of a monadic modal preference logic. The second advan-
tage of a modal framework in which all operators are defined, is that relations
between operators are expressed as theorems of the logic, which can thus be
analyzed in the preference-based semantics. Finally, it facilitates the com-
bining of the operators in the two-phase approach. We formalize ordering
and minimizing in a two-phase deontic logic that consists of a weakened
version of Prohairetic Deontic Logic (van der Torre & Tan, 1999a) and a
weakened version of Hansson-Lewis logic (Hansson, 1971; Lewis, 1974).
We call the modal preference logic with the definitions of the different types
of conditionals the two-phase deontic logic 2DL. 22

3.2.2. Ordering: a weak variant of Prohairetic Deontic Logic

In this subsection we only consider the ordering approach to deontic logic. In
evaluating formulas, the whole ordering is taken into account. The ordering
obligations are defined in two steps. First, we define a preference ordering
on propositions. We write α1 � α2 for ‘α1 is deontically better than α2,’
and according to von Wright’s expansion principle, a preference α1 �1 α2 is
only defined for α1∧¬α2 and ¬α1∧α2. We have α1 �1 α2 if and only if for
each pair of α1∧¬α2 and α2∧¬α1 worlds we have either that the α1∧¬α2

world is preferred to the α2 ∧ ¬α1 world, or that the two are incomparable.
In other words, for every α1∧¬α2 world there is not an α2∧¬α1 world that
is as preferable.

We first show how a certain, predictable, definition for conditional obli-
gation will not work. Assume for this purpose the following provisional
notation ©1 −(α |β) =def (α ∧ β) �1 (¬α ∧ β). The logic 2DL has the two
counterintuitive theorems ©1 −(⊥ | α) and ©1 −(α | α). For this reason, we
define two other types of obligations in the preference logic. In the follow-
ing definition, ©1 (α | β) has an additional condition that tests whether the
obligation can be fulfilled, i.e. whether α ∧ β is logically possible (‘ought
implies can’). The obligation ©1 c(α | β) also has the additional condition
that tests whether the obligation can be violated, i.e. whether ¬α ∧ β is log-
ically possible.23 The two conditions formalize von Wright’s contingency



“10vdtorre”
2003/1/23
page 437i

i
i

i

i
i

i
i

TWO-PHASE DEONTIC LOGIC 437

principle (von Wright, 1981), and we therefore write ‘c’ in the obligation
©1 c.

Definition 7 : (Dyadic ordering obligation) The dyadic ordering obligations
‘α should be (done) if β is (done)’, written as ©1 (α |β) and ©1 c(α |β), are
defined as strong preferences of α ∧ β over ¬α ∧ β. A strong preference of
α1 over α2, written as α1 �1 α2, is defined as follows.

α1 �1 α2 =def
↔
�(α1 ∧ ¬α2 → �¬(α2 ∧ ¬α1))

©1 (α|β) =def (α ∧ β) �1 (¬α ∧ β)∧
↔
♦ (α ∧ β)

=
↔
�((α ∧ β) → �¬(¬α ∧ β))∧

↔
♦ (α ∧ β)

↔
↔
�((α ∧ β) → �(β → α))∧

↔
♦ (α ∧ β)

©1 c(α|β) =def (α ∧ β) �1 (¬α ∧ β)∧
↔
♦ (α ∧ β)∧

↔
♦ (¬α ∧ β)

We conjecture that the logic can be axiomatized in terms of dyadic systems
as follows.

Definition 8 : (PDL′) The logic PDL′ is the smallest set closed under modus
ponens and necessitation that satisfies the propositional theorems and the
following axiom schemata specialize, generalize 1 and 2, and introducing
exceptions:

α �1 ⊥
⊥ �1 α

spec α1 �1 α2 → (α1 ∧ β1) �1 (α2 ∧ β2)
gen1 (α � β1 ∧ α � β2) → α �1 (β1 ∨ β2)
gen2 (α1 �1 β) ∧ (α2 �1 β) → (α1 ∨ α2) �1 β

Which are equivalent to the following deontic formulas.

©(α ∨ β|β)
©(α ∧ ¬β|β)
©(α|β1 ∧ β2) ↔ ©(α ∧ β1|β1 ∧ β2)

spec ©(α|β1) → ©(α|β1 ∧ β2)
gen1 ©(α|α ∨ β1) ∧©(α|α ∨ β2) → ©(α|α ∨ β1 ∨ β2)
gen2 ©(α1|α1 ∨ β) ∧©(α2|α2 ∨ β) → ©(α1 ∨ α2|α1 ∨ α2 ∨ β)

The deontic betterness relation �1 is quite weak. For example, it is not
anti-symmetric (we cannot derive ¬(α2 �1 α1) from α1 �1 α2) and it is
not transitive (we cannot derive α1 �1 α3 from α1 �1 α2 and α2 �1 α3).



“10vdtorre”
2003/1/23
page 438i

i
i

i

i
i

i
i

438 L. VAN DER TORRE AND Y. TAN

The lack of these properties is the result of the fact that we do not have totally
connected orderings. In this section we do not further discuss the properties
of �1, but we focus on the properties of the dyadic ordering obligations. In-
tuitively, an obligation ©1 (α |β) expresses a strict deontic preference of all
α∧ β over ¬α∧ β. An α∧ β world is preferred to an ¬α∧ β world, or they
are incomparable (in case of conflicting obligations). The following propo-
sition shows that this preference is equivalent to the ‘negative’ condition that
¬α ∧ β worlds are not as preferable as α ∧ β worlds.24

Proposition 2 : Let M = 〈W,≤, V 〉 be a 2DL model, |α| be the set of worlds
of W that satisfy α, and |α1 |6≤|α2 | denote that ∀w1 ∈|α1 | and ∀w2 ∈|α2 |,
we have w1 6≤ w2. For a world w ∈ W , we have M, w |= ©1 (α | β) iff
(M |= ©1 (α|β) iff) |¬α ∧ β|6≤|α ∧ β| and |α ∧ β| is nonempty.

