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THE PROOF THEORY OF COMPARATIVE LOGIC

FRANCESCO PAOLI

1. Introduction

Comparative logic, first introduced by Ettore Casari (1987; 1989; 1997) in
order to account for some features of natural language comparison within a
suitable logical framework, is a paraconsistent logic which can be of interest
to several categories of researchers:

- to the general logician, for its deep connections with linear and fuzzy
logics (Casari, 1989; 1997; Paoli, 1998; 2000);

- to the paraconsistent logician, since it has such well-motivated in-
consistent extensions as Meyer’s and Slaney’s Abelian logic (the logic
of Abelian lattice-ordered groups: Meyer and Slaney, 1989; Casari,
1989; Paoli, 200+a);

- to the algebraist, as its characteristic models (lattice-ordered pre-
groups) yield a plausible solution — at least for the Abelian case —
to a well-known problem posed by Birkhoff (1940), who suggested
to develop a common abstraction of Boolean algebras and lattice-
ordered groups (Casari, 1989; 1991; Minari, 200+; Paoli, 2000);

- to the linguist, for its applications to the semantics of adjectives and
comparison (Casari, 1987; 1997; Paoli, 1999);

- to the philosopher, for its applications to the sorites paradox (Paoli,
2004b).

Comparative logic has been intensively investigated over the last 15 years
(see also Minari, 1988; Paoli, 1996), especially from the semantical view-
point. On the proof-theoretical side, however, so far the only available
system was the Hilbert-style calculus originally devised by Casari (1989),
whose postulates resemble rather closely the defining conditions of lattice-
ordered pregroups and thus do not give much additional information on the
proof-theoretical structure of our logic.

The Gentzen-style calculus hereafter introduced clearly shows that com-
parative logic is a fully legitimate member of the family of substructural
logics (see e.g. Restall, 2000; Paoli, 2002). We shall highlight a number of
similarities and differences that it bears to other logics belonging to the same
class, such as linear or relevance logics, and we shall present Abelian logic
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as an axiomatic extension of our calculus. As regards the system itself, the
only result hitherto obtained is a negative one — failure of cut elimination
— but the way is now paved for further improvements and investigations on
the proof theory of Casari’s logic.

We shall proceed as follows. In §2 we shall summarize some of Casari’s
results on comparative logic, in order to keep the paper self-contained; in §3
we shall introduce and investigate our sequent calculus.

2. The Hilbert-style calculus for comparative logic

Let £ be a propositional language containing a denumerable stock VAR of
variables (p1, p2, ...) and the connectives -, —, A, V. To cut down the num-
ber of parentheses, we follow the convention according to which — binds
more strongly than either A or V, which in turn bind more strongly than
—. The notion of well-formed formula (wff) is defined as usual. We shall
use lowercase letters (p, g, ...) as metavariables for propositional variables,
and uppercase letters (A, B, ...) as metavariables for wffs whatsoever of £.
The calculus HC (Casari, 1989) has the following axiom schemata and rules:

Al. (A-B)—(B—C)— (A—=0))

A2. (A—>(B—>C))—>(B—>(A—>C))

A3. (A— A) — (B — B)

A4, -—A4A - A

AS. (A— -B) — (B — —A)

Ab6. “(A—A)—-(A—-A)

A7. (#(A—-A)—(A— A) - (A— A)
AB.(7) ANB — A AB.(ii) ANB — B
A9. (A= B)ANA—-C)— (A= BACQC)
A10.(0) A— AV B A10.(i1) B— AVB
All (A-C)N(B—C)— (AVB—(C)
R1. A A—-B=21B

R2. A B=ANANB

If we delete A3, A6 and A7 from the above list and add: (A12) A — Ato
it, we get a Hilbert-style calculus for the constant-free fragment of subexpo-
nential linear logic in the {ﬂ, AV, —>}—Vocabulary (cp. Avron, 1988).

By deleting A3, A6 and A7 from HC and adding A12 to it, as well as:

Al3. (A — (A — B)) — (A — B)
Al4. ANBVC)— (ANB)VC
AlS. (A—-A)—-A
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we get the constant-free fragment of the relevant logic R (see e.g. Dunn,
1986). Notice that A7 can now be recovered as a theorem. Remark also that
A6, although not valid in R, is a theorem of the “semi-relevant” logic RM.

