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NAÏVE SET THEORY, PARACONSISTENCY AND
INDETERMINACY: PART II

ALAN WEIR

This is the second part of a two-part paper on naïve set theory. In Part I, I
outlined a ‘neoclassical’ logical framework for naïve set theory and sketched
the recapture of classical mathematics in the naïve theory. In the introductory
section of this Part, I recap the conclusions of the first paper whilst in sec-
tion 2 I address the problems which emerge from the neoclassical framework
when one tries to define entailment and prove soundness and completeness
in the usual ways, arguing in favour of infinitary logic as a resolution of those
problems. The soundness and completeness results for the system promised
in Part I are then given in section 3. The fourth section looks at how the ‘su-
perparadoxes’ which can be generated against other non-dialetheic solutions
to the paradoxes fail to strike home against this one, finishing in section 5
with an overall conclusion.

1. Neo-classical set theory

In Part I I rejected standard accounts of entailment on the grounds that they
are unable to give a reasonable account of validity for languages with inde-
terminate sentences, necessarily indeterminate sentences posing particular
difficulties. The account of ‘neoclassical’ logical entailment I proposed in
its place is as follows:

A set of wffs X neoclassically entails a set Y (written X |= Y) iff:

a) For any wff C in Y, in any admissible valuation v in which all wffs
in X are true but all in Y but C are false, C is true in v.
b) For any wff P in X, in any admissible valuation v in which all wffs
in Y are false but all in X but P are true, P is false in v.

where the admissible valuations are defined relative to a set ∆ of atoms and a
designated valuation @ which is to be thought of as representing the ‘actual’
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284 ALAN WEIR

world. Valuation v is admissible iff every atom in ∆ which has a truth value
in @ has a truth value in v (perhaps the opposite one) and every ∆ atom
which is gappy in @ is gappy in v.

The idea is that atomic wffs in ∆ retain in all possible situations their
‘determinacy’ status in the actual world, this status being either determinate
—having one of the standard values true or false— or else being indetermi-
nate, which in a three-valued logic such as the strong Kleene logic consists in
taking the ‘gappy’ value. The set ∆ and valuation @ generate a set of axioms
AXDET (which thus has to be thought of as taking ∆ and @ as parameters)
such that AXDET is the set of all those wffs of the form Det P or ∼Det Q
which are true in all admissible models. The determinacy operator Det P
was then defined by o(P ∨ ∼P) with necessity in turn defined in terms of
the conditional and the everywhere-true truth constant T by oϕ ≡df. T → ϕ.

One class of rules which is unproblematically sound neoclassically are
‘Minimax’ or ‘MM’ rules, that is to say rules which never permit the min-
imum value of the premisses to be greater than the maximum value of the
conclusion on the ordering true > gap (∅) > false (on the strong Kleene,
Lukasiewiczian semantics for &, ∨ and ∼). But certain minimax unsound
rules, such as ∼E and ∨E have the property that individual applications
are neoclassically correct. However for these rules, generalised transitiv-
ity fails:– the overall premisses may fail to entail neoclassically the over-
all conclusion. The solution adopted was retain the minimax unsound but
neo-classically correct operational rules and change the structural rules by
adding determinacy restrictions. These restrictions were also added to the
rules for the conditional → whose intended interpretation is as an object lan-
guage representation of neoclassical entailment itself. For →E, the restricted
rule is:

X (1) P → Q Given
Y (2) P Given
Zi (3.i) Det Ri ∀Ri ∈ X ∩ Y
X, Y,

⋃

i∈I

Zi (4) Q 1,2 [3.i] →E

where we also lay down also the disjointness condition:
⋃

i∈I

Zi∩(X∪Y) = ∅.

So the idea is that where we have overlap between the antecedent sets of min-
imax unsound rules such as ∼E, ∨E, and →E1 , the overlapping sentences
must be determinate.

1 In the case of ∨E the restriction applies to wffs occurring both as antecedents of the
major premiss and as an antecedent of one or other of the minor premiss sequents.
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Furthermore, in order to represent adequately neoclassical entailment, the
→I rule is restricted in the following way:

X,P (1) Q Given
Yi (2.i) Det Ri Given, ∀Ri ∈ X
X,

⋃

i∈I

Yi (3) P → Q 1 [2.i] → I

subject again to the condition that X ∩
⋃

i∈I

Yi = ∅, whilst to achieve the full

power required of an entailment conditional a number of other principles
governing the conditional were added such as Transitivity:

X (1) P → Q Given
Y (2) Q → R Given
X, Y (3) P → R 1,2 Trans.

to which should have been added Contraposition:

X (1) P → Q Given
X (2) ∼Q →∼P 1, Contrap.

which can be shown to be sound in similar fashion.2

In Part I intensional proof-theoretic principles were provided for this modal
conditional, in the form of indexing wffs in the antecedent in sequents by an
ordinal representing, in effect, the degree of accessibility of the world at
which the wff is to be evaluated from the world at which the succeedent
wff (we need only consider for present purposes single conclusion logics)
is evaluated. It was noted that this proof theory is rather clumsy and that
one might wish to dispense with it in the context of mathematical language
in which, it would seem, the intensional conditional should be equivalent to
the extensional since all mathematical wffs are non-contingent. This is the
position adopted in what follows. One consequence is an abandonment of
standard model-theoretic semantics:– there is to be only one interpretation
of the formulae –we select one arbitrarily as the ‘intended’ one— and with
it an absolute notion of truth in the interpretation, unrelativised to models or
possible worlds.

A further group of principles involving the conditional concern the relation
between the notion of indeterminacy —∼Det P ≡df.∼(T → (P ∨ ∼P))—
and antinomicity: Ant P ≡df. (P ↔∼P). Whilst these notions can come

2 Although generalised Cut or transitivity fails neoclassically, the simple principle [if A
` B then if B ` C then A ` C] holds, hence (A → B → ((B → C) → (A → C))) ought to
be provable for a conditional representing entailment.
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286 ALAN WEIR

apart in the gappy Lukasiewicz/Kleene framework, I argued that for the non-
contingent language of mathematics a sentence which is indeterminate is
necessarily indeterminate and so is equivalent, neoclassically, to its nega-
tion. Arguing from P to ∼P (or conversely) never takes one from truth to
untruth, nor, in the equally important upwards falsity preservation direction,
from falsity up to non-falsity. Similarly only an indeterminate sentence can
be equivalent to its negation. Hence we can build this equivalence of indeter-
minacy and antinomicity into the rules governing the language of set theory:

— (1) (P ↔∼P) ↔∼(T → (P ∨ ∼P)) Ant/Det Axiom

and add finally a generalisation of the ‘mingle’ MiniMax principle that P&∼P
entails Q ∨ ∼Q, namely the ‘MaxiMingle’ principle:

— (1) (Ant P & Ant Q) → (P ↔ Q) MaxiMin.

