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BELIEVING IN STRONGLY COMPACT CARDINALS

WIM MIELANTS

Abstract
The classical argument in favor of the existence of strongly compact
cardinals is the principle of uniformity. Here we give an other argu-
ment based on a principle of maximal diversity of reflections. This
principle is motivated by Maddy’s set theoretical naturalism and is
inspired by some maximization principles of Leibniz.

Introduction

We have a very uneasy intuition about large large cardinals, or cardinals
which are not consistent with the axiom of constructibility (V = L). We
have no intuitively convincing evidence to accept or reject their consistency
with ZFC-set theory and certainly not the fact that they should be objects
which exists independently of the human mind. The main arguments in favor
of their existence are the principles of uniformity and reflection, which are
in fact metaphysical arguments.

According to Maddy [22] in her set theoretic naturalism, there exist no
extra-mathematical tribunal to decide if large cardinal axioms have to be in-
troduced in set theory. Ontological considerations are external to mathemat-
ics and have no place in naturalistic methodology. On a pragmatic way we
have to look to the advantages and disadvantages of these axioms as means
towards particular mathematical goals.
Axioms about large cardinals have applications already in the theory of pro-
jective sets of real numbers, but the most impressive result is certainly this
of Harvey Friedman in his paper about the necessary use of large cardinals
for theorems about finite functions [7]. It is expected that in Boolean rela-
tion theory more combinatorial statements will be found which are equiva-
lent with the consistency (or 1-consistency) of any large cardinal axiom yet
considered. Friedman is very optimistic and believes that once mathemat-
ics is pushed into the new level of structural ambition that is represented in
Boolean relation theory, large cardinals will have so many applications that
the whole mathematical community will completely embrace this new level
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of structural ambition [8]. Of course Friedman has only proved the equiva-
lence between the 1-consistency of certain large cardinals with theorems on
finite functions of which we only believe that they are true. If by axioms
about the consistency, the 1-consistency or the existence of large cardinals
we could shorten the proofs of already proved combinatorial statements, this
will still not mean so much since by Gödel’s paper “On the length of proofs”
[11] we know that any new independent axiom can shorten to an arbitrary
extent the proofs of suitable assertions which are provable without that ax-
iom. This result of course weakens a little bit our confidence in the value of
pragmatic criteria for truth. But it remains true that such results would make
the mathematical community more interested in large cardinals.

So, according to Maddy, if mathematics is allowed to expand freely, and
set theory is to play the hoped-for foundational role, then set theory should
certainly not impose any limitations on its own, the set theory in which math-
ematics had to be modelled should be as generous as possible, and the set
theoretic axioms from which mathematical theorems are to be proved should
be as powerful and fruitful as possible. As basic intuitive principle she pro-
pose MAXIMIZE according to which that theory is better that provides a
greater variety of isomorphism types of interesting mathematical structures.
Perhaps DIVERSIFY would be a better name for this principle (this was al-
ready proposed by E. Mendelson in a review of some paper of Maddy (see
[23])).

Using a combination of a result of Solovay on strongly compact cardinals
and instances of the Generalized Continuum Hypothesis (G.C.H.) [27], and a
result of Jónsson on the existence of homogeneous universal relational struc-
tures, [10] we prove that the axiom about the existence of strongly compact
cardinals implies the existence of a proper class of non-isomorphic homoge-
neous universal models for any first order theory which has a homogeneous
universal model. So in the light of Maddy’s DIVERSITY-principle this ax-
iom about the existence of strongly compact cardinals should be introduced
in set theory.

As Maddy has remarked extra-mathematical philosophy is still capable of
playing an important inspiration role. This was certainly the case for this
paper. Once Gödel has characterized his philosophical outlook in this way:
“My theory is a monadology with a central monad. It is like the monadol-
ogy of Leibniz in its general structure” [30]. By reading these words of
Gödel I wondered if the maximization principles of Leibniz’s monadology
could still be a source of inspiration for set theory. If we take a certain Von
Neumann-Bernays-Gödel set theory with the axiom of global choice (hence-
forth a NBG-set theory) as background set theory then all proper classes are
equinumerous. If then we take as possible worlds all the models of a cer-
tain theory on a first order relational language, with this NBG-set theory as
background set theory, what will then be the “best of all possible worlds” in
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the sense of Leibniz? It has to maximize together harmony and richesness of
substructures. We argue that it has to be, if it exist, the unique absolutely ho-
mogeneous universal model of that theory on that language and that NBG-set
theory in the sense of Philip Ehrlich [4].
The existence depends mainly on the fact that the Joint Embedding axiom
and the (weak) amalgamation axiom hold for that theory. These are in fact
axioms on maximal composibility of substructures which can be found back
in Leibniz’s philosophy. The existence of our model theoretic interpreta-
tion of the notion of a unique central monad follows from the fact that the
strong amalgamation axiom holds for the theory. This is in fact an axiom
about maximization of independence. I have found no metaphysical equiv-
alent of this in the monadology. So I think that this new principle should in
fact be added to be other principles of Leibniz’s philosophy since it decides
an important hypothesis, namely the existence of a unique central monad.
The maximal diversity of non-isomorphic monads in the best of all possible
worlds is obtained if we have a proper class of non-isomorphic homoge-
neous universal substructures which reflect the whole universe. This will
be the case if GCH holds, but if we don’t assume GCH (which is rather a
restrictive principle) this will still be the case if we have a proper class of
instances of GCH. By Solovay’s theorem this will be the case if there exist a
strongly compact cardinal in the NBG-background set theory.