Proof ⇒ By contraposition. If | α ∧ β | is empty then the proof is triv-
ial. Assume a model M = 〈W,≤, V 〉 with worlds w1, w2 ∈ W such that
M, w1 |= ¬α ∧ β, M, w2 |= α ∧ β and w1 ≤ w2. We have M, w2 6|=

(α ∧ β) → �(β → α)). M, w |=
↔
�α for a world w ∈ W iff for all worlds

w′ ∈ W we have M, w′ |= α. Hence, M, w 6|= ©1 (α|β).
⇐ By contraposition. Assume M, w 6|= ©1 (α|β) for some world w. Hence,

there is no α ∧ β world (trivial) or there is a world w2 ∈ W such that
M, w2 6|= (α∧β) → �(β → α)). In the latter case, it follows that M, w2 |=
α ∧ β and M, w2 6|= �(β → α). Hence, there is a world w1 ∈ W such that
M, w1 |= ¬α ∧ β and w1 ≤ w2.

The following proposition shows that ordering obligations can be used as
phase-1 obligations, because they validate variants of SA and DD, but they
do not validate WC and ORA.25

Proposition 3 : The logic 2DL has the following theorems.

RSA1: (©1 (α|β1)∧
↔
♦ (α ∧ β1 ∧ β2)) → ©1 (α|β1 ∧ β2)

DD1: (©1 (α|β ∧ γ) ∧©1 (β|γ) → ©1 (α ∧ β|γ)

The logic 2DL does not have the following theorems.

WC1: ©1 (α1|β) → ©1 (α1 ∨ α2|β)
ORA1: (©1 (α|β1) ∧©1 (α|β2)) → ©1 (α|β1 ∨ β2)

Proof The (non)theorems can be proven by proving (un)satisfiability in the
preference-based semantics. First, consider the validity of strengthening of
the antecedent RSA1. The validity of strengthening obligation ©1 (α |β1) to
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©1 (α|β1∧β2) follows directly from the fact that a strong preference of α∧β1

over ¬α∧ β1 implies a strong preference of α∧ β1 ∧ β2 over ¬α∧ β1 ∧ β2.
Secondly, consider the non-theorem WC1. ©1 (α1 | β) is not weakened to
©1 (α1 ∨ α2 |β), because ©1 (α1 |β) expresses a preference of every α1 ∧ β
worlds over any ¬α1 ∧ β world, and from such a preference does not follow
that every (α1∨α2)∧β world is preferred to any ¬α1∧¬α2∧β world. For
a counterexample, consider the preference-based model M in Figure 17.c.
We have M |= ©1 (a|>) and M 6|= ©1 (a∨ t|>), because |¬a∧¬t|≤|¬a∧ t|.
Hence, the ordering obligations do not have weakening of the consequent.
Verification of the other (non)theorems is left to the reader. Alternatively, the
theorems can be proven in the logic 2DL.

In this section we introduced a logic of ordering obligations. It is a weak
variant of Prohairetic Deontic Logic, because dilemmas like ©1 (p | >) ∧
©1 (¬p|>) are consistent, whereas they are inconsistent in Prohairetic Deon-
tic Logic. In the next section we discuss ‘standard’ minimizing obligations
and we compare them with the ordering obligations.

3.2.3. Minimizing: a weak variant of Hansson-Lewis dyadic deontic logic

In the dyadic deontic logic of Bengt Hansson, an obligation ©(α|β) is true
if and only if α is true in all minimal (preferred) β worlds (Hansson, 1971).
We therefore say that his logic is based on minimizing. Boutilier (1994b)
gave a reconstruction of B. Hansson’s logic in a modal preference structure.
In this section we give a related but weaker logic, in which an obligation
©2 (α |β) is true if and only if α is true in an equivalence class of minimal
(preferred) β worlds.26 To discriminate between the two types of minimizing
conditionals we call the Hansson-Lewis type universal-minimizing.

The minimizing obligation is defined in a weak deontic betterness relation,
written as α1 �2 α2. As we discussed in the Section 3.1, we say that a pref-
erence ordering � formalizes weak preferences when a preference α1 � α2

does not logically imply a preference for α′
1 � α′

2 when α′
1 implies α1 and

α′
2 implies α2. We say that α1 is weakly preferred to α2 if and only if there

is an α1 world such that there is no α2 world which is as preferable. That is,
there is a preferred α1 world such that for all preferred α2 worlds we have
either that the α1 world is preferred to the α2 world, or that the two worlds
are incomparable.

Definition 9 : (Dyadic minimizing obligation) The dyadic minimizing obli-
gation ‘α should be the case if β is the case’, written as ©2 (α | β) and
©2 c(α |β), is defined as a weak preference of α ∧ β over ¬α ∧ β. A weak
preference of α1 over α2, written as α1 �2 α2, is defined as follows.
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α1 �2 α2 =def

↔
♦ (α1 ∧ ¬α2 ∧ �¬(α2 ∧ ¬α1))

©2 (α|β) =def (α ∧ β) �2 (¬α ∧ β)

=
↔
♦ ((α ∧ β) ∧ �¬(¬α ∧ β))

↔
↔
♦ (β ∧ �(β → α))

©2 c(α|β) =def (α ∧ β) �2 (¬α ∧ β)∧
↔
♦ (¬α ∧ β)

The following proposition shows that the obligation ©2 (α|β) refers to the
optimal β worlds, and that ©2 (α|>) refers to the ideal worlds.