This completes the neoclassical propositional logical framework for naïve
set theory; the extension to predicate logic consisted solely in incorporating
the usual rules modulo a determinacy constraint on ∃E parallel to that on
∨E and a strengthening of the second-order comprehension scheme to the
’naïve’:

∃R∀F1, ...Fm, ∀x1, ...xn(R(F1, ...Fm, x1, ...xn) ↔ ϕ(F1, ...Fm, x1, ...xn))

by allowing that R may occur free in ϕ.
We need to look finally at the properly mathematical principles. One op-

tion is to take both the membership relation ∈ and class brackets {} as the
set theoretic primitives; the proper set-theoretic rules can then be taken to be
the joint rules for ∈ and {}:

X (1) t ∈ {x : ϕx} Given
X (2) ϕx/t 1 ∈ /{} E

X (1) ϕx/t 1 Given
X (2) t ∈ {x : ϕx} 1 ∈ /{} I

together with an Extensionality axiom:

∀x∀y(∀z(z ∈ x↔ z ∈ y) → x = y)

These rules yield generalised naïve comprehension:

∃y∀x(x ∈ y ↔ ϕx)
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in which y may occur in ϕ.
An alternative, which I will follow here, is to take the epsilon operator as

our fundamental term-forming operator subject to the Hilbert rules:

X (1) ∃xϕx Given.
X (2) ϕεxϕx 1 εI

X (1) ∀x(ϕx↔ ψx) Given
X (2) εxϕx = εxψx ε =

For as well as giving us Global Choice (neoclassical naïve set theory yields
Global Well-Ordering but not Global Choice) we can define {x : ϕx} by

εx(∀y(y ∈ x↔ ϕy)).

Michael Potter,3 defines {x : ϕx} by ıx(∀y(y ∈ x↔ ϕy)) where ıxϕx =df.

εxϕ!x and where ϕ!t is

ϕt & ∀y(ϕy → y = t)

for some variable y distinct from t. But we can make do with the simpler
definition by building uniqueness into the version of naïve set comprehen-
sion we use as our governing principle for ∈, namely:

∀X∃!y∀x(x ∈ y ↔ Xx)

using generalised predicate comprehension to derive generalised set com-
prehension (i.e. y may occur in any instance ϕ of X) from this. Since

∃!x(∀y(y ∈ x↔ ϕy)) ` ∃x(∀y(y ∈ x↔ ϕy))

we are able to prove each instance of the schema:

∀y(y ∈ {x : ϕx} ↔ ϕy) :

— (1) ∃x(∀y(y ∈ x↔ ϕy)) From Comp.
— (2) ∀y(y ∈ εx(∀y(y ∈ x↔ ϕy)) ↔ ϕy) 1 εI
— (3) ∀y(y ∈ {x : ϕx} ↔ ϕy) 2 Def. {}

3 Sets: an Introduction. (Oxford: Clarendon, 1990).
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288 ALAN WEIR

and derive extensionality (using a few easy Lemmas to shorten the proof):

— (1) ∃!x(∀z(z ∈ x↔ z ∈ u)) Comp.
2 (2) ∀z(z ∈ a ↔ z ∈ u) &

∀w(∀z(z ∈ w ↔ z ∈ u) → w = a)
Hyp.

2 (3) ∀w(∀z(z ∈ w ↔ z ∈ u) → w = a) 2 &E
2 (4) ∀z(z ∈ t ↔ z ∈ u) → t = a 3 ∀E
2 (5) ∀z(z ∈ u ↔ z ∈ u) → u = a 3 &E
— (6) ∀z(z ∈ u ↔ z ∈ u) Lemma
2 (7) u = a 5,6 →E
2 (8) t = a → t = u 7 =E
2 (9) ∀z(z ∈ t ↔ z ∈ u) → t = u 4, 8 Trans.
— (10) t = u → u = t Lemma
2 (11) ∀z(z ∈ t ↔ z ∈ u) → u = t 9, 10, Trans.
— (12) ∀z(z ∈ t ↔ z ∈ u) → u = t 1, 11 ∃E
— (13) ∀x∀y(∀z(z ∈ x↔ z ∈ y) → x = y) 12, ∀I ×2

The conditional at line 13 can be strengthened to a second biconditional since

∀x∀y(x = y → ∀z(z ∈ x↔ z ∈ y))

follows from =E or Leibniz’ Law.

1 (1) a = b Hyp.
1 (2) t ∈ a → t ∈ b 1 =E
1 (3) t ∈ b → t ∈ a 1 =E
1 (4) ∀z(z ∈ a ↔ z ∈ b) 2,3 &I, ∀I

(5) ∀x∀y(x = y → ∀z(z ∈ x↔ z ∈ y)) 4 ∀I ×2

(The =E rule will be validated later along with neo-classical proofs that
identity is an equivalence relation.)

The form of Global Choice we will use is a functional restriction theorem.
With R*xz is defined by z = εwRxw we have:

FUNCTIONAL RESTRICTION THEOREM:

∀x(∃yRxy → ∃!z(R*xz& Rxz)

Proof:

1 (1) ∃yRay Hyp.
1 (2) Ra(εwRaw) 1 εI
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— (3) εwRaw = εwRaw =I
— (4) R*a(εwRaw) 3 Def R*
5 (5) R*ac & Rac Hyp.
5 (6) c = εwRaw 5 &E
— (7) (R*ac & Rac) → c = εwRaw 6 →I
— (8) ∀v((R*av & Rav) → v = εwRaw) 7 ∀I
1 (9) R*a(εwRaw) & Ra(εwRaw) 4,2 &I
1 (10) ∃!z(R*az& Raz) 9,8 &I, ∃I
— (11) ∃yRay → ∃!z(R*az& Raz) 10 →I
— (12) ∀x(∃yRxy → ∃!z(R*xz& Rxz) 11 ∀I

As well as the operational rules for the logical and mathematical opera-
tors, we need to consider the neoclassical restrictions on the structural rules
which are essentially determined by the set AXDET of determinacy axioms
of the form Det P or ∼Det Q. For ϕ is neoclassically provable from X if it
is provable using the above rules from assumptions which belong either to
X or to the axioms which include the fixed set AXDET. In deciding which
sentences of set theory belong to AXDET, I urged a bold attitude: adopt a
set M which is maximally consistent in the sense that M is (neo-classically)
consistent but adding any new wff Det P or ∼Det Q induces inconsistency.