Leibniz’s monadology clearly suggest that the set theory hierarchy had to
be as rich as logic allows, so that absolutely homogeneous universal models
have as many interesting reflections as possible. If you believe the mon-
odology this is a sufficient condition to believe also in the strongly compact
cardinals. But not a necessary one. Indeed Maddy has adopted a MAXI-
MIZE principle independently of any metaphysics, and by this principle set
theory must be as rich as possible to provide maximal diversity of interest-
ing mathematical structures. Homogeneous universal relational models are
certainly very interesting. So you may have deep misgivings about Leibniz’s
monadology, but nevertheless find Maddy’s arguments persuasive. On the
other hand you can be interested to see that the general metaphysical princi-
ples of the monadology can be used to motivate set-theoretic axioms, while
being strongly opposed to Maddy’s nauralism.

1. Strongly compact cardinals

Tarski and Kreisel consider the semantics of infinitary predicate languages
Lλµ (λ and µ are infinite cardinals), and later raised the issue of their possible
compactness ([14]). For this proceed as for the usual first order logic, first
specify the non-logical symbols: the finitary relation, function and constant
symbols. Together with an allowed supply of max(λ, µ) many variables lead
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to terms and atomic formula. Then the usual formula generating rules are
expanded to allow conjunctions ∧x<α and disjunctions ∨x<α of α formulas
for any α < λ, and universal quantifications ∀x<β and existential quantifica-
tions ∃x<β of β variables for any β < µ. Finally a formula is an expression
so generated with less than µ free variables. Structures for interpreting the
language are as for first order logic, and the satisfaction relation is extended
to incorporate the new infinitary connectives and quantifiers in the expected
way. The languages Lω,ω are the classical first order languages. A collec-
tion of Lλ,µ-sentences is satisfiable iff it has a model under the expected
interpretation of infinitary conjunction, disjunction and quantification. It is
ν-satisfiable iff every subcollection of cardinality less than ν is satisfiable. A
cardinal θ > ω is called strongly compact if any collection of Lθ,θ-sentences
which is θ-satisfiable, is satisfiable.
So, if A is a set of Lθ,θ-sentences so that each subset B ⊂ A with |B| < θ
has a model, then A has a model if θ is strongly compact. For θ = ω this is
the classical compactness theorem of first order logic.
Chang [2] has given a natural generalisation of the notion of a Gödel-construc-
tible set for any cardinal θ > ω. If Dθ(A) is the set of θ-definable (or
θ-constructible) subsets of a set A, then for each ordinal α we define the
term Cθ

α as follows:

Cθ
0 = ∅, Cθ

α+1 = DθCθ
α and Cθ

η =
⋃

α<η

Cθ
α

if η is a limit ordinal. Let Cθ denote the class of θ-constructible sets or
Cθ(x)←→ ∃α(x ∈ Cθ

α). Cω is generally denoted by L (the class of Gödel-
constructive sets).
The axiom of constructibility is V = L (where V is the class of all sets).
The axiom of θ-constructibility is then the formula ∀xCθ(x) or V = Cθ. It
has been proved by Scott that the existence of a measurable cardinal implies
the negation of the axiom of constructibility [26].
If x is a set we denote the set of all sets which are Gödel-constructible start-
ing from that set by L(x) or Cω(x). So L = L(∅). We denote the set
of all sets which are θ-constructible starting from a set x by Cθ(x). So
Cθ = Cθ(∅). Vopeňka and Hrabácek have proved that the existence of a
strongly compact cardinal implies ∼ ∃x : V = L(x), or the universe of all
sets is not ω-constructible starting from any set ([29]).
Kunen has generalized this result and has proven that if θ is a strongly com-
pact cardinal then ∼ ∃x : V = Cθ+