Proposition 4 : Let M = 〈W,≤, V 〉 be a 2DL model and let |α| be the set of
worlds that satisfy α. For a world w ∈ W , we have M, w |= ©2 (α|β) if and
only if there is a world w2 ∈|α ∧ β | such that for all worlds w1 ∈|¬α ∧ β |
it is true that w1 6≤ w2. Hence, we have M, w |= ©2 (α|β) if and only if

(1) α is true in an equivalence class of most preferred β worlds of M , or
(2) there is an infinite descending chain in which there is a β world w2

such that α is true in all β worlds w1 with w1 ≤ w2.
Proof Analogous to the proof of Proposition 2 (see also (Boutilier, 1994a)).
⇒ By contraposition. Assume a model M = 〈W,≤, V 〉 such that for all
worlds w2 ∈ W such that M, w2 |= α∧β there is a world w1 ∈ W such that
M, w1 |= ¬α ∧ β and w1 ≤ w2. We have M, w2 6|= (α ∧ β) ∧ �(β → α)).

M, w |=
↔
♦ α for a world w ∈ W if and only if there is a world w′ ∈ W such

that M, w′ |= α. Hence, M, w 6|= ©2 (α|β).
⇐ By contraposition. Assume M, w 6|= ©2 (α|β) for some world w. Hence,

for all worlds w2 ∈ W we have M, w2 6|= β ∧ �(β → α). It follows that
for all worlds w2 such that M, w2 |= α ∧ β we have M, w2 6|= �(β → α).
Hence, there is a world w1 ∈ W such that M, w1 |= ¬α ∧ β and w1 ≤ w2.

The following proposition shows that minimizing obligations can be used
as phase-2 obligations, because they do not validate SA, ANDC or DD, but
they do validate WC and ORA.27

Proposition 5 : The logic 2DL has the following theorems.

WC2 ©2 (α1|β) → ©2 (α1 ∨ α2|β)
ORA2: (©2 (α|β1) ∧©2 (α|β2)) → ©2 (α|β1 ∨ β2)

The logic 2DL does not have the following theorems.
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SA2 : ©2 (α|β1) → ©2 (α|β1 ∧ β2)
AND2 : ©2 (α1|β) ∧©2 (α2|β) → ©2 (α1 ∧ α2|β)
DD2 : ©2 (α|β) ∧©2 (β|γ) → ©2 (α|γ)

Proof The (non)theorems can be proven by proving (un)satisfiability in the
preference-based semantics. Consider first the validity of weakening of the
consequent WC2. The logic has weakening of the consequent of ©2 (α1 |β)
to ©2 (α1 ∨ α2 |β), because the most preferred β worlds that satisfy α1 also
satisfy α1 ∨ α2. Secondly, consider strengthening of the antecedent SA2.
The logic does not have strengthening of the antecedent of ©2 (α | β1) to
©2 (α |β1 ∧ β2), because the preferred β1 worlds may be different from the
preferred β1 ∧ β2 worlds. For a counterexample, consider the Kripke model
M in Figure 17.c. We have M |= ©2 (t | >) and M 6|= ©2 (t | ¬a). We do
not have M |= ©2 (t|¬a), because the preferred ¬a worlds are the ¬a ∧ ¬t
worlds. Hence, ©2 does not have strengthening of the antecedent. Verifica-
tion of the other (non)theorems is left to the reader.

3.2.4. Relation between ordering and minimizing obligations

In this section we discuss several relations between ordering and minimiz-
ing. First, from Proposition 3 and 5 follows that ordering and minimizing
obligations are duals when we consider the inference patterns strengthening
of the antecedent and weakening of the consequent, because the former only
validates the first inference pattern whereas the latter only validates the sec-
ond one. Moreover, they are also duals when we consider the conjunction
rule for the consequent and the disjunction rule for the antecedent, although
universal-minimizing logics (e.g. Hansson-Lewis logics) combine these two
inference patterns. The second relation is given by the following proposition.

Proposition 6 : The logic 2DL has the following theorems.

Rel: ©1 (α|β) → ©2 (α|β)
Rel

c: ©1 c(α|β) → ©2 c(α|β)

Proof The theorems can easily be proven by proving satisfiability in the pref-
erence-based semantics. For example, consider the theorem Rel. ©1 (α|β) is
true in a model if and only if we have |¬α ∧ β|6≤|α ∧ β| and |α ∧ β| is non-
empty. Then any world w ∈|α∧β| is part of a preferred β equivalence class
(or infinite descending chain) or they can see one. Hence, there is at least
one preferred β equivalence class (or infinite descending chain) of which the
worlds satisfy α∧ β. The other theorems follow directly from this result and
the definitions of the obligations. Alternatively, the theorems can be proven
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by proving validity in 2DL. For example, Rel is equivalent with the following
theorem of 2DL.

Rel (
↔
�(β ∧ α → �(β → α))∧

↔
♦ (α ∧ β)) →

↔
♦ (β ∧ �(β → α))

Finally, the theorem is easier to read as an instance of the following formula
that relates the preference orderings (α1 �1 α2) → (α1 �2 α2).

Rel (
↔
�(α1 → �¬α2)∧

↔
♦ α1) →

↔
♦ (α1 ∧ �¬α2)

The following proposition gives another relation between ordering and
minimizing obligations. It shows that an ordering obligation is equivalent
to a set of existential-minimizing obligations, when we impose a constraint
on the models.