Generalised naïve comprehension yields recursive definition ‘for free’ and
thereby permits the development of the theory of von-Neumann ordinals and
Frege/Russell cardinals, the latter including a greatest ‘superinfinite’ cardi-
nal ∞ with x ∈ ∞ ↔ x ∼= U, where ∼= abbreviates the definition of equinu-
merosity and U is the universal set {x : x = x}. It will prove fruitful, how-
ever, to enrich the von-Neumann definition after the fashion of Frege’s def-
inition of the natural numbers, using second-order comprehension to prove
the existence of a property Ord x satisfying:

Ord x↔ Trans x & WO(∈)x & IND(∈)x.

where the first two conjuncts constrain the ordinals to be transitive sets well-
ordered by ∈ and the last says that x is ∈-inductive, that is:

∀X((X∅ & ∀y(∀z(z ∈ y → Xz) → Xy)) → Xx)

From this we get transfinite induction in the following form:

Ord a, (F∅ & ∀y(∀z(z ∈ y → Fz) → Fy)) ` Fa.

Abbreviating the second premiss by IND(F), the proof is:
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1 (1) Ord a Hyp.
2 (2) IND(F) Hyp.
1 (3) IND(∈)x/a Def. Ord, 1, ↔E, &E
1 (4) IND(F) → Fa 3 ∀E
1,2 (5) Fa 2,4 →E

Next we define using second-order relational comprehension a functional
relation Vxy (intended informal reading, y is the xth rank Vx) by:

Vxy ↔ Ord x & y = {z : ∀w(w ∈ z → ∃x1∃y1(x1 < x & Vx1y1 & w ∈
y1))}

The relation V is functional in the following sense:

∀x, y, z(Vxy → (Vxz → x = z))

Proof: (here d = {z : ∀w(w ∈ z → ∃x1∃y1(x1 < a & Vx1y1 & w ∈
y1))})

1 (1) Vab Hyp.
2 (2) Vac Hyp.
1 (3) b = d 1, Def. V ↔E, &E
2 (4) c = d 2, Def. V ↔E, &E
— (5) c = d → (d = c) =Symm ∀E ×2
2 (6) d = c 4,5 →E
— (7) b = d → (d = c → b = c) =Trans. ∀E ×3
1,2 (8) b = c 3,6, 7 →E ×2

The symmetry and transitivity of identity principles are derived in section 2.
The upshot is that we can write Vαx also as V(α) = x or speak as usual

of Vα. V we then define by V =df.
⋃

α∈ON
Vα that is: {x : ∃α ∈ ON, x ∈ Vα}

where ON = {x : Ord x} the class of all ordinals. From the inductive char-
acterisation of the ordinals we can prove by induction over the ranks that all
members of V are themselves ∈-inductive sets:

THEOREM: ∀x ∈ V, IND(∈)x.

Proof, by induction over the Vα, so suppose it holds for all members of Vβ ,
β < α and consider t ∈ Vα. Take some property F such that:

(F∅ & ∀y(∀z(z ∈ y → Fz) → Fy));
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we need to prove Ft. But any member z of t belongs to Vβ , for some β < α,
hence by IH, z is ∈-inductive, hence Fz. From ∀y(∀z(z ∈ y → Fz) → Fy)
we conclude ∀z(z ∈ t → Fz) → Ft hence Ft as required. o

As well as our superinfinite greatest cardinal ∞ we have seen that we
also have the greatest ordinal ON though of course the Burali-Forti paradox
shows us that ∼Det (ON ∈ ON).4 A more useful ordinal singled out in
Part I is Ω defined as the class of all Small ordinals, where a set is Small iff
there is no bijection from the set onto the entire universe. If we assume that
our favoured maximally consistent AXDET contains Det(Ω ∈ Ω), then we
can reason classically and prove that Ω is itself a Big ordinal (if not it would
belong to itself, absurdly) and VΩ is then the standard cumulative hierarchy.
The strategy for classical recapture, that is for the derivation of the results
of standard mathematics, is to include in AXDET DetP, for every P ∈ Lα

where α is some Small ordinal and Lα is the language in which all quanti-
fiers are restricted to Vα. Where such a locally maximal AXDET set for Lα

is consistent, then let us call Lα classical. If arithmetic is consistent then Lω

is classical and classical reasoning in arithmetic is neoclassically legitimate;
more than this, all arithmetic truths are neoclassically provable, as will be
shown in section 3. Similarly, if ZFC is consistent, Lκ is classical for some
inaccessible κ, classical reasoning about all the sets in Vκ is neoclassically
legitimate and all ZFC truths are provable. Hence if standard mathematics
is consistent, neoclassical logic not only validates our ordinary classical rea-
soning concerning it, it also enables us to prove all the truths of standard
mathematics. Furthermore, the neoclassical approach also lets us reason us-
ing standard operational rules- but with restricted Cut principles- beyond the
standard realm, a domain we are ineluctably forced to venture into if we wish
to provide a systematic interpretation of standard mathematics.

2. Infinitary Logic

Naïve set theory in a neoclassical setting thus promises to provide a power-
ful framework for mathematics in which standard mathematics is validated
whilst the skeletons in the cupboard of classical mathematics —sets such as
VΩ, V, ON or U— whose existence is both required in any reflective account
of the theory and at the same time vehemently denied by classical mathe-
maticians,5 can be shown to exist and results can be established concerning

4 Assuming DetDet(ON ∈ ON) ∈ AXDET.

5 It is true that analogues of VΩ, V and ON exist as “proper classes” in NBG theories,
and universal sets are countenanced in some deviant classical theories, the most well-known
perhaps being NF. For discussion of NF see T.E. Forster, Set Theory with a Universal Set,
(Oxford: Clarendon, 1992) where there is also discussion of the theories of Church and
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them, albeit by reasoning in more restricted non-classical ways. All this on
the assumption, of course, that neoclassical naïve set theory is sound.

