"01boffa" → 2003/1/23 page 247 →

Logique & Analyse 171-172 (2000), 247-248

ON SPECKER'S REFUTATION OF THE AXIOM OF CHOICE*

M. BOFFA

1937: Quine proposed a new set theory NF (New Foundations). The main question about NF is its consistency: nobody was able to produce either a contradiction in NF or a proof of its consistency in a classical set theory like ZF.

1987: At a meeting in Oberwolfach for the 50th birthday of NF, Specker gave a talk entitled "NF inconsistent: what remains?". His abstract begins with the following sentence: "Even if NF should turn out to be inconsistent, there will still be the history of NF just as there is the fascinating history of phlogiston theory". I find this comparison well-chosen: phlogiston has been replaced by atoms, and NF has already a substitute with atoms: NFU = NF with urelements (= atoms). NFU(+AI + AC) was shown to be consistent by Jensen in 1969.

1953: Specker showed that $NF \vdash \neg AC$, and consequently that $NF \vdash AI$. Since $NFU \nvDash AI$ (Jensen), what remains if NF turns out to be inconsistent: should we burn Specker's paper? Fortunately not, since Specker's disproof of AC splits in two parts:

(i) for any well-ordered set $X : |PX| \neq |X|$,

(ii) for the universal set V : |PV| = |V| (since PV = V),

and (i) [but not (ii)] still holds in NFU. In NFU, we only have |V| = |sets| + |atoms| = |PV| + |atoms| and we can only say that $|PV| \le |V|$.

So, in terms of cardinal numbers, we have in NFU:

- (1) for any well-ordered cardinal $\alpha : 2^{T\alpha} \neq \alpha$ (Specker's result),
- (2) $\Omega = 2^{T\Omega} + \beta$, where $\Omega = |V|$ and $\beta = |atoms|$.

(1) can be improved as follows:

(1^{*}) for any well-ordered cardinal α and any cardinal $\beta \leq 2^{T\alpha} : 2^{T\alpha} + \beta \neq \alpha$. This follows easily from the more general result:

*Abstract of an invited address at the International Symposium in honor of the 150th birthday of Erwin Engeler + Ernst Specker (February 14-16 2000, Schloss Münchenwiler, Murten, Switzerland).

M. BOFFA

for any well-ordered cardinal α : $2^{T\alpha} \le \alpha \to T^2 \alpha < 2^{T^2 \alpha} < 2^{2^{T^2 \alpha}} < \dots < T\alpha,$ where \dots means that we may iterate any concrete number of times.

The proof of $(1^{\star\star})$ uses Specker's trick of his refutation of AC. The particular case $\alpha = |V|$ was already obtained by Holmes.

Application. In [JSL 1977], I showed that NF is equiconsistent with NFU+AI + H where H says that $|\text{atoms}| \leq |\text{sets}|$, i.e. $\beta \leq 2^{T\Omega}$. In [CRAS de Paris 1999], Crabbé shows that $NFU + H \vdash AI$. In fact, (1^{*}) and (2) show that H entails $\neg AC$.

Remark. In $(1^{\star\star})$, the function 2^{ξ} may be replaced by any partial function $f(\xi)$ defined for all $\xi \leq T\alpha$ (α a well-ordered cardinal), provided f is progressive $[\xi < f(\xi)]$ monotone $[\eta \leq \xi \rightarrow f(\eta) \leq f(\xi)]$ and T-invariant $[Tf(\xi) = f(T\xi)]$. For such a function $(1^{\star\star})$ entails $f(T\alpha) \neq \alpha$. If AI holds, then $f(Tn) \neq n$ (n a natural number) already holds for any T-invariant $f: \mathbb{N} \rightarrow \mathbb{N}$ provided $f(n) \neq n$ (this answers a question raised by Specker in 1981). Indeed, a result of Ehrenfeucht [JSL 1973] shows that if $f(n) \neq n$ then n and f(n) are discernible in $(\mathbb{N}, +, \cdot, f)$. But T is an "automorphism" of this structure, thus n and Tf(n) are discernible, so they are distinct. It was Macintyre who drew my attention on Ehrenfeucht's paper in 1982. More generally, $f(\alpha) \neq \alpha \rightarrow f(T\alpha) \neq \alpha$ (α a well-ordered cardinal) holds for any $T^{\pm 1}$ -invariant partial function $f: \{w.o. cardinals\} \rightarrow \{w.o. cardinals\}$.

248