Proposition 7 : Let M be a 2DL model such that M does not contain du-
plicate worlds, i.e. for all w1, w2 ∈ W such that w1 6= w2, there is a
propositional α such that M, w1 |= α and M, w2 6|= α. We have

M, w |= ©1 (α|β) iff for all formulas β ′ such that M, w |=
↔
♦ (α ∧ β′) and

M, w |=
↔
�(β′ → β), we have M, w |= ©2 (α|β ′).

M, w |= ©1 c(α |β) iff for all formulas β ′ such that M, w |=
↔
♦ (¬α ∧ β′),

M, w |=
↔
♦ (α ∧ β′) and M, w |=

↔
�(β′ → β), we have M, w |= ©2 (α|β ′).

Proof We only give the proof for ©1 and ©2 ; the other case is analogous. ⇒
Follows directly from RSA1 and Rel. ⇐ Every world is characterized by a
unique propositional sentence. Let w denote this sentence that characterizes
world w. Proof by contraposition. If M, w 6|= ©1 (α | β), then there is no
α∧β world (in which case the proof is trivial), or there are w1, w2 such that
M, w1 |= α ∧ β, M, w2 |= ¬α ∧ β and w2 ≤ w1. Choose β′ = w1 ∨ w2.
w2 is one of the preferred β ′ worlds, because there are no duplicate worlds.
(If duplicate worlds are allowed, then there could be a β ′ world w3 which
is a duplicate of w1, and which is strictly preferred to w1 and w2.) We have
M, w2 6|= α and therefore M, w 6|= ©2 (α|β ′).

In the next section we show how minimizing and ordering can be com-
bined in a two-phase deontic logic. The two-phase approach combines
strengthening of the antecedent and the conjunction rule for the consequent
with weakening of the consequent and the disjunction rule of the antecedent.
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3.2.5. Combining ordering and minimizing

In this section we analyze the examples discussed in Section 1 in 2DL. The
two phases in a deontic logic correspond to the two different kinds of obli-
gations ©1 and ©2 (or ©1 c and ©2 c). From a proof-theoretic point of view, the
first phase corresponds to applying valid inferences of ©1 like RSA, RAND
and DD, and the second phase corresponds to applying valid inferences of ©2
like WC and ORA. We have to use phase-1 obligations ©1 as premises, link
phase-1 obligations to phase-2 obligations with REL, and end with phase-2
obligations. Hence, Proposition 6 is crucial.

We start with reasoning about dilemmas. In the analysis of Van Fraassen’s
paradox in Section 1.1 we showed that the problem of the paradox is the
combination of the restricted conjunction rule and weakening. In fact, we
showed that the two inference patterns can only be combined in a two-phase
deontic logic. Now we will show that it is also a sufficient condition to block
the counterintuitive derivation. This is proven by showing that the model in
Figure 17.a is a counter-model of the derivation. Thus far, we have discussed
the ordering logic ©1 that has conjunction rule but not weakening, and the
minimizing logic ©2 that has weakening but not conjunction. The follow-
ing example shows that the counterintuitive obligation cannot be derived in
2DL. We can combine restricted conjunction and weakening only if there
are two phases. The first phase does not have weakening but it has restricted
conjunction, and the second phase vice versa.28

Example 8 : (Van Fraassen’s paradox, continued) Consider the set of obli-
gations S = {©1 (p|>),©1 (¬p|>)} that represents a dilemma, because the
consequents of the obligations are contradictory. The set S is consistent,
and a typical model M of S is given in Figure 17.a. We have M |= ©1 (p|>)
and M |= ©1 (¬p |>), because |¬p |6≤|p | and |p |6≤|¬p |, respectively, and
such p and ¬p worlds exist. The model illustrates that the dilemma S cor-
responds semantically to incomparable p and ¬p worlds. The model illus-
trates that the dilemma S corresponds semantically to incomparable p and
¬p worlds. The first phase of the ordering creates this ordering that consists
of two states. The optimal states consists of p or ¬p worlds, both containing
a violation. The second phase of 2DL uses this ordering for minimization.

We now analyze contrary-to-duty reasoning. In Section 1.2 we showed
that the problem of the paradoxes is the combination of strengthening of
the antecedent and weakening of the consequent. We now show that it is
a sufficient condition in 2DL. The following example illustrates how the
two-phase approach analyzes the CTD paradoxes.
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Example 9 : (Contrary-to-duty paradoxes, continued) Consider the set of
premises S = {©1 (¬k |>),©1 (g |k), k,

↔
� (g → k)} of Forrester’s paradox

in Example 3. The crucial observation is that ©2 (¬g | k) is not entailed
by S. A typical counter-model M is represented in Figure 17.b. We have
M |= ©1 (¬k|>) and M |= ©1 (g|k), because |k|6≤|¬k| and |k∧¬g|6≤|k∧g|
respectively. We have M 6|= ©2 (¬g|k), because |k ∧ g|≤|k ∧ ¬g|.

Consider the set S = {©1 (a |>),©1 (t |a),©1 (¬t | ¬a), a} of Chisholm’s
paradox in Example 4. The crucial observation is that ©2 (t | ¬a) is not
entailed by S. A typical counter-model M is represented in Figure 17.c.
We have M |= ©1 (a | >), M |= ©1 (t | a) and M |= ©1 (¬t | ¬a), because
|¬a|6≤|a|, |a ∧ ¬t|6≤|a ∧ t| and |¬a ∧ t|6≤|¬a ∧ ¬t| respectively. We have
M 6|= ©2 (t|¬a), because |¬a ∧ ¬t|≤|¬a ∧ t|.