To be sure, it was shown in the first part how the classical proofs of antin-
omy from paradoxes such as Russell’s, Burali-Forti’s and Curry’s breakdown
neoclassically. A crucial point here is that the derivation of absurdity ⊥ (or
arbitrary contradiction Q&∼Q) from the antinomicity of some sentence P,
i.e. from P ↔∼P, fails (here we consider a provably antinomic P, the liar and
Russell sentences being of this form):

— (1) P ↔∼P Given
2 (2 P Hyp.
2 (3) ∼P 1,2, ↔E
4 (4) Det P Hyp.
2,4 (5) ⊥ 2,3 [4] ∼E
4 (6) ∼P 5, ∼I
4 (7) P 1, 6 ↔E
8 (8) Det Det P Hyp.
4,8 (9) ⊥ 6,7 [8] ∼E

the contradiction no longer being derivable outright but rather dependent,
neoclassically, on the determinacy assumptions (represented in proof anno-
tations by enclosure in square brackets) of lines 4 and 8. So the fact that
P ↔ ∼P does follow neoclassically for many antinomic sentences, such as
the Russell sentence r ∈ r, does not show the theory to be inconsistent but
merely shows the indeterminacy of e.g. r ∈ r (granted it is determinate
whether or not it is determinate).6

But of course this does not rule out the possibility of the emergence of a
more subtle antinomy which cannot be blocked neoclassically, unless per-
haps by rejecting the determinacy of most of standard mathematics. To rule

Mitchell these, unlike NF, being classical theories known to be consistent relative to standard
ZFC. Other examples include Boolos’ theory New V, see ‘Saving Frege from Contradic-
tion’, Proceedings of the Aristotelian Society 87 (1986–87) pp. 137–151 and for discussion
S. Shapiro and A. Weir, ‘New V, ZF and Abstraction’, Philosophia Mathematica. (3) 7
1999, pp. 293–321 and Arnold Oberschelp’s ‘Set theory over classes’ Dissertationes Math-
ematicae, (Warsaw: 1973). However in these theories proper classes —“classes” (construed
differently in the different theories) which fail to satisfy the comprehension principle— are
pale shadows of sets and cannot be used, to take one example, to specify the model theory of
the set theory which includes them. See my ‘Naïve Set Theory is Innocent!’ Mind 107 1998.
pp. 763–798.

6 Note the difference with standard paraconsistent approaches to naïve set theory: where
they accept inconsistency but reject triviality, I reject both.
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this out we need a soundness proof for the system. Moreover if neoclassi-
cal, not classical, logic is the correct mode of reasoning then the proof ought
to be given neoclassically (if not, one cannot expect classicists to consider
abandoning their logic for one which can no more validate its own semantics
than classical mathematical logic). Indeed there is no hope of a demonstra-
tion that the system has models of the intended type, with a domain = U
the universal set, for example, except from within naïve set theory itself as
meta-theory. One of the main reasons to demur from the orthodox rejection
of naïve set theory is the emergence of superparadox when one denies, as
the orthodox do, that semantically closed theories exist. So our goal should
be to show that the language of naïve set theory is semantically closed —
the metalanguage in which soundness (and completeness) theorems are ex-
pressed and proved is identical with the object language. But using the naïve
theory to prove its own soundness is by no means a trivial matter.

To see this consider a rule which ought to be neoclassically unproblematic:
ex contradictione quodlibet in the form P, ∼P ` C. As remarked in Part I,
even though ∼E is restricted neoclassically to this form:

X (1) P Given
Y (2) ∼P Given
Zi, i ∈ I (3.i) Det Q Given, ∀Q ∈ X ∩ Y
X,Y,

⋃

i∈I
Zi (4) C 1,2, [3.i, i ∈ I], ∼E

where
⋃

i∈I
Zi ∩ (X∪Y) = ∅, nonetheless in the special case where X∩Y = ∅

the determinacy restrictions do not bite and the rule takes the classical form.
So we have, for example r ∈ r, r /∈ r ` C by dint of:

1 (1) r ∈ r Hyp.
2 (2) r /∈ r Hyp.
1,2 (3) C 1,2 ∼E

This rule was shown (classically) to be sound in the test case approxima-
tion of Lukasiewiczian gappy semantics. But now consider how a clause in
a standard soundness proof for this particular case would proceed in the full,
non-gappy, context of naïve set theory: assume, as the inductive hypothe-
sis, that lines (1) and (2) encapsulate neoclassical entailments and attempt to
show that {P,∼P} entails arbitrary C, where, for example, P is the Russell
sentence. To demonstrate the latter entailment we would standardly assume
that both premisses are true, in some valuation v; thus we might represent
this as
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À: TruevP & Truev∼P

and go on to prove that in that case TruevC, for our arbitrary valuation v and
arbitrary wff C (underlining representing coding of wffs, TruevP represent-
ing the claim that P is true in v). We can try to argue as follows:

1 (1) À Hyp.
1 (2) TruevP 1 &E
— (3) TruevP →∼Truev∼P Semantical ∼ clause
1 (4) ∼Truev∼P 2,3 →E
1 (5) Truev∼P 1 &E
6 (6) Det À Hyp.
1,6 (7) TruevC 4,5, [6] ∼E

but now we have proved that the conclusion is true in any valuation in which
the premisses are true only given the additional assumption that it is deter-
minate matter whether or not P and its negation are true in valuation v; this
will not be the case where P is an antinomic sentence such as the Russell
sentence r ∈ r, so we have failed to validate r ∈ r, r /∈ r ` C.

The problem is that our initial definition of neoclassical entailment is con-
junctive. In effect, it conjoins all the premisses, just as the conventional
notion does, whereas neoclassically this is illegitimate since for example,
the two premisses r ∈ r, r /∈ r together entail ⊥ but the single premiss
(r ∈ r & r /∈ r) does not.7 We might try to redefine entailment for this
particular instance as: ∀v,TruevP → (Truev∼P → TruevC). Then we could
introduce our assumptions TruevP and Truev∼P separately and by-pass the
determinacy restriction on ∼E. The “proof” then goes

1 (1) TruevP Hyp.
2 (2) Truev∼P Hyp
— (3) TruevP →∼Truev∼P Semantical ∼ clause
1 (4) ∼Truev∼P 1,3 →E
1,2 (5) TruevC 2,4, ∼E
1 (6) 2 → 5 5 →I*
— (7) 1 → (2 → 5) 6 →I

But the starred →I application at lines 6 is neo-classically incorrect in the
absence of the additional assumption that the extra premiss at line 1 is deter-
minate.

7 On pain of triviality for then we would quickly get (r ∈ r ∨ r /∈ r) as a theorem then
r ∈ r and r /∈ r as theorems via two applications of ∨E then ⊥ as a theorem by ∼E.
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Moreover, with r ∈ r, r /∈ r |= ⊥ interpreted by ∀v(Truevr ∈ r →
(Truevr /∈ r → Truev⊥), we get, taking the actual world for v and disquot-
ing, r ∈ r → (r /∈ r → ⊥). But do we want r ∈ r to entail that r /∈ r entails
absurdity? Should we not reject that consequent, if we wish to affirm that
our system is sound? If we are agnostic on r /∈ r |= ⊥ we must be agnostic
on |= r ∈ r, and thus agnostic on the soundness of the system (it will be
unsound if |= r ∈ r). And if the consequent is false and r ∈ r entails it, then
r ∈ r is provably (in neoclassical logic) false too which leads to disaster
since then r ∈ r and therefore also r /∈ r are theorems.