(x), where θ+ denotes the successor
cardinal of θ ([15]). According to Wang [30], Gödel has said once at the
end of his life: “Generally I believe that in the last analysis, every axiom of
infinity should be derived from the (extremely plausible) principle that V is
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indefinable, when definability is to be taken in a more and more generalized
and idealized sense”.
The result of Kunen proofs that the existence of a strong compact cardinal
implies that the universe of all sets V is already indefinable in a very strong
sense.
The most important theorem about strongly compact cardinals which will
need here is a very nice and deep theorem of Solovay [27]. It is in fact the
only theorem about large cardinals which has implications on instances of
GCH which we have at the moment.
Solovay’s theorem says that if θ is a strongly compact cardinal and if λ is a
singular strong limit cardinal greater than θ, then 2λ = λ+. As a corollary
we have that {λ‖2λ = λ+} is a proper class. So the existence of a strongly
compact cardinal implies the existence of a proper class of instances of GCH
and of successor cardinals λ+ so that µ < λ+ ⇒ 2µ ≤ λ+. If for some
α < λ+ we have 2α = λ+ then for each β with α ≤ β < λ+ we have
2β = λ+. This fact will be used later on.
If we denote by MC and SCC respectively the axioms that there exist a mea-
surable cardinal or a strongly compact cardinal then Maddy [22] has given
some arguments why ZFC+MC is better than ZFC+(V=L) from the point of
view of settheoretic naturalism. The first theory maximizes the second one,
it is richer and has some more benefits as the second theory without loosing
the benefits of that second theory. The same can be done by comparing the
theory ZFC + SCC with ZFC + (∃x(V = L(x)).
We can also consider the weaker theories: ZFC + Consis(ZFC + MC)
and ZFC + Consis(ZFC + SCC) where the axioms of the consistency
of measurable cardinals, respectively strongly cardinals in ZFC are added.
This means in fact that measurable cardinals or that strongly compact cardi-
nals are possible in ZFC-set theory. But these theories will no longer imply
∼ (V = L), respectively ∼ ∃x(V = L(x)).

The main (philosophical) argument in favor of the existence of strongly
compact cardinals is the principle of uniformity. This principle says that the
universe of sets does not change in character substantially as one goes from
smaller to larger cardinals, that some or an analogous state of affairs reappear
again and again (perhaps in a more complicated version) in an eternal return
of successive domains as envisioned already by Zermelo [31]. If this prin-
ciple is true then G.C.H. (the Generalized Continuum Hypothesis) becomes
very implausible since for the finite cardinals 2n = n+1 only for n = 0 and
n = 1. So ℵ0 would then be an accident as the only unique cardinal where
GCH didn’t hold below it but holds for all higher cardinals.
The continuum hypothesis (CH) is still possible since also in the finite case
there are some exceptions (0 and 1). The existence of strongly compact
cardinals becomes however very plausible by this principle of uniformity.
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Indeed, together with the compactness theorem for first order predicate logic
there are many other theorems which are equivalent with it and which can
be stated so that they express a property of ℵ0. Examples are the Boolean
Prime Ideal Theorem, the Stone representation for Boolean algebra’s and the
Tychonov product theorem for compact Hausdorff spaces. If in a suitable
formulation they are again true for some class of larger cardinals, then it
is the same class, namely the strongly compact cardinals. So if strongly
compact cardinals exist then ℵ0 will no longer be an exceptional accident
for them.