Finally we analyze reasoning by cases. In Section 1.3 we showed that the
problem of reasoning by cases is the combination of strengthening of the an-
tecedent and the disjunction rule for the antecedent. We now show that the
sequencing of derivations is a sufficient condition to block the counterintu-
itive derivation in 2DL.

Example 10 : (Disarmament paradox, continued) Consider the set of premises
S = {©1 (d |w),©1 (d |¬w),©1 (¬d |d ↔ w)}. The set S is consistent, and
the crucial observation is that ©2 (d|d ↔ w) is not entailed by S. A typical
counter-model M is represented in Figure 17.d. We have M |= ©1 (d |w),
M |= ©1 (d |¬w), and M |= ©1 (¬d |d ↔ w), because |¬d ∧ w |6≤|d ∧ w |,
| ¬d ∧ w |6≤| d ∧ ¬w | and | ¬d ∧ ¬w |6≤| d ∧ w | respectively. We have
M 6|= ©2 (d|d ↔ w), because |¬d ∧ ¬w|≤|d ∧ w|.

4. Summary

In this paper we have introduced the notion of a two-phase deontic logic and
we have shown how such a logic analyzes, and escapes, a number of para-
doxes and problems. We began with a concern to allow for deontic dilem-
mas, which requires limiting the conjunction rule (©α∧©β) → ©(α∧β)
(AND) of standard deontic logic (SDL) so as to disallow (©p ∧ ©¬p) →
©q, which would make deontic dilemmas formally inconsistent. Yet, fol-
lowing Van Fraassen and others, we do not want to eliminate the conjunc-
tion rule altogether, but to allow for such inferences when α and β are at least
logically consistent. We called such a limited rule restricted conjunction rule
(RAND). Yet, merely to limit AND in that way is not enough to avoid para-
dox, if the logic also contains a rule of ‘weakening’ ©α → ©(α ∨ β) (W),
which is derivable from a monotonicity rule `α→β

`©α→©β
, which seems hard
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to give up. This, in effect, is van Fraassen’s paradox, which is not much
discussed in the literature. In order to preserve both RAND and W, we have
presented our two-phase deontic logic. Both rules are, individually, intuitive
and acceptable, but they cannot be used together. That is, RAND is barred
from application following W, and vice versa. This allows the inferences
one wants while blocking those one does not want. This may be analyzed
either proof-theoretically, through sequencing the applications of inference
rules, or by introducing two sorts of obligation operators. For the first phase
operator ©1 RAND but not W is valid, and for the second phase operator
©2 W but not RAND is valid. The two are linked by a rule ©1 α → ©2 α.
Sections 2 and 3 develop these two approaches in formal detail. The first
section, however, continues to show how the idea of a two-phase deontic
logic also applies to the more familiar Contrary-To-Duty paradoxes, which
extends the idea of the two-phase structure to conditional obligation. Then
it examines problems that arise from Reasoning By Cases, the ‘disarmament
paradox’, where once again problematic inferences are blocked by the two
phase structure. The standard approach to these kinds of paradox is to reject
some of the inference patterns of SDL, considering that logic too strong. The
present approach, however, diagnoses the problems rather as resulting from,
in effect, SDL being too weak, insofar as it does not distinguish between the
two phases. Once that distinction is drawn, all the familiar, and presumably
intuitive, patterns of inference may be preserved. Through examining the
variety of deontic puzzles and applying the idea of the two-phase structure
to them, we have demonstrated the power of our proposal.

Section 2 presents a ‘phase labelled deontic logic (PLDL) in the manner
of Gabbay’s labeled deductive systems. Formulas take the form ©(α |β)L,
where L is a label that, in effect, tracks the steps in a derivation. These are the
premises from which they are derived and their phases, which allows rules
to be restricted in order to preserve consistency. We observe that this sort
of logic is severely limited. It does not admit a possible world semantics,
and its language does not allow for factual statements. Hence, although it
can be applied to Van Fraassen’s paradox and the problems of reasoning by
cases, it does not extend to the contrary-to-duty paradoxes. Nevertheless,
the introduction of the phase labelled deontic logics formally demonstrates
the adequacy of the idea of restricting rule applications that is inherent in the
two-phase deontic logic.

Section 3 presents the ‘real’ two-phase deontic logic, 2DL, chiefly through
a preference-based possible worlds semantics. Within this semantics two
operations of preference, ordering, �1, and minimizing, �2, can be distin-
guished. They allow for the definition of the two dyadic deontic operators
©1 (α | β) and ©2 (α | β) that will obey distinct patterns of inference in the
way described in Section 1 for the two phases (as extended to dyadic condi-
tional obligation). It is interesting that the two ‘better’ operations, and hence
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the two ‘ought’ operations, are definable in a normal bimodal logic with
a S5-like necessity operator

↔
� and an S4-like operator �. Since these are

well-behaved and familiar, it makes the development of the deontic concepts
particularly simple, and soundness and completeness come cheap and easy.
The section further motivates the logic by showing how the preference-based
models for 2DL can be used to analyze all three types of problem raised ear-
lier, Van Fraassen’s, the CTD paradoxes, and reasoning by cases.