Nor is this the least of our problems since we have still to show how to
generalise our conditionalising interpretation of |= to handle more than just
one specific case with premiss set {P,∼P} indeed more than just some given
finite list of cases. The only conceivable way to do this is to define X |= C
in some infinitary fashion. Such a move is certainly not unproblematic!

Orthodoxy since the 1930s, indeed, has it that any mathematical represen-
tation or idealisation of ‘real’ logic must be finitary in the sense of allow-
ing only finitely long wffs and proofs. As Gregory Moore and others have
shown,8 this type of proof-theoretic finitism represents a sharp turn away
from the position of a great many of the early pioneers of modern logic —
Peirce, Schröder, Löwenheim, the early Hilbert, for example— a turn which
was strongly resisted by Zermelo, in his reactions to the Gödelian incom-
pleteness theorems. There did survive a ‘samizdat’ tradition of infinitary
logic, with the early pioneers Ramsey, Carnap and Rosser handing the torch
on to Tarski’s students at Princeton. But the conventional view would appear
to be that such systems are of ‘merely technical’ interest because no one
can actually grasp an infinitely long formula. However neither can anyone
grasp a wff with more symbols than the estimated number of electrons in the
observable universe, yet understanding of such wffs (and virtually all, one
might say, wffs of standard formal languages are even longer than this) is
said to be “in principle” possible.

What does this phrase “in principle possible”, found most often on the lips
of constructivist mathematicians, amount to? Arguably to claim that it is in
principle possible to grasp or construct a mathematical structure is to claim
nothing more than that that structure exists. If so, the phrase can offer no
illumination, explanation, or justification for the existence claim with respect
to the “in principle possible” structure. And in that case, those who reject

8 See Gregory H. Moore, ‘Beyond First-Order Logic: The Historical Interplay between
Mathematical Logic and Axiomatic Set Theory’, History and Philosophy of Logic 1 (1980)
pp. 95–137 and ‘The Emergence of First-Order Logic’ in History and Philosophy of Modern
Mathematics (Minnesota Studies in the Philosophy of Science No. 11) (Minneapolis: Univer-
sity of Minnesota Press, 1988) pp. 95–135. See also Stewart Shapiro, Foundations without
Foundationalism: A Case for Second-Order Logic (Oxford: Clarendon), 1991 Chapter Seven.
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finitism have no more reason to eschew infinite structures in proof theory
than in model theory; indeed good reason to embrace them if they wish to
achieve, as most do, a tight rapprochement between proof theory and model
theory.

At any rate the claim that an ontology of infinitary structures is legitimate
in the idealised semantics of model theory but not in idealisations of our
concrete proofs is sorely in need of justification. Pending a good argument
against the legitimacy of infinitary logic, I propose to follow Zermelo in
rejecting proof-theoretic finitism but depart from him in the crucial respect
of allowing in not only Small infinite strings of expressions or sequents but
allowing our syntactic structures to be strings of arbitrary ordinal length,
that is to be functions whose domain is any ordinal α ∈ ON including Big
ordinals of size ≥ Ω.

Thus we will have infinitary conjunctions and disjunctions of arbitrary in-
finite length, including Big conjunctions and disjunctions. Universal and ex-
istential quantification over the individuals can then be represented by wffs
such &Fti i<Ω and ∨Fti i<Ω where the singular terms ti range over all the
simple terms of the language (here pi i < Ωq, is metalinguistic notation indi-
cating that there is a function with domain Ω indexing the conjuncts and dis-
juncts of the generalisation9 ). I will also introduce an infinitary conditional
Ai i∈I → B with any number of antecedents, indexed by some set I, which
we will use to represent entailment for our language in the language itself.
As remarked, the intuition that mathematical language is non-contingent is
taken seriously so that there is only one ‘intended’ model for the sentences
of the language. That being so we can represent entailments by conditionals
of the form True Ai i∈I → True B. In fact, since we will be able to prove
all Tarskian biconditionals (for items which are definitely wffs, at any rate),
we can simply allow Ai i∈I → B to represent the entailment of B from the
premisses Ai and try to link this notion with provability.

In more detail then, the construction of our infinitary language L —a con-
struction which takes place, of course, in natural language augmented with
some mathematical notions— proceeds as follows. I presuppose as the back-
ground logical framework the legitimacy of informal use of the neoclassical
logic outlined above and in Part I. It will be shown that we can represent all
the strings of L in L and as above, underlining will be used as our informal
metalinguistic representation of the coding of strings. So where ptq is a met-
alinguistic term whose referents are expressions of L, ptq is a metalinguistic
term which, for a given assignment to any parameters in ptq, stands, on the

9 Corner quoting being used here as quasi-quotation as in Quine’s Mathematical Logic
(Cambridge Mass., Harvard University Press, 1940 §6) that is as combinations, representing
concatenation, of metalinguistic names of expressions and variables ranging over all non-
logical or mathematical constants.
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intended interpretation, for the canonical representation of the referent of
ptq on that assignment.

We need first of all disjoint sets of basic categories: logico-mathematical
operators, individual constants, one-place predicates and two-place predi-
cates. All but the first set must be of superinfinite size ∞:– we could use
the set of Small ordinals, the set of ordered pairs of Small ordinals and the
set of ordered triples of Small ordinals for the latter three sets. The logical
operators are conjunction, disjunction, negation and the conditional named
in the meta-language by:– &, ∨, ∼ and → (the notation is officially reverse
Polish but I will use parentheses informally) whilst the mathematical terms
are the epsilon operator ε and the membership predicate ‘∈’ —(set-theoretic
braces and other parentheses are informal metatheoretic devices of abbrevia-
tion). Each primitive is to be distinct from every other syntactic primitive, of
course. The expressions are ‘superstrings’, that is sequences of any ordinal
length, whose terms are themselves expressions or sets of expressions. We
can interpret such strings as functions from the ordinal which gives its length
into (a subset of) V; similarly proofs will be construed as strings of sequents,
where sequents are ordered pairs 〈X,A〉 with A a wff and X a set of wffs, so
proofs are members of V also.