2. A model theoretic interpretation of some maximization principles

The model theoretic interpretations which we present here are inspired by
Leibniz’s philosophy. However it is certainly not our aim to give interpre-
tations which are close to the original ideas of Leibniz. This is certainly
not the case here. For instance we understand here “possible worlds” in the
way it is employed by most logicians today as the models of a certain theory
on a certain language. For Leibniz a possible world is a maximal class of
concepts which can be realised together.
Our notion of a “possible metaworld” as the class of all models of a theory
on a given language and with a given background set theory for the models
is a little bit closer to it. We call this a metaworld because the background
set theory for the models is described by the metalanguage which defines the
whole semantics we use.
This background set theory for the models must have the property that all
proper classes are equinumerous, so that we can speak of the “cardinal”:
ON of all proper classes. So for each background set theory we will take
a Von Neumann-Bernays-Gödel set theory with the axiom of global choice
(henceforth NBG-set theory). This is always a conservative extension of
some ZFC-set theory.
Let T be a theory on some first order relational language L and let S be some
NBG-set theory.
We denote the class of all models of T on L with S as background NBG-set
theory by Mod(L, T, S). If M ∈ Mod(L, T, S), then we call the cardinality
of the universe of that model M the power of M and denote it by |M |. If α
is a cardinal of S with α ≤ |M |, then we denote by Mod(α, L, S),Mod(<
α, L, TS) and Mod(≤ α, L, T, S) the classes of all models of Mod(L, T, S)
of power respectively α, < α and ≤ α. We denote the class of all isomor-
phism classes of models of Mod(L, T, S) which are substructures of M (or
which can be embedded in M ) by AgeM and we call this the age of M . If
α ≤ |M | then we denote by Age(α, M),Age(< α, M) and Age(≤ α, M)
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respectively the class of all isomorphism classes of models of AgeM whose
members have power respectively α, < α or α.
We call a model M ∈Mod(L, T, S) with |M | ≥ α α-universal if and only
if each M ′ ∈Mod (≤ α, L, T, S) can be embedded in M . So in this case
Age(≤ α, M) is the class of all isomorphism classes of Mod(≤ α, L, T, S).
If α = |M | we call M a universal model of T .
If α = |M | = ON we call M an absolutely universal model of T (on L and
S).
If M is an absolutely universal model of T on L and S then each model
of T on L and S is a substructure of M . This is our model theoretic inter-
pretation of the notion of a possible world which maximizes richesness in
substructures.
Let M ′ and M ′′ be two members of a same element of Age (< α, M). Then
there exist an isomorphism f : M ′ →M ′′.
If M ∈Mod(L, T, S) and α ≤ |M | < ON then we denote the group of all
automorphisms (or symmetries) of M by AutM .
We call M α-homogeneous if in this case there exist always a g ∈AutM so
that g|M ′ ≡ f . Of course M ′ and g(M ′) are always isomorphic but here we
ask that if M ′ and M ′′ are isomorphic that there exist always a symmetry g
of the whole structure so that g(M ′) = M ′′.
So this can be seen as a maximization of symmetry. If α = |M | < ON we
call M a homogeneous model of T on L and S.
If |M | = ON or if the universe of the model M is a proper class we cannot
speak of the group of all symmetries of M , but the notion of a symmetry of
M makes sense. We call two submodels M ′ and M ′′ of M equivalent if and
only if there exist a symmetry g of M so that g(M ′) = M ′′.
We call M an absolutely homogeneous model of T on L and S if any two
isomorphic submodels of M (whose universes are sets) are equivalent.
Any two homogeneous universal models of T on L and S of the same power
α ∈ S with ℵ0 ≤ α ≤ ON are isomorphic. Indeed a homogeneous universal
model M is characterized by the following property (A): If M ′ and M ′′ are
submodels of M with M ′ a submodel of M ′′ then each embedding f : M ′ →
M can be extended to an embedding g : M ′′ →M (see [1]). If property (A)
holds then homogeneity of M can be proved by using a classical back-and-
forth argument and for the universality of M we need only a forth argument.
If M1 and M2 are two homogeneous universal models of T on L and S
of the same power, then again by considering a back-and-forth argument
(and transfinite induction) we can prove that M1 and M2 are isomorphic (by
universality they have the same age).
So if α is a cardinal of S there exist up to an isomorphism at most one
homogeneous universal model of T on L and S of power α. If α = ON we
call this the absolutely homogeneous universal model of T on L and S.
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If we interpret Mod(L, T, S) as the class of possible worlds, then if it exists,
we interpret the absolutely homogeneous universal model of T on L and S
as the “best of all possible worlds” in the sense of Leibniz.
According to Leibniz it is that unique possible world which maximizes to-
gether harmony and richesness of substructures.
Again, probably Leibniz had something else in mind with the notion of har-
mony. We indeed identify here harmony with symmetry. In fact Leibniz had
even doubts about the notion of an actual infinity and here we use proper
classes. But Leibniz’s philosophy is only a source of inspiration for the
maximization properties we use here.

The problem what the necessary and sufficient conditions are for a first
order theory T on a relational language L to have homogeneous universal
models, and to determine those cardinals α for which there exist homoge-
neous universal models of power α of T was solved by Jónsson and Vaught
[10],[28].

Let L be a relational first order language where all the relation symbols
have finite rank and where |L| < ON . Let T be a ∀∃-first order theory (or a
Π2-theory) on L having an infinite model. Let S be an NBG-background set
theory for the models of T , and α a cardinal of S (α = ON is also admitted).
Let D =Mod(< α, L, T, S) and let D∗ be the class of all isomorphism
classes of D.
Let T have the following 5 properties.

(1) The Joint Embedding property: If M1 and M2 ∈ D then there exist
an M3 ∈ D and embeddings f1 : M1 →M3 and f2 : M2 →M3.

(2) The weak amalgamation property: If M1, M2, M3 ∈ D and f1 :
M1 → M2 and f2 : M1 → M3 are embeddings then there exist and
M4 ∈ D and embeddings g1 : M2 →M4 and g2 : M3 →M4 so that
g1f1 ≡ g2f2.

(3) Closeness with respect to directed subfamilies: If λ is an ordinal
and Mβ ∈ D for every β < λ and if Mβ is a substructure of Mγ

whenever β < γ < λ then
⋃

β<λ Mβ ∈ D.
(4) |D∗| < α.
(5) For any M ∈ D and X ⊆M , if β is a cardinal with
|X| ≤ β ≤ α there exist a M ′ ∈ D, |M ′| = β such that X ⊆M ′ ⊂
M .

A theory T having this 5 properties is called a Jónsson theory.
Then T has a (up to an isomorphism) a unique homogeneous universal model
M of power α with Age (< α, M) = D∗ if α satisfies the following 3 prop-
erties.

a. |L ∪ ω| < α
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b. α is regular (or cf (α) = α)

c. β < α→ 2β ≤ α.