An open problem is the conceptual interpretation of the distinction be-
tween the two phases. One direction to search such an interpretation is the
decision-theoretic account of normative statements (van der Torre & Tan,
1999b; van der Torre & Weydert, 2001; Lang, van der Torre, & Weydert,
2002), an idea which goes back at least to Powers’ comparison of deon-
tic logic with the calculus of a pay-back machine (Powers, 1967). The
preference-based definition ©(α|β) =def (α ∧ β) � (¬α ∧ β) can be read
as: ‘if the agent chooses between α∧β and ¬α∧β, then she ought to choose
α∧ β.’ The consistency conditions of von Wright contingency principle can
also be explained with the concept of choice: if it is not possible to violate
or fulfill the obligation, then there is no possibility to choose. One could
explain the intuition behind the distinction between phase-1 and phase-2
reasoning with the following metaphor. The moral agent has to make up
her mind before she can take decisions; she has to think before she acts.

Metaphor of the moral agent. Phase-1 reasoning is what a
person does when she envisions the message of the law, is-
sued by the legislator, by determining the preference relations
between the possible deontic states. In this envisionment pro-
cess bad states are as important as good states. Phase-2 rea-
soning is what the person does when she also tries to realize
the best states. Distinctions between varying degrees of bad
states are irrelevant. A moral agent does both, because first
she interprets the legal message and then she also tries to re-
alize the best worlds.
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NOTES

1 In this paper we do not consider nested modal operators. See (Weydert, 1994) for an
interpretation and formalization of nested modal operators. Our logics can be extended along
the lines proposed there.

2 For a long time, Van Fraassen’s argument for a consistent representation of dilemmas
has been ignored. Since the eighties, there has been some discussion on dilemmas (Conee,
1982; Prakken, 1996). In application-oriented research it is often been argued that dilemmas
exist in practical situations, and they should therefore be consistent, see e.g. (Brown, Mantha,
& Wakayama, 1993).

3 SDL is a modal system of type KD according to the Chellas classification (Chellas,
1980). It is the smallest set that contains the propositional theorems and the axioms
K : ©(β → α) → (©β → ©α) and D : ¬(©α ∧ ©¬α), and that is closed under
the inference rules modus ponens and necessitation.

4 A drawback of this solution (Loewer & Belzer, 1986; Goble, 1991; Goble, 1996) is that
not every adverb of action is amenable to treatment as a predicate. For example, Goble (1991)
gives the example ‘Jones ought not to wear red to school’ and ‘if Jones wears red to school,
then Jones ought to wear scarlet to school.’ Goble observes that the relation between scarlet
and red is not such that we can say scarlet is ‘red and . . . ,’ which might allow us to pull the
term ‘red’ away from the deontic operator in the manner of Sinnot-Armstrong and Castañeda,
leaving the operator to apply only to whatever fills the blank. Scarlet is just a determinate
shade of red; that is all we can say. As another example, Prakken and Sergot (1996) mention
‘fences should be white’ and ‘if they are not white, then they should be black.’ Another argument
against the scope distinction is that it does not block the so-called pragmatic oddity (Prakken
& Sergot, 1996): from ‘you should keep your promise’ ©p, ‘if you do not keep you promise,
then you should apologize’ ¬p → ©a and the fact ‘you do not keep your promise’ ¬p we
can derive the counterintuitive ‘you should keep your promise and apologize for not keeping it’
©(p ∧ a).

5 The most convincing argument that weakening is invalid is the paradox of the knower
(Åqvist, 1967), represented by the sentence ‘if you ought to know p, then p ought to be (done)’
©Kp → ©p.

6 A drawback of this solution is that only in a few cases it seems that ©α ∧©(¬α ∧ β)
is not a dilemma and should therefore be consistent. This solution seems like overkill.

7 However, this solution is ad hoc. Restoring consistency is like treating symptoms with-
out treating the disease. The term hack comes to mind! Moreover, restoring consistency
techniques cannot deal with so-called ‘pragmatic oddities’ discussed by Prakken and Ser-
got (1996).

8 In 3D a dyadic obligation ©(α|β) is read as ‘if it is settled that β will be (done), then α
ought to be (done).’ Moreover, there is an operator Sα in 3D that represents that a proposition
α is settled. A fact can be settled to become true, without factually being true. Loewer and
Belzer (1986) also discuss the relation between their solution and Castañeda’s approach to
the contrary-to-duty paradoxes (Castañeda, 1981).
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9 The drawback of the temporal solution is that the expressive power of the temporal
solution is limited. For example, temporal deontic logics that make a distinction between
antecedent and consequent cannot represent the set of premises of Forrester’s paradox in
Example 3, see also the discussion in (Prakken & Sergot, 1996; Yu, 1995).

10 Hence, they do not allow that a proposition occurs in one formula in the antecedent and
in another formula in the consequent, and thus cannot formalize the Forrester or Chisholm
set without introducing additional machinery.

11 See e.g. (Prakken & Sergot, 1996; Prakken & Sergot, 1997; van der Torre & Tan, 2000;
van der Torre, 2003) for a discussion on the relation between deontic contrary-to-duty rea-
soning and contextual reasoning.

12 Reasoning by cases is related to Savage’s (1988) sure-thing principle used in the founda-
tions of decision theory. In general it is considered to be a desirable property of conditionals,
although several people have raised criticism against it in decision theory (see e.g. (McClen-
nen, 1988)). Another criticism against reasoning by cases is that there is often an implicit
modal operator in the scope of the antecedent. E.g. from ‘α if you believe β’ and ‘α if you
believe ¬β’ we can derive by reasoning by cases that ‘α if you believe β or you believe ¬β’
but not ‘α if you believe β ∨ ¬β.’ Example 5 is based on the following classic illustration of
Jeffrey (1983), see also (Thomason & Horty, 1996).