By adding: (A16) A — (B — A) to HC, we get the constant-free frag-
ment of subexponential affine linear logic, hereafter referred to as HALL.
Given A16, the axioms A3, A6 and A7 and the rule R2 become superflu-
ous. Moreover, the axioms A9 and Al1 can also be taken in their exported
versions.

By adding: (A17) =(A — A) to HC, we get an equivalent reformulation
(hereafter referred to as HA) of Meyer’s and Slaney’s (1989) Abelian logic.

Let us now have a look at the algebraic semantics for HC and some of
its extensions. A lattice-ordered pregroup (or, for short, an [-pregroup) is a
structure P =< P, +, —, 0,1, >s.t.:

P1. < P,+ > is an Abelian semigroup;
P2. < P,1, U > is a lattice;

P3. ——x=ux;

P4. 04+0=0;

P5. z+ —x=0;

P6. < yiff 0< —x 4+ y.

where “<” denotes the induced lattice ordering of the reduct < P,M, 1L >.
L-pregroups owe their name to the fact that they possess nearly all the prop-
erties of Abelian /-groups, except that the two roles of “collecting the oppo-
sites” (x + —x = 0) and of being a neutral element for addition (z + 0 = z)
are played by two not necessarily identical elements, respectively O and its
opposite —0. It is easily seen that Abelian /-groups are exactly those [-
pregroups which satisfy: (P7) 0 = —0.

Classical residuated lattices (Kowalski and Ono, 2001; also called [-zeroids
by Casari, 1997, and [-Lg-algebras by Grishin, 1982) are those /-pregroups
which satistfy: (P8) x + 0 = 0, or, equivalently, the bounded /-pregroups
with O as a top element and —0 as a bottom element. It is well-known that
Boolean algebras are the idempotent classical residuated lattices; remark,
however, that in the literature on bounded algebras the element “0” is usu-
ally referred to by “1”, and the element “—0” by “0”.

LEMMA 1. In every l-pregroup: () z < z+0; i)z < y, 2’ <y =
x4+ <y+y.

Proof. See Casari (1989). [
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A model is an ordered pair M =< P,p >s.t. P =< P, +,—,0,MN,U >1is
an [-pregroup and p is a homomorphism from the free algebra of formulae of
£ to P which extends the arbitrary mapping p* :VAR— P in such a way that:

p(p) = p*(p);
p(—A) = —p(A); p(A — B) = —p(A) + p(B);
p(ANB) = p(A) N p(B); p(AV B) = p(A) U p(B).

A wiff A is said to be frue in M iff 0 < p(A); it is called C-valid (in
symbols, |=¢ A)iff it is true in every model. By definition, an A-valid for-
mula (in symbols, |=4 A) is a formula which is true in any model whose first
projection is an Abelian /-group, and an AL L-valid formula (in symbols,
|=arr A) is a formula which is true in any model whose first projection is a
classical residuated lattice.

Casari (1989) proved a strong completeness result for HC, HA and HALL
w.r.t. the above semantics. For our present purposes, however, the following
theorem will suffice:

THEOREM 1. (1) l_HC A iff |=C A; (ii) l_HA A iff ’=A A; (iii) '_HALL A iff
|=arL A

Proof. See Casari (1989). U

3. A sequent calculus for comparative logic

Let I', A, ... be finite (possibly empty) multisets of wffs of £. The calculus

GC is axiomatized by the following postulates:

I'=AA Al =X
= AX

Ax) A=A (Cut)

I'= A AAT = A A A
W) AT=Aa BO) —AT=aa

I'=A4A ATl'= A
Y A=A R 7= Aa

I'=sAA I[I=X% AT'= AB
(L—%*) (R—)
A—- B I II*= A XY I'=> A A— B
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LA ATl'= A B, I'= A
ANB,I'= A AANB,I'= A
I'=s=AA I's AB
RA) I'=AANB
Al'=A BI=A
v AVB,T = A
I'=AA I'= AB
(RV) - —_
I'= A AV B I'=AAVB

InL—* () B € I'UII; (i)if B € I, then I'* = I", IT* = Il — {B};
(iii) if B ¢ II, then I'* = I' — { B}, II* = II. (Remember that all of these
operations are multiset-theoretical, not set-theoretical.)