This theorem has been proved by Jónsson, and Vaught [10], [28], for α <
ON and by Ehrlich [4] for α = ON .
Of course the conditions a, b, c are trivial for α = ON or α an arbitrary
inaccessible cardinal, but there are other interesting classes of cardinals sat-
isfying these 3 properties (see chapter 4).
For the countable case (α = ℵ0), which is excluded by property a, the
necessary and sufficient conditions have been established by Fraïssé [6] (or
see Cameron [1] p. 32). In this case the countable homogeneous universal
model of T is called the Fraïssé limit of D. Here also the weak amalga-
mation property is the most important condition. So for instance the dense
countable linear order without endpoints is the Fraïssé limit of the class of
finite linear orders.
The Joint Embedding property and the weak amalgamation property are
in fact maximization properties for composibility of substructures, an idea
which we can find back in Leibniz’s philosophy.
If M is a homogeneous universal model of power α there is a 1-1 correspon-
dence with the elements of Age(β, M) with β < α and the equivalence class
of submodels of power β of M , where two submodels are called equivalent
if and only if there exist a symmetry of M transforming the one in the other.
If |M | < ON these equivalence classes are in fact the orbits of AutM in his
natural action on the submodels of M of power β.
Now, since by Leibniz’s principle of indescernibles two structures which
cannot be distinguished from each other are considered as identical we shall
call an equivalence class of models of power β a monad of power β.
If there exist a homogeneous universal submodel of power β of M then all
homogeneous universal submodels of M of power β are equivalent. We
call the corresponding monad the unique homogeneous universal monad of
power β of M .
Of course, this is no longer true if β = α. In general, there exist many of non-
isomorphic homogeneous universal monads of power β = |M |. However
as we shall see in the following section, if the Jónsson theory T satisfies
one more condition (the strong amalgamation property) there exist a special
unique homogeneous universal monad of power |M | which we will interpret
as the unique central monad of the “best of all possible worlds” M .
We denote the class of all is isomorphism classes of Mod(L, T, S) by Mod∗

(L, T, S) and we call it the metaworld of the theory T on the language L
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which is associated to a specific NBG-background set theory S for the mod-
els. This set theory is described by the metalanguage which defines the se-
mantics which we use in our model theory.
So if T is a Jónsson theory each metaworld of T contains a unique element
which is the absolutely homogeneous universal model of T and which we
interpret as the unique best of all possible worlds of that metaworld.

3. The principle of maximal independence

Let M be an absolutely homogeneous universal model of a Jónsson theory
T on a language L with S as background set theory. Then we know that
for each cardinal α < ON there exist at most one equivalence class of ho-
mogeneous universal submodels of power α. We consider as an example
the absolutely homogeneous universal linear graph on an arbitrary NBG set
theory S and we prove that there exist a proper class of equivalence classes
of homogeneous universal submodels of power ON. So let T be the theory
of linear graphs on the language L with a unique binary relation symbol E.
The axioms are that E is irreflexive and symmetric. It is trivial to verify that
T is a Jónsson theory. Since E is symmetric we will denote xEy also by
{x, y} ∈ E. We call the elements vertices and if {x, y} ∈ E we say that
the vertices x and y are adjacent and that {x, y} is an edge. The absolutely
homogeneous universal graph with a given NBG-set theory S as background
set theory is characterized by: for any two disjoint sets of vertices A and B
there exist always a vertex z so that {z, a} ∈ E ∀a ∈ A and {z, b} /∈ E
∀b ∈ B. This is in fact the property (A) for linear graphs.
Indeed, if this holds for a linear graph M whose universe is a proper class,
then if (C, E′) and (D, E′′) are linear graphs where C and D are sets and
where (C, E ′) is a subgraph of (D, E ′′), we have that each embedding f :
(C, E′) → M can be extended to an embedding g : (D, E ′′) → M . This is
necessary and sufficient for M to be the absolutely homogeneous universal
graph. Let S be the universe of all sets and define E as the class of all sets
{x, y} with x ∈ S, y ∈ S and x ∈ y or y ∈ x. We prove now that (S, E)
is the absolutely homogeneous universal graph (the a.h.u.-graph). Let A and
B be two arbitrary disjoint subsets of the proper class S. We prove that there
exist always a z ∈ S so that {z, a} ∈ E ∀a ∈ A and {z, b} /∈ E ∀b ∈ B.
The vertices of the graph are all the sets and two vertices are adjacent if
one of the two vertices is an element of the other vertex. If max(rankA,
rankB)=µ (some ordinal < ON ), let u then be an arbitrary set of rank µ + 1
disjoint from B, and consider the set z = A ∪ {u}. If a ∈ A then a ∈ z
and so {a, z} ∈ E ∀a ∈ A. If b ∈ B we have b /∈ z since A ∩ B = φ and
u ∩ B = φ. But also z /∈ b since rank z >rank b. So {z, b} /∈ E ∀b ∈ B.
Hence (S, E) is the a.h.u-linear graph with S as background set theory.
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Let (X0, E0) be an arbitrary linear graph. X0 can be a proper class or a set,
also X0 = φ is good. Let X1 = Ps(X0) be the set of all subsets of X0. Also
if X0 is a proper class this makes sense. Let V0 = X0, V1 = X0 ∪X1, X2 =
Ps(V1), V2 = V1 ∪X1. By induction Xα+1 = Ps(Vα), Vα+1 = Vα ∪Xα+1

and if µ is a limit ordinal Xµ =
⋃

α<µ Xα, Vµ = Xµ.
Let X =

⋃

α<ON Xα. Define E′ as the class of all sets {x, y} with x ∈
X, y ∈ X , and x ∈ y or y ∈ x. Then by the same reasoning as before
(X, E′) is the a.h.u.-graph. But also (X −X0, E

′′) where E′′ is the restric-

tion of E′ on
(

X −X0

2

)

is the a.h.u.-graph, again by the same reasoning.