Either there will be a nuclear war or there will not. If there will not be
a nuclear war, then it is better for us to disarm because armament is ex-
pensive and pointless. If there will be a nuclear war, then we will be dead
whether or not we arm, so we are better of saving money in the short term
by disarming. So, we should disarm.

The fallacy, of course, depends on the assumption that the action of choosing whether to
arm or disarm will have no effect on whether there is war or not. Moreover, the example
illustrates that we should make a distinction between controllable and uncontrollable propo-
sitions (Boutilier, 1994b), because we cannot control whether there is a nuclear war or not
(although we can influence it!). Using our terminology, Jeffrey’s complaint about the disar-
mament paradox is the derivability of ©(d|>) from ©(d|w) and ©(d|¬w). In two-phase
deontic logic we can derive ©2 (d|>) but not ©1 (d|>) from ©1 (d|w) and ©1 (d|¬w). This can
be explained as follows. To make decisions, probabilities have to be taken into account. In
that case, not only the most ideal state but all states are relevant, because the ideal state may
be highly unlikely. Consequently ©2 cannot be used, but ©1 should be used.

13 In other words, in this derivation the obligation ©(d | d ↔ w) is considered to be
counterintuitive, because it is not grounded in the premises. If d ↔ w and w (the antecedent
of the first premise) are true then d is trivially true, and if d ↔ w and ¬w (the antecedent
of the second premise) are true then d is trivially false. With other words, if d ↔ w then
the first premise cannot be violated and the second premise cannot be fulfilled. Hence, the
two premises do not ground the conclusion that for arbitrary d ↔ w we have that ¬d is a
violation.

The example is difficult to interpret, because it makes use of a bi-implication. An alter-
native set of premises, also based on bi-implications, with analogous counterintuitive conclu-
sions is {©(d|d ↔ w), ©(d|¬d ↔ w), ©(¬d|w)}.
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14 Dilemmas are ‘inconsistent’ in PLDL if the restricted conjunction rule is replaced by
the following unrestricted conjunction rule AND′, and the deontic axiom ‘ought implies can’
¬© (⊥|α) is accepted.

AND′ :
©(α1 | β)(F1,p1),©(α2 | β)(F2,p2)

©(α1 ∧ α2 | β)(F1×F2,max(p1,p2))

15 This example has been discussed in the context of the Reykjavik Scenario (Belzer, 1986;
McCarty, 1994; van der Torre, 1994; Makinson, 1999), with S1 = {©(¬r|>),©(¬g|>}),
S2 = {©(¬r ∧ ¬g | >)}, r being read as telling the secret to Reagan and g as telling
it to Gorbatchov. The example suggests that premises not only encode obligations but also
independence (or irrelevance) assumptions. In S1 the obligations for p and q are independent,
but in S2 they are not.

16 Note that the reverse replacements are possible for WC and for SA and ORA, as follows
from adaptations of the first, second and fourth replacement in Figure 16. However, it is
not possible to inverse the replacement of DD and ORA. A counterexample is the following
derivation.

©(p|q ∧ r) ©(q|r)

©(p ∧ q|r)
DD

©(p ∧ q|¬r)

©(p ∧ q|>)
ORA

17 For example, assume that the preference ordering is not transitive and consider three
worlds w1, w2 and w3 such that w1 ≤ w2, w2 ≤ w3 but not w1 ≤ w3. Is w1 a preferred
world or not? There is no world preferred to it, which seems to indicate that it is a preferred
world. However, it is not as preferred as world w3, which seems to indicate that it is not a
preferred world.

18 Moreover, preferences referring to the normal circumstances can be used to formalize
defeasible obligations. Ceteris paribus preferences, referring to similar circumstances, are
popular to formalize desires in (qualitative) decision theory (Doyle & Wellman, 1991; Doyle,
Shoham, & Wellman, 1991).

19 However, some minimizing logics have the unrestricted conjunction rule for the conse-
quent, as is explained later in this paper.

20 The first deontic logic based on a preference ordering was introduced by B. Hans-
son (Hansson, 1971). It is a dyadic logic and it belongs to the second category, because it is
based on minimizing. B. Hansson’s logic has been criticized because it lacks strengthening
of the antecedent. For example, Alchourrón (1993) argues that lack of strengthening of the
antecedent is acceptable for logics of defeasible reasoning or logics of defeasible obligations
(sometimes called prima facie obligations), but not for non-defeasible obligations. Moreover,
the semantic concept of minimization is unexplained: whereas in a defeasible logic ‘normally
p’ might refer to the most normal worlds only, ‘obligatory p’ does not seem to refer to the
most ideal worlds only. Recently, several authors (Jackson, 1985; Goble, 1990b; Hansson,
1990; Brown, Mantha, & Wakayama, 1993; Huang & Masuch, 1997) introduced a preference
ordering in a monadic deontic logic. These logics belong to the first category of preference-
based deontic logics, because the truth of ©α depends on the whole ordering. This approach
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can be traced through a long history of research in preference logics, see e.g. (von Wright,
1963; Rescher, 1967; Jennings, 1974). For our framework we use variants of the dyadic
deontic logic Prohairetic Deontic Logic proposed in (van der Torre & Tan, 1999a). An obli-
gation ©(α|β) is true if for all α ∧ β and ¬α ∧ β worlds, we have that the α ∧ β world is
preferred to the ¬α ∧ β world, or the two worlds are incomparable.

21 The logic PDL and Hansson’s minimizing logic can be defined in 2DL as follows (see
the definition of 2DL and �1 later in this paper, and (Boutilier, 1994b; van der Torre & Tan,
1999a)).