The most awkward rule in GC is undoubtedly L—*. You can think of it as
a generalization of the usual L— rule:

I'=4AA BIl=X%

=) ASBTL =AY

to the effect that B is allowed to occur in the antecedent of either premiss
of the inference.
Now consider the following rules:

I'=A lI=X% (BCH) rinin=Ax>x II=X
= AX rii=Axy

(BWY)

LEMMA 2. The rules BW* and BC* are derivable in GC—{Cut}.

Proof. Easy induction on the length of the proof of I = X in GC— {Cut}.
O

The fact that our structural rules BW and BC have a “balanced” character
yields a nice structural property for the {—|, —>}—fragment of GC. In order to
see it, however, we need an auxiliary notion. The p-count ¢(p; A) of a for-
mula A (cp. van Benthem, 1991) is a function whose arguments are ordered
pairs made up by a variable and a wff of £, and whose values are integers. It
is defined as follows:
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c(p;p) = 1; c(p; q) = 0, for p # g;
c(p; ~A) = —c(p; A); c(p; A — B) = c(p; B) —c(p; A).

The p-count ¢(p; I") of a multiset of formulae I" is obtained by defining
c(p; A1, ...y Ap) as D, ¢(p; A;), and by setting ¢(p, I') = 0 if I is empty.

LEMMA 3. If I' = A is provable in the { -, —>}—fragment of GC, then
for every variable p in VAR, ¢(p, I') = c(p, A).

Proof. Induction on the proof of I" = A in the {—, — }-fragment of GC.
Just a few cases of the induction step:
(mdBW)dnAJW:=dmA)+dﬁF)ZmﬂdnA)+dnA)=
C
(Ad BO). c(p; A, I') = c(p; A)+c(p; I') +c(p; A)—c(p; A) = AH) c(p; A)+
(p; 4) =c(p; A, A).
(AdL—>*) c(p; A — B, I'* IT*)=c(p; A — B)+c(p; I'*)+c(p; H*) =
( ) ( A)+C(p7 F*)+C(p H*) (IH) C(p7 )+C(p7 Z)_C(pa )

('b

Now, let us examine two extensions of GC: GALL, which is obtained by
adding to GC the two rules of weakening:

I'=A I'= A

W) AT = A (RW) I'=AA

and GA, which is obtained by adding to GC the empty sequent:
A) =

A more compact formulation of GA can be found in Paoli (200+a).
It can be easily seen that GALL coincides with the sequent calculus for
subexponential affine linear logic. In fact:

LEMMA 4. In GALL: (i) the rule L—* can be replaced by the usual rule
L— of left introduction for implication; (ii) the rules BW and BC are deriv-
able.

Proof. (i) In the presence of the weakening rules,

BIl=AA II=Y%
A-BLLII=AY

(L—%*) becomes
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=X
A—- B TIIl =AY

(several LW, RW)

and thus L—* collapses onto L—.
(ii) BW is trivially derivable in GALL. As far as BC is concerned,

AA T = A A A A=A
) ) ) M B s - lL R
AT = AA (BC) becomes AT =AA (several LW, RW)

O

LEMMA 5. In GA: (i) the rule BC is derivable; (ii) the postulates A, L—*
can be replaced by the rule:
B, I'=AA
A—- BT =A

(L—*%)

Proof. (i) In fact, the inference:

A AT = A A A
AT = A A

(BO) becomes:

A=A AA T = A A A
L(R_)) 4,1 = 4,4, :>(L—>*)
=A— A A— A AT = AA

AT = AA

(Cut)

(ii) The rule L—** is derivable in GA:

B, I'=AA
A—-BIT'=A

= (L)

Conversely, it is easy to see that Lemma 2 holds for GA too. Hence, A and
L—* are derivable given L—**:
I'=sAA =X
Iili=A>XA
A— B TI'* II*= A XY

(BW*)