So (S, E) ∼= (X, E′) ∼= (X −X0, E
′′).

Since (X, E′) is universal we know that each linear graph (X0, E0) can be
embedded in (X, E ′), but by this construction we have proved that also each
linear graph (X0E0) can be embedded in (X, E ′) in such a way that its com-
plement (X − X0, E

′′) is isomorphic with the whole linear graph (X, E ′).
Moreover any symmetry g of (X0, E0) has a natural action on X1 = Ps(X0)
and on Xα and Vα (∀α < ON), and so g can be extended to a symmetry g∗

of (X, E′). So each linear graph (X0, E0) can be embedded in (X, E ′) in
such a way that each symmetry of (X, E0) extends to a symmetry (X, E ′).
There exist always an embedding so that no symmetries are lost. There is no
reason that this property should be true for other a.h.u.-models. It would be
very interesting to find the necessary and sufficient conditions for a Jónsson
theory T so that the a.h.u-model of T has the property that each model of T
can be embedded in it on such a way that no symmetries are lost.
Of course two subgraphs of (X, E ′) which are isomorphic with (X, E ′) can
only be transformed in each other by a symmetry of (X, E ′) if their comple-
ments are isomorphic graphs. This condition is not sufficient but it is neces-
sary. Hence, there exist a proper class of equivalence classes of subgraphs of
(X, E′) which are isomorphic with (X, E ′), or there exist a proper class of
non equivalent homogeneous universal monads of “cardinality” ON in the
a.h.u-graph. Now we prove that in this proper class there exists a unique
one which has all the properties which we require for a central monad. By a
central monad we understand an equivalence class of subgraphs of the a.h.u-
graph (X, E ′) which are all isomorphic with the whole graph (X, E ′) and
which is in “maximal harmony” with all other monads. This is at least an as-
pect of the notion of the “Ens Perfectissimus” of Leibniz as a monad which
reflects perfectly the whole universe and which is in maximal harmony with
the rest of the universe. Of course the “Ens Necessarium” aspect, which is
very important in Leibniz’s metaphysics is deleted here. This aspect has been
studied by Gödel in his ontological proof [12]. For more information about
the notions of Ens Perfectissimus and Ens Necessarium of Leibniz see [16]
and [17] (37–60). There is a natural way to express this maximal harmony.
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Consider the language L′ obtained by adding to the binary relation symbol
E of L one new unary relation symbol U . Then we obtain from the Jónsson
theory T a new theory T ′ whose models are the linear graphs together with
a certain subclass of vertices. On a trivial way T ′ will be again a Jónsson
theory. This is not the case for any Jónsson theory but is is certainly the case
for the theory of linear graphs. We will give later on the necessary and suf-
ficient conditions for T so that T ′ will be again a Jónsson theory. We denote
the a.h.u.-model of T ′ by (X, E′, U ′). Here (X, E ′) is the a.h.u. graph, and
U ′ is a subclass of X with the property that if A and B are disjoint subsets
of X , there exist always a vertex z ∈ U ′ and a vertex v ∈ coU ′ (the comple-
ment of U ′ in X) so that {b, z} ∈ E, {a, v} ∈ E ∀a ∈ A and {b, z} /∈ E,
{b, v} /∈ E ∀b ∈ B.
This is in fact property (A) for linear graphs with a subclass of vertices.
Hence if (X, E,U ′) and (X, E,U ′′) are models of T ′, then by this property
and using a back and forth argument there exist always a symmetry g of
(X, E) so that g(U)′ = U ′′.
So any two subclasses of X which define a model of T ′ on (X, E) are equiv-
alent. We call the corresponding equivalence class of subclasses of vertices
of (X, E), the unique central monad of (X, E).

This example of linear graphs can however not be generalized for an arbi-
trary Jónsson theory T since in general the theory T ′ obtained by adding a
new unary relation symbol to the language will no longer satisfy the weak
amalgamation property in which case T ′ is not a Jónsson theory.
The property which is necessary for T so that T ′ will be again a Jóns-
son theory is called the strong amalgamation property [1]. We say that
a Jónsson theory T has the strong amalgamation property if and only if
D =Mod(< On, L, TS) and if M1, M2, M3 ∈ D and f1 : M1 → M2