The well-formed expressions (wfes) we then define by recursion. The
individual constants are singular terms of each level. The atomic sentences
of level zero are all sentences of the form Ft or Rtu, where t and u are
individual constants, F and R one-place and two-place predicate constants
respectively. The level zero sentences are then all sentences of the form:

∼ A0, &Ai i∈I,∨Ai i∈I and Ai i∈I → B

Here the string &Ai i∈I is an ordered pair whose first term is & and whose
second term is a set of wffs, these being the conjuncts. likewise for ∨Ai i∈I
with the second term being the set of disjuncts. The notation pi i∈Iq is
thus meta-linguistic notation with Ai i∈I a metalinguistic parameter whose
intended referents are sets of wffs indexed by some set I. We could, in-
deed, insist that I be an ordinal so that the conjunctions and disjunctions
are strings in which the conjuncts appear in the particular order given by I.
But granted commutativity and associativity of conjunction and disjunction
we save ourselves adding in those rules by letting conjuncts and disjuncts
occur unordered in their compound sentences.

The string Ai i∈I → B is a triple whose first term is →, second term the
(unordered set) of the Ai and whose last term is B. It is an infinitary general-
isation of a right-bracketing conditional of the form A → (B → (C → D))
except that, as with conjunction and disjunction, we do not bother with the
ordering of the antecedents. Since the conditional is to represent entailment
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in the object language this corresponds to our taking sequents as relating
sets, not sequences, of wffs to succeedent wffs.

So much for level zero sentences. For level α, we define the set of level
α singular terms to consist in the individual constants plus all epsilon terms
of the form εxϕx for ϕ a sentence of level β < α. We can take these to
be strings whose first term is the epsilon operator, second term a simple
individual constant t and third term a sentence ϕ of level β < α the constant
playing the role of a variable in finitary logic so that the epsilon term binds
all occurrences of t in ϕ. The atoms are then defined as before except that
the singular terms may be of any level < α and the sentences of level α
are defined in the same way as at level zero except again the constituent
sentences may be of any level less than α.

Finally we turn to the truth and absurdity constants T and ⊥. To define
these we have to look slightly ahead to the semantics and discuss the notion
of the ‘intended’ interpretation. To play this role we simply select any func-
tion f which maps all singular terms onto U, the universal set, all predicate
terms onto its powerset P(U), all relational terms onto [P(U)]2. By the Big-
ness of Ω, Ω2 and Ω3 there are functions f1, f2, and f3 from the singular
terms, monadic predicates and relational terms respectively, onto U. Restrict
the latter two to functions f ∗2 onto P(U) and f∗3 onto [P(U)]2 respectively
and our function f is f1 ∪ f∗2 ∪ f∗3 which is a function by the disjointness
of the three syntactic categories. An atom Ft or Rtu is then true just in
case f(t) ∈ f(F) in the first case or just in case 〈f(t), f(u)〉 ∈ f(R) in the
second.

Having selected an interpretation f to play the role of ‘the intended one’,
we then define T as the infinite conjunction of all atomic sentences which are
definitely true, relative to f where pDefinitely Pq is defined by pnecessarily
Pq i.e. pP is entailed by the (metatheoretic) truth constantq.10 Similarly, ⊥
is the disjunction of all atoms which are definitely not true11 in the intended
interpretation. The idea here is that the atomic sentences of our pure math-
ematical language are “necessarily true or necessarily false”; we might, per-
haps, gloss this as “provable or refutable by use of primitive atomic rules”.
The notion of an atomic wff is, indeed, a “fuzzy” one since it can be indeter-
minate whether an item belongs to L: for example, since it is indeterminate
whether ON ∈ ON, it is indeterminate whether atoms of level ON are wffs.
Nonetheless this does not induce any indeterminacy in T or ⊥ since they
comprise only items which are definitely true or untrue in the intended inter-
pretation, and nothing which is not determinately a wff can be definitely true

10 The notion of definite truth will be considered in more detail later.

11 Equivalently false: in the non-gappy framework of naïve set theory, untruth = falsity.
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or untrue. Since T and ⊥ are definitely true and definitely false respectively,
Det T (and Det Det T etc.) ought to belong to AXDET, likewise Det ⊥, Det
Det ⊥ etc. so that we can make it a requirement on an admissible AXDET
set that it contain arbitrary determinations of these constants.

Next we need to look at the proof theory of L for clearly we have to aug-
ment our proof theory somewhat, to accommodate L’s increased resources.
Turning to the MiniMax rules, the commutative and associative rules are re-
dundant now that conjunctions and disjunctions are construed as unordered
sets whilst some of the others have to be generalised to infinitary forms. Thus
the De Morgan transformations:–

X (1) ∼(A&B) Given
X (2) (∼A ∨ ∼B) 1 MM

X (2) (∼A ∨ ∼B) Given
X (2) ∼(A&B) 1 MM

become in their infinitary form:

X (1) ∼&Ai i∈I Given
X (2) ∨[∼Ai i∈I] 1 MM

X (2) ∨[∼Ai i∈I] Given
X (2) ∼&Ai i∈I 1 MM

(the square brackets here are informal meta-theoretic devices for improving
readability). Similarly the distributivity rules legitimising interchange of,
for example, A&(B ∨ C) with (A&B) ∨ (A&C) are generalised, in the case
given, to:

X (1) &(∨(Aij)j∈f(i))i∈I Given
X (2) ∨(&(Aij)i∈I,j∈k∗)k∈K 1 MM

X (2) ∨(&(Aij)j∈f(i))i∈I Given
X (2) ∨[&Aij i∈I,j∈k∗ ]k∈K 1 MM

where, for each i ∈ I, f(i), is an index set indexing the disjuncts of the ith
conjunct of &[∨Aij j∈f(i)]i∈I (likewise for disjuncts of ∨(&(Aij)j∈f(i))i∈I);
Here K is Π[f(i) : i ∈ I], the product of the family f(i) : i ∈ I12 and k* is

12 This exists in naïve set theory, for every indexed set, since naïve comprehension gives
us the set of all ordered sequences such that the ith term is a member of the set indexed by i
and this set is by definition the product.
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the set of terms of the sequence k ∈ Π[f(i) : i ∈ I]. The first inference is
therefore an infinitary generalisation of the inference from e.g.

(A11 ∨ A12) & (A21 ∨ A22 ∨ A23) & (A31 ∨ A32) to
(A11&A21&A31) ∨ (A11&A22&A31) ∨ (A11&A23&A31)∨
(A11&A21&A32) ∨ (A11&A22&A32) ∨ (A11&A23&A32)∨
(A12&A21&A31) ∨ (A12&A22&A31) ∨ (A12&A23&A31)∨
(A12&A21&A32) ∨ (A12&A22&A32) ∨ (A12&A23&A32).