α1 �2′ α2 =def
↔

� (α2 ∧ ¬α1 →
↔

♦ (α1 ∧ ¬α2 → �¬(α2 ∧ ¬α1)))

©1 Pdl(α|β) =def (α ∧ β) �1 (¬α ∧ β) ∧ (α ∧ β) �2′ (¬α ∧ β)∧
↔

♦ (α ∧ β)

©2 hl(α|β) =def (α ∧ β) �2′ (¬α ∧ β)∧
↔

♦ (α ∧ β)

Boutilier (1994b) uses a more complex system based on Humberstone’s logic of inac-
cessible worlds. We do not do this in this paper, because it is quite complex and the crucial
issue is not the axiomatization of the underlying monadic modal logic, which is indeed trivial
now we use

↔

�α → �α as the axiomatization, but the definition of the dyadic operator in the
monadic logic.

22 We cannot derive ©1 (α |β) from ©1 (α |>) by RSA1, unless we have the consistency

expression
↔

♦ (α∧β) as another premise. Instead of explicitly writing down these consistency
expressions in every example, we can consider only models in which all propositionally
satisfiable formulas α are true in some world. This can be ‘axiomatized’ with Boutilier’s
axiom scheme LP, see (Boutilier, 1994a) for a discussion. The axiom scheme LP states
that every formula α without any occurrences of modal operators, which is propositionally
satisfiable, is true in some world. The logic 2DL* is 2DL extended with the following axiom
scheme LP.

LP:
↔

♦ α for all satisfiable propositional α

Let P be the set of propositional atoms of the propositional base language L. A 2DL*-model
is a 2DL-model M = 〈W,≤, V 〉 that satisfies the following condition:

{f | f maps P into{0, 1}} ⊆ {V (w) | w ∈ W}

We write |=∗ for logical entailment in 2DL*.

The logic 2DL* is illustrated by the following example. Consider the set of obligations
S = {©1 (p1 |>),©1 (p2 |>)}. Semantically, the axiom LP ensures that the p1 ∧ p2 worlds

exist in all 2DL* models. Hence, we have |=∗
↔

♦ (p1 ∧ p2) whereas we have 6|=
↔

♦ (p1 ∧ p2).

Proof-theoretically, in 2DL we can derive ©1 (p1 ∧ p2|>) from S and the premise
↔

♦ (p1 ∧ p2)

by RAND1. In 2DL* the consistency expression
↔

♦ (p1 ∧ p2) can be derived from LP, and
hence ©1 (p1 ∧ p2 |>) can be derived from S. This shows that we do not have to write the
consistency expressions explicitly in the logic 2DL*.

23 The conditions only check logical possibility. In an agent environment, the alternatives
are to consider stronger conditions which refer to the agent’s opportunities or to her abilities.
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The logical conditions are already stronger than necessary to invalidate the counterintuitive

theorems, because the consistency conditions
↔

♦ α and
↔

♦¬α would (in principle) also do the
trick.

24 Alternatively, we can take the dyadic ordering obligation as primitive, defined by the se-
mantic definition in Proposition 2, or we can take the preference ordering �1 as primitive. In
the latter case, we can define the monadic operator � in terms of �1 by �α =def ¬α �1 >.
Analogous definitions of unary modalities in terms of minimizing conditionals β ⇒ α by
�α =def ¬α ⇒ α are well-known, see e.g. (Stalnaker, 1981; Lewis, 1973), and an analogous
grounding of the logic CT4 (hence S4) in a minimizing conditional can be found in (Boutilier,
1992, p.89). Note that we cannot define ©1 (α |β) =def �((α ∧ β) → �(β → α)) in a
monomodal logic, because these obligations cannot be combined with facts.

25 Moreover, the logic 2DL also has the following theorems.

ORC1: (©1 (α1|β) ∧©1 (α2|β)) → ©1 (α1 ∨ α2|β)
DD−1: (©1 (α|β ∧ γ) ∧©1 (¬β|γ)) → ©1 ((α ∧ β) ∨ ¬β|γ)
NC1: ¬©1 (⊥|α)
NC

c
1: ¬©1

c(⊥|α)

Id1:
↔

♦ α → ©1 (α|α)
NId

c
1: ¬©1

c(α|α)

The logic 2DL does not have the following theorem.

DD1: (©1 (α|β) ∧©1 (β|γ)) → ©1 (α|γ)
DD>1: (©1 (α|β) ∧©1 (β|>)) → ©1 (α|>)
D∗1: ¬(©1 (α|β) ∧©1 (¬α|β))

26 The definition is adapted from a modal formula of Boutilier. The minor distinction is

that Boutilier defines
↔

♦ (β ∧ �(β → α))∨
↔

� ¬β. We have adapted the definition for our

two-phase approach. Boutilier’s definition is false if
↔

� ¬(β ∧ α) ∧ ¬
↔

� ¬β, and therefore
does not validate Proposition 6.

27 Moreover, the logic 2DL has the following theorems.

NC2: ¬©2 (⊥|α)
NC

c
2: ¬©2

c(⊥|α)

ID2:
↔

♦ α → ©2 (α|α)
NID

c
2: ¬©2

c(α|α)

The logic does not have the following theorem.

D∗2 : ¬(©2 (α|β) ∧©2 (¬α|β))

28 In Horty’s (1993) reconstruction of van Fraassen’s theory in Reiter’s (1980) default logic
the two phases are not explicit. In our terminology, the distinct operators ©1 and ©2 are
represented by the same modal operator ©, just like in 2LDL. As a consequence, it is very
difficult if not impossible to construct a semantics for these logics.
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