and f2 : M1 → M3 are embeddings then there exist an M4 ∈ D and em-
beddings g1 : M2 → M4 and g2 : M3 → M4 so that g1f1 ≡ g2f2 and
so that no further identifications are necessary, or that g1(M2) ∩ g2(M3) =
g1f1(M1) = g2f2(M2).
This property holds for linear graphs, linear orders, partial orders, coloured
graphs, hypergraphs but not for groups or linear ordered fields.
The fact that no further identifications are necessary is a property of inde-
pendence. Let M be a a.h.u. model of T on L and S, and let A be a subset
of M and a ∈ M , a /∈ A, then we call a dependent of A if the class of all
elements b ∈M, b /∈ A and A ∪ {b} equivalent with A ∪ {a} is a set. If this
is a proper class we call a independent of A. The fact that an a.h.u. model
has the strong amalgamation property if and only if for each subset A each
a /∈ A is independent of A has been proved in [1] (p. 37).
If M is the a.h.u. graph then for each subset A of M each a /∈ A is in-
dependent of A. If M is for instance the a.h.u. linear ordered field, or the
Conway field of surreal numbers, then this is in a trivial way not the case,
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since 2a = a + a is certainly not independent of A = {a}. The main prop-
erty of Jónsson theories with the strong amalgamation property which we
need here is that if T1 and T2 are such theories on languages L1 and L2 that
T1 ∪ T2 is also such a theory on the language L1 ∪ L2. The theory TU of
unary relations is on a trivial way such a theory, whose unique a.h.u.-model
is a proper class with a proper subclass whose complement is also a proper
subclass. If T is an arbitrary Jónsson theory with the strong amalgamation
property then T ∪ TU is also such a theory on the language L′ = L ∪ {U}.
The unique a.h.u. model of T ∪ TU is then the a.h.u. model of T with a
central monad. So the existence of a central monad is independent of the
choice of NBG-background set theory and depends only on the fact that the
theory T satisfies the strong amalgamation property.
In the same way the theory T∼ of equivalence relations is a Jónsson theory
satisfying the strong amalgamation property whose unique a.h.u.-model is a
partitioning of a proper class in a proper class of equivalence classes, each
of which is a proper class. We call a Jónsson theory with the strong amalga-
mation property a strong Jónsson theory. If T is a strong Jónsson theory on
a language L then T ∪ T∼ is also a strong Jónsson theory on the language
L′ = L ∪ {∼} whose unique a.h.u.-model is the a.h.u.-model of T together
with a very specific partitioning which is unique up to a symmetry of the
a.h.u. model of T .
We call a partitioning of a relational structure of power α a Spinozistic Par-
titioning if it contains α equivalence classes and if each equivalence class is
isomorphic with the whole relational structure.
A homogeneous universal model of a strong Jónsson theory T has in gen-
eral many non-isomorphic Spinozistic Partitionings but only a unique one
of them is isomorphic with the unique a.h.u.-model of T ∪ T∼. We call
this partitioning the central Spinozistic Partitioning since in Spinoza’s phi-
losophy the world is partitioned in an infinite number of equivalence classes
(attributes) where each equivalence class is isomorphic with the whole uni-
verse.
In contrast with the Joint Embedding axiom and the weak amalgamation ax-
iom which are in fact principles of maximal composibility of substructures,
the strong amalgamation axiom is a principle of maximal independence. For
each subset A and each x /∈ A we ask that x is independent of A.
Principles about maximal composibility of substructure are well known in
Leibniz’s metaphysics, but I have never found a principle about maximal
independence. In fact such a principle, which is a metaphysical equivalent
of the strong amalgamation property should be added to the other principles
of Leibniz, it has the same spirit and it decides a very important hypothesis
of the monadology, namely the existence of a unique central monad.
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So if T is a strong Jónsson theory each metaworld of T contains a unique
“best of all possible worlds” who has a unique central monad and a unique
central Spinozistic Partitioning.

4. Maximal diversity of homogeneous universal reflections

The existence of a central monad or a central Spinozistic Partitioning in the
a.h.u.-model of a Jónsson theory is independent of the choice of the N.B.G.-
background set theory and depends only of properties of T . This will no
longer be the case if we consider maximal diversity of homogeneous univer-
sal substructures of the a.h.u.-model of T .

By the theorems of Fraïssé, Jónsson and Ehrlich [6],[10],[4] there exist
homogeneous universal relational structures of power m if and only if m =
ℵ0, m = ON , m is regular and if n < m then 2n ≤ m.

If m is a successor cardinal or if m = n+ it is necessary and sufficient that
2n = n+ = m or that we have an instance of G.C.H. for n.
If m is a strong limit cardinal, then since it is regular, it is a strongly inac-
cessible cardinal.
If m is a weak limit cardinal, then since it is regular it is a weakly inacces-
sible cardinal which has the supplementary condition that if n < m we have
that 2n ≤ m.
We call homogeneous universal relational structures whose power is respec-
tively countable, On, a successor cardinal, a strongly inaccessible cardinal
an a weakly inaccessible cardinal: countable, absolute, successor, strongly
inaccessible and weakly inaccessible homogeneous universal structures.
What are the possibilities for an homogeneous universal model whose power
is the continuum? In general 2ℵ0 will not satisfy the conditions and so in
general there exist no homogeneous universal model whose power is the
continuum.
Of course 2ℵ0 cannot be a strongly inaccessible cardinal, so if it is a limit
cardinal it has to be a weakly inaccessible cardinal m with the property that
if n < m we have 2n ≤ m = 2ℵ0 . Hence for each cardinal α with ℵ0 ≤
α < 2ℵ0 we have that 2α = 2ℵ0 . It has been proved that if 2ℵ0 is a real
valued measurable cardinal we have always the property that ℵ0 ≤ α < 2ℵ0