We need also infinitary forms of the introduction and elimination rules for
& and ∨. The rule &I, for example, becomes:

Xi (1.i) Ai Given i ∈ I⋃

i∈I
Xi (2) &Ai i∈I 1.i i ∈ I, &I

whilst ∨E is:

X (1) ∨Ai i∈I Given
Yi i∈I, Ai (2.i) C Given i ∈ I
Wj j∈J (3.j) Det R Given, ∀R ∈ X ∩

⋃

i∈I
Yi

X,
⋃

i∈I
Yi,

⋃

j∈J
Wj (4) C 1,2.i i ∈ I, [3.j j ∈ J], ∨E

Here, as in part I, the square brackets highlight the premisses which ensure
the determinacy of all wffs occurring both among the antecedents of the
major premiss and among the antecedents of a minor premiss; as with finitary
∨E, we require that (X ∩

⋃

i∈I
Yi) ∩

⋃

j∈J
Wj = ∅.13

The introduction and elimination rules for the infinitary conditional are
fairly obvious generalisations from the finitary case, namely →I:

X,Ai i∈I (1) B Given
Yj j∈J (2.j) Det C for all C ∈ X
X,

⋃

j∈J
Yj (2) Ai i∈I → B 1 → I

where X ∩
⋃

j∈J
Yj = ∅, and →E:

13 This is actually weaker than the rule specified in Part I the determinacy restriction there
(and for the other rules) being the unnecessarily strong (X ∪

⋃

i∈I
Yi) ∩

⋃

j∈J
Wj = ∅.
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Xi (1.i) Ai Given, i ∈ I
Y (2) Ai i∈I → B Given
Zj (3.j) Det Cj ∀Cj ∈ Σ, j ∈ J⋃

i∈I
Xi, Y,

⋃

j∈J
Zj (4) B 1.i i ∈ I, 2, [3.j, j ∈ J], →E

Here, at line (3), Σ is the set of all wffs which either belong to
⋃

i∈I
Xi ∩ Y or

else belong to Xi ∩ Xk for some i 6= k. We also require, generalising from
the finitary case, that

⋃

j∈J
Zj ∩ (

⋃

i∈I
Xi∪Y) = ∅ and that

⋃

j∈J
Zj ∩ (Xi∪Xk) = ∅

for i 6= k.
To check for soundness of these rules we look as before to the Lukasiewicz-

ian framework as an approximation to the naïve case. In order that the se-
mantics for the infinitary → mirrors the definition of the neoclassical entail-
ment relation it is intended to represent in the object language (except that in
dealing with the conditional as it occurs in set theory we treat it extensionally
and omit reference to accessible models or possible worlds) we need these
clauses, where truth is truth in the interpretation we have selected to play the
role of the actual mathematical interpretation:

1) Ai i∈I → B is true iff a) if all of the Ai are true then B is true and b) if B
is false and all the Ai i∈I but Aj are true, then Aj is false.
2) Otherwise, Ai i∈I → B is false.

These rules can then be proven sound, that is can be shown to preserve neo-
classical entailment:

Proof: →I: Truth-preservation: Suppose all of X,
⋃

j∈J
Yj , hence all of X are

true. We have two clauses to check in verifying the truth of the conditional
succeedent:– a) firstly suppose all of the Ai i∈I are true; then by the correct-
ness of the premiss (1), B is true so Ai i∈I → B is true. Suppose on the other
hand that b) B is false, all of Ai i∈I but Aj are true; once again the correct-
ness of premiss sequent (1) ensures that Aj is false hence Ai i∈I → B is true.

Falsity Preservation: Suppose Ai i∈I → B is false and all of X,
⋃

j∈J
Yj but P

are true.14 Since Ai i∈I → B is not true, either i) all of the Ai are true but B
is not or ii) B is false, all of the Ai but Aj are true but Aj is not false. Now

14 Unless otherwise indicated, phrases such as “all wffs except P are true” or “all wffs but
P are true” are shorthand for “if a wff is not P, it is true” so that the question of the truth of P
is left open.
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since P /∈ X ∩
⋃

j∈J
Yj , P /∈

⋃

j∈J
Yj . For if P did belong to this union then all

of X are true. But then if case i) holds all of the premisses of line (1) are
true but the conclusion is not, contrary to the soundness of (1); and if case ii)
holds, the conclusion of (1) is false, all its premisses except Aj are true but
Aj is not false, which is impossible. Hence P ∈ X and by the truth of all of⋃

j∈J
Yj is either true or false. But it cannot be true else all of X are true which

we have seen is not possible.

→E: Truth-preservation:
Suppose all of

⋃

i∈I
Xi, Y,

⋃

k∈K
Zk are true; then by the 1.i premisses all of the

Ai are true and by line (2) Ai i∈I → B is true hence, by the semantics for →,
B is true.

Falsity Preservation. Suppose B is false and that all wffs in
⋃

i∈I
Xi, Y,

⋃

k∈K
Zk

except P are true.
There are three cases:– i) P occurs in exactly one Xi but not in Y; ii) P oc-
curs in Y but not in

⋃

i∈I
Xi; iii) P occurs in

⋃

i∈I
Xi ∩Y or in (Xi ∩Xj) for some

i 6= j. In the latter case, P has to be determinate by one of the 3.j premisses
and the disjointness condition on

⋃

j∈J
Zj but it cannot be true else B is true by

truth-preservation hence it is false. For the first two cases:

Case i); By the correctness of line (2) and the truth of all of Y, Ai i∈I → B is
true hence since B is false at least one Al is not true. Since P occurs in only
one of the X sets, P ∈ Xl and all the other X sets contain only truths; thus all
the other Ai are true and by the semantics for →, Al is false hence P is false
by the correctness of 1.l.

Case ii): By the correctness of lines (1.i) and the truth of all of
⋃

i∈I
Xi, each

Ai is true; since B is false, Ai i∈I → B is false hence by the correctness of
line (2), P is false. o

The transitivity rule for the single antecedent conditional is also generalis-
able to:
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Xi (1.i) Pi → Qi[i ∈ I] Given i ∈ I
Y (2) Qi i∈I → R Given⋃

i∈I
Xi, Y (4) Pi i∈I → R 1,2 Trans.

where all the Pi are distinct or else all the Pi wffs but at most one are the
truth constant T.