(L - *)
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A=A A=A
i (R _>) ; (L N >x<>x<)
=
In many relevance logics, the addition of the Mingle rules (Dunn, 1986):
AT = A I'= AA
LM _— RM _—
M) AJA T = A RM) I'=AAA
sometimes also called anticontraction rules (Avron, 1991) or duplication
rules (Dosen, 1988) yields weaker systems than those obtained by adding
unrestricted weakening rules. This is not the case for GC. In fact:
LEMMA 6. GC + {LM, RM} = GALL.
Proof. The left-to-right inclusion is trivial. From right to left:
A=A
A=A Adsa M )
=i R—) (L —%)
=A—-A A—-AAT = A (Cut)
AT = A 4
and similarly for RW. [J
The next thing to do is proving the equivalence of our sequent calculi with
the Hilbert-style formalisms of §2.
THEOREM 2. (i) If Fyc A, then Fgc= A; (ii) if Fya A, then Fga= A;
(iii) if FyaLL A, then Fga = A.
Proof. (i) Induction on the length of the proof of A in HC. Some examples:
A=A B=20B
= = (L - *>
A~ A,B=B (several R —)
= (A— A) - (B— B)
i
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A=A
A A= AA
A=A— A A
“(A—A),A= A
=-(A—-A) - (A= A

(BW)

(R —)

(L-)

(several R —)

T A A L 4la

A—AA—-A A=A

A— A A= A —~(A— A A=A

“(A—-A) - (A—A),A A=A A
“(A—-A)—-(A—-A),A= A

SA A (A A) = (A=A

(L —%)
(R=)

(L —%)

(BC)
(several R —)

(i) As to A17,

A=A =
A— A= (
= (A — A)

L=
R=)

(iii) Well-known, in the light of Lemma 4. []

THEOREM 3. (i) If Fgc= A, then Fyc A; (ii) if Fga= A, then Fya A;
(i) if FgaLL = A, then FHALL A.

Proof. By Theorem 1, it is enough to prove: (i’) if Fgc= A, then ¢ A;
(11’) if Fga= A, then ':A A, (111/) if FgaLL= A, then ):ALL A.

To this purpose, we introduce the concept of extended model. An extended
model is an ordered pair M =< P, p > which is exactly like a model, ex-
cept for the fact that the definition of p is extended to the case of sequents as
follows:

(p(A)l, oAy = By,...,Bp) = —p(A1)+...+—p(An) +p(B1)+...+
p(Bm);

The sequent I = A is said to be true in M iff 0 < p(I" = A); itis called
C-valid (in symbols, =¢ I' = A)iff it is true in every extended model. The
concepts of A-validity and ALL-validity are adapted accordingly.

Now we can prove that: (i"”) if Fgc I" = A, then ¢ I' = A; (it') if
Fega I' = A, then ):A I'= A (111/) if FgaLL I = A4, then ):ALL I'= A
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Once this is done, (i), (ii’) and (iii’) trivially follow for I' = (), A = {A}.
The proof of (iii”) is well-known. (i”) and (ii”’) are proved by induction on
the length of the proof of I" = A in GL (resp. GA). Some cases:

(Ad A). By definition, p(=) = —0 = 0 in any Abelian [-group.

(Ad BW). By induction hypothesis 0 < p(I" = A), whence by P5, P2
and Lemma 1.(G), 0 < p(I" = A) 4+ 0 = p(I" = A) + —p(A) + p(A) =
p(A, I = A A).

(AdBQ). Let p(I" = A) = z, p(A) = y. By induction hypothesis, P4 and
P50<2+(~y+y)+(-y+y)=2+0+0=z+0=0+-y+y=
p(A, I = A A).

(AdL — *). Let p(I' = A) = z,p(Il = X) =y,p(A) =2z,p(B) =w.
We must distinguish two cases. If the application of L — * under consider-
ation is:

I'=sAA BIl=XY
A—-B Il =AY
then by induction hypothesis 0 < = + z, i.e. (P3, P6) —z < z, and
0 < —w+y,ie (P6)w <y. By Lemma 1.(i1), —2 + w < x + y, whence
byP6O0<z+y+ —(—2z+4+w)=p(A— B, [,1l = AY).
On the other hand, if the application of L. — * has the form:

B, I'=AA II=X
A—- B LIl = A XY

then by induction hypothesis 0 < —w + z + 2, 1.e. (P6) w < = + 2, and
0 < y. By Lemma 1.(ii) and P5, we get x + 0 < x + y from the latter
disequality and w + —z < x 4+ z + —z = x + 0 from the former. By transi-
tivity, then, w + —z < x +y,ie. PO)0<z+y+ —(—2+w) = p(4 —
B, INll = A, X). O

THEOREM 4. GC is not cut-free.