implies 2α = 2ℵ0 . [3]
If 2ℵ0 is a successor cardinal or if 2ℵ0 = n+ then since r < n+ → 2r ≤ n+

and since 2n > n we have 2n = n+. Hence for each cardinal α with
ℵ0 ≤ α < n+ we have 2α = 2ℵ0 .
If n = ℵ0 we have the continuum hypothesis. If for instance n = ℵm then
2ℵ0 = 2ℵ1 = · · · = 2ℵm = n+.
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If we have for instance a set theory where ℵ0 < ℵ1 < 2ℵ0 = ℵ2 < 2ℵ1 = ℵ3

then there exist no homogeneous universal models on the continuum.
In a set theory where ℵ0 < ℵ1 < 2ℵ0 = 2ℵ1 = ℵ2 < 2ℵ2 = ℵ3 each Jónsson
theory has a model on the continuum.
Of course a homogeneous universal model on the continuum in a set theory
where 2ℵ0 is a real valued measurable cardinal is incredibly much richer as
in a set theory where the continuum hypothesis holds.

The existence of strongly and weakly inaccessible cardinals is independent
of the axioms of ZFC (or N.B.G.). So the choice of the background set theory
is very important here.

Foreman and Woodin [5] have proved that if there exist a supercompact
cardinal (this is a special strongly compact cardinal, for a definition see [13])
then one can construct a model of ZFC (or N.B.G.) in which 2α = α++ for
each infinite cardinal α (singular or regular). In such a set theory there are
no instances of G.C.H. So in this set theory of Foreman and Woodin there
exist no successor homogeneous universal models. But there exist also no
weakly inaccessible cardinals since if m is a limit cardinal and n < m then
2n = n++ < m and since m is regular it is a strongly inaccessible cardinal.
Hence in such a set theory there exist only countable, strongly inaccessible
and absolute homogeneous universal models.

In his paper: “Strongly compact cardinals and the GCH [27], Robert Solo-
vay has proved that the existence of a strongly compact cardinal θ implies
that for each singular strong limit cardinal λ with λ > θ we have that
2λ = λ+. As a corollary we have then that {λ‖2λ = λ+} is a proper
class.
Hence with a set theory S which contains a strongly compact cardinal θ as
background set theory we have that each Jónsson theory T has a proper class
of successor homogeneous universal models of power λ+. So in this case the
a.h.u.-model of T has a proper class of non-isomorphic homogeneous uni-
versal monads.
So a strongly compact cardinal has strong maximization properties and by
Maddy’s MAXIMIZE (or DIVERSIFY) principle the axiom about the ex-
istence of strongly compact cardinals should be taken as an axiom of set
theory. From Leibniz’s point of view: if the world contains strongly com-
pact cardinals there exist a maximal number of distinct monads reflecting
this world.

Of course, all this could also be seen as an argument in favor of the the-
sis that the Generalized Continuum Hypothesis (G.C.H.) is a maximizing
principle. Indeed if G.C.H. holds then there exist homogeneous universal
structures of each infinite cardinality. The problem is that we have no formal
definition of the notions of a “maximizing principle” and a “restrictive prin-
ciple”. We can indeed also say that G.C.H. is a restrictive principle, since if
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G.C.H. holds then the powers of homogeneous universal structures are the
only infinite cardinals.

Joel Friedman proved that G.C.H. is equivalent to the assumption that ev-
ery “local universe” contains all it smaller-cardinality subsets [9]. A “local
universe” is defined as a collection closed under Pairing, Union and Re-
placement. “Local universes” are Joel Friedman’s interpretation of Leib-
niz’s monads. So in his view G.C.H. is analogous to Leibniz’s maximization
principle that every monad mirrors the universe by perceiving the maximum
possible from its point of view. The problem however is that G.C.H. indeed
maximizes Replacement, but that this happens at the expense of the Power
Set operation.
For an overview of arguments pro or contra the fact that G.C.H. should be a
maximizing principle we refer to Maddy [19].

If G.C.H. is a maximizing principle then we have given in this paper no
new arguments in favor of the existence of strongly compact cardinals. Of
course by the MAXIMIZE-principle the existence of any large cardinal is
positive (the more existence the better).

But if G.C.H. is a restrictive principle (as Gödel and Cohen believed) the
existence of strongly compact cardinals becomes much more important. In-
deed, by the MAXIMIZE-principle we shall then not accept G.C.H., but as a
consequence of the axiom about the existence of strongly compact cardinals
there will still exist a proper class of non-isomorphic homogeneous universal
structures.

So if you believe that the Generalized Continuum hypothesis is restrictive,
then there are two distinct new ways to motivate the set-theoretic axiom
which posits the existence of strongly compact cardinals.
The first one is to believe in the analogy with general properties of Leibniz’s
monadology.
The second one is to agree with Maddy’s justification of the maximizing
maxim in set theory.
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