To see that this rule is sound (in the Lukasiewiczian approximation), sup-
pose all of

⋃

i∈I
Xi, Y are true (in some given model) and suppose further, on

the one hand, that all of the Pi are true. Then by the 1.i premisses, all of
the Qi are true hence R is true by line (2); suppose, on the other hand, that
R is false, all of the Pi bar Pj are true. By lines 1.i, all of the Qi are true,
i 6= j, hence Qj is false —by line (2)— hence Pj is false, by 1.j. For the
falsity preservation direction, suppose all of

⋃

i∈I
Xi, Y except A are true and

that Pi i∈I → R is false. There are two possibilities: a) all of the Pi are true
but R is untrue; b) R is false, all of the Pi but Pj are true and Pj is not false.
In case a), suppose firstly that all the Qi are true. Then Qi i∈I → R is false,
so by line (2), A ∈ Y and is false. So suppose at least one Qk is not true.
Then Pk → Qk is false and by line 1.k, A ∈ Xk and is false. In case b)
suppose all the Qi but Qk are true, but Qk is not false. Then Qi i∈I → R is
false, A ∈ Y and is false. Suppose next that all the Qi but Qk are true, and
Qk is false. Then Pk → Qk is false (whether or not i = j) A ∈ Xk and is
false. Suppose finally that two distinct antecedents Qm and Qn are not true.
Then since all the Pi are distinct or all but one are T, at least one of Pm, Pn

is true so at least one of Pm → Qm, Pn → Qn is false; hence A ∈ Xm or A
∈ Xn and either way is false.

The interpretation of the truth (falsity) constant as a conjunction of all
definitely true atomic sentences (disjunction of all definitely untrue ones)
necessitates, however, that we drop the substitution rule of part I:

X (1) P → Q Hyp
X (2) (P → Q)∗ 1 →SUB

where * is an admissible substitution of wffs for atoms. For take three atomic
sentences Ft, Gu, and Hv with Ft and Gu definitely true in the intended in-
terpretation and Hv definitely false there. Then the substitution rule would
generate inconsistency as follows:

T (1) T Hyp.
T, Ft (2) Gu 1 &E. Exp.
— (3) Ft → Gu 2 →I
— (4) Ft → Hv 3 Sub.
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— (5) Ft 1 &E
— (6) Hv 4,5 →E
— (8) ⊥ 6 ∨I

We could restrict the substitution rule so that only definitely true atoms may
be substituted for definitely true atoms, definitely false for definitely false
but this would be to cripple the rule, and moreover the rule would then be
redundant. Furthermore, its role in the completeness proof of Part I can,
as we shall see, be replaced by the proof-theoretic power afforded by the
interpretation of T and ⊥.

The plural antecedent form of → (for which we include the case in which
there are finitely many antecedents) behaves like the right associative iterated
conditionals, e.g. (A0 → (A1 → (A2 → B))) in one respect, namely that
from both the latter wff and also ((A0,A1,A2) → B) we can conclude to B
from A0, A1, A2. However the iterated and plural forms are distinct, the dis-
tinction being clearer in Polish notation: the plural is 〈→, {A0,A1,A2},B〉,
whilst the iterated form is 〈→,A0,→,A1,→,A2,B〉. This enables us to dis-
tinguish e.g. (A, B) → A&B from A → (B → A&B). The first is true and
indeed provable since A, B ` A&B, whilst the latter fails where A and B
are not both ‘non-contingent’. In this way we resolve some of our problems
over entailment. We have r ∈ r, r /∈ r ` ⊥; the determinacy restriction
on →I blocks r ∈ r ` r /∈ r → ⊥ (permitting us to reject r /∈ r → ⊥
without commitment to r /∈ r) whilst the neoclassical constraint blocks
(r ∈ r & r /∈ r) ` ⊥;15 but we are able to represent the ex contradictione
entailment in the object language by ((r ∈ r, r /∈ r) → ⊥)).

Turning to quantification now, this is effected in L by means of certain
types of regular infinitary conjunction and disjunction where we index the
class of substitution terms by Ω. For individual quantification, we abbrevi-
ate meta-linguistically &(ϕx/ti)i<Ω and ∨(ϕx/ti)i<Ω by the usual ∀xϕx
and ∃xϕx.16 As remarked the i i < Ω and x/ti notation is metalinguistic
and indicates the existence of a function from Ω indexing the simple terms of
the language and generating a set of instances each of which results from the
replacement of specific occurrences of a term in a fixed wff ϕ with a ‘vari-
able’, an item outside our language, then uniform replacement of the variable

15 The constraint on infinitary transitivity also blocks this derivation even though we have
(r ∈ r&r /∈ r) ` r ∈ r, (r ∈ r&r /∈ r) ` r /∈ r and r ∈ r, r /∈ r ` ⊥.

16 More restricted quantifications, over the natural numbers, small ordinals etc. can be
expressed by regular conjunctions whose instances are all of the form ϕa but where substi-
tutions for a are the canonical singular terms from the appropriate class, numerals, terms for
small ordinals etc.
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with a simple term of the language, each simple term occurring in an in-
stance in this way. Similarly the first order monadic quantifications ∀XΦX
or ∃XΦX are represented by infinitary conjunctions and disjunctions of the
form: &(ΦX/Fi)i<Ω and ∨(ΦX/Fi)i<Ω, where now the function from Ω
indexes all the simple monadic predicates of the language and the second or-
der quantifications ∀RΦR or ∃RΦR are represented by similar conjunctions
and disjunctions this time with the indexing function indexing all the simple
relational terms. However to get the full power of standard quantification
from our infinitary conjunction and disjunction rules we need to extend the
second-order predicate comprehension schemata to an analogous schema for
individual terms.

∃x x = a (that is, ∨ (ti = a)i<Ω)

for all singular terms, simple or complex, a of the language. In this way we
achieve the effect of ∀E and ∃I, for all our different quantifiers. Thus for any
singular term, simple or complex, u we can prove ϕx/u → ∃xϕx:

1 (1) ϕx/u Hyp.
— (2) ∃x x = u Axiom
3.i (3.i) ti = u Hyp.
1, 3.i (3.i.1) ϕx/ti 1, 3.i =E →E17

1, 3.i (3.i.2) ∨(ϕx/ti)i<Ω 3.i.1 ∨I
1 (4) ∨(ϕx/ti)i<Ω 2, 3.i.2 < Ω, ∨E
— (5) ϕx/u → ∃xϕx 4 →I

This yields ∃I; ∨E, where the disjunction is of the form ∨(ϕx/ti)i<Ω, will
be classed as an application of ∃E, likewise for the appropriate forms of &I
and &E (using the singular comprehension schema) with respect to ∀I and
∀E.

All this assumes, of course, that we have an identity predicate in the lan-
guage and rules to match; but since we have second-order quantification we
can define t = u by ∀X(Xt → Xu). The following rules are then derivable
neoclassically:

1.i (1.i) Fit Hyp. i < Ω
— (2.i) Fit → Fit 1.i→I
— (3) t = t 2.i i < Ω &I

17 See below on the =E rule. If ϕx/u is ti = u then →E is illegitimate but then we can
prove ∃x ti = x directly from =I and ∨I hence the conditional at line (5) by vacuous →I.
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∆ (1) t = u Given
∆ (2) ∀X Xt → Xu 1 