Proof. First of all, recall the following fact. Were the Cut rule eliminable
in GC, the system GC itself would be a conservative extension of its own
{—, —}-fragment, for suppose otherwise. Then, since the rules L A, L V
introduce into any proof where they are used at least a formula which doesn’t
belong to the {—, — }-fragment, GC would not have the subformula property
and thus would not be cut-free.

Now, consider the proof in Table 1.

Is the sequent ¢ = p V —p, ¢ provable without using Cut? To answer this
question, we introduce an auxiliary concept. If D is a proof-tree in GC and
¢ =< S1,...,S, > is any of its branches, then for 1 < ¢ < j < n the
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p=p p=p
P,P=DDp (]?EV)_}) P,P=Dpp (?sz))

P=PP =P iy D= BDD g
PZPVIRP =P g p=pVp,p,p (RV)
p=pV-ppV(p—p) (BW) p=pV-p,pV(p—p)p 1= e

a,p=pV-p,pV(p—p)q ¢.p—p=pV-p,pV(P—Dp)q L)

pV(P—p)=pV-ppV(pP—n),¢ q=>q
4,¢,pV (p—p)—=pV(pP—p) =pVDqq
q7q:>pv_'p7qaq
Ak St S <k Sk 0 Yo
q=pV-p,q (BC)

pV(p—p) =pV(p—Dp)
=pV(p—p —pV(p—Dp)

(R—)

(L —%)
(Cut)

Table 1.
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sequence ¢’ =< Sj, Siy1,...,S5j-1,5; > is called a maximal contraction
segment iff:

(i) for ¢ < p < j, the sequent S, is obtained from .S}, by an application
of BC;

(i) S; (and, if j # n,S;y1) is obtained by application of a rule which is
not BC (possibly the 0-premiss rule Ax).

Inspecting the previous definition, it is easily seen that for any sequent &
in the proof-tree D there is exactly one maximal contraction segment ending
with § in D. Now we shall derive a contradiction from the assumption that
there exists a proof D of ¢ = p V —p, q in GC — {Cut}, arguing by induction
on the number m of applications of BC in D.

(m = 0). The sequent ¢ = p V —p,q is not an axiom. Hence it was
obtained either by BW from = p V —p of by R V from ¢ = p, qg (or, for
that matter, ¢ = —p, q). In the former case, = p V —p could have been
obtained only by R V from = p or = —p, which is impossible. In the latter
case, ¢ = p, q could have been obtained only by BW from =- p, which is
impossible as well.

(m > 0). If the sequent ¢ = p V —p, ¢ was not obtained by BC, we argue
as in the basis case or as in Case 2 below. Otherwise, let ¢ be the maximal
contraction segment ending with ¢ = p V —p, ¢ in D (by (k)q we denote the
multiset q, . . ., g (k times)):

(k)g = pV -, (k)q

49=pV D,qq
qg=pVpyq

¢ must necessarily look like this: in fact, any application of BC in ¢ can
only have q as a principal formula, since p V =p only occurs on the right side
of the arrow.

As ¢ is maximal, (k)g = p V —p, (k)q could have been obtained either
by BW from (k — 1)g = p V —p, (k — 1)gq (Case 1) or by R V from either
(k)q = p, (k)qor (k)g = —p, (k)g (Case 2). In the former case, just cancel
from D the two redundant sequents and apply the induction hypothesis to
the proof-tree D’ thus obtained, which contains m — 1 applications of BC.
In the latter case, there are two further subcases. If GC is not a conservative
extension of its own {—, —}-fragment, we are done by our initial remark.
If it is, then the sequent (k)g = p, (k)g, which contains no occurrences
of “A” or “V”, must be provable in the {—, — }-fragment. But such a case
is ruled out by Lemma 3, since c(p; (k)q) = 0 and c(p;p, (k)q) = 1. If
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(k)g = p V —p, (k)g was obtained from (k)q = —p, (k)q, we argue simi-
larly. [

As to the other two systems, it is well-known that GALL is cut-free (Gr-
ishin, 1982), whereas (an equivalent reformulation of) GA is provably not
so (Paoli, 200+a): the sequents corresponding to the excluded third and to
the law of distribution are not provable without Cut. It would be interesting
to find cut-free variants of GC and GA, or else to identify “deep” proof-
theoretical reasons for the failure of cut-elimination. We leave this open
problem up to the interested reader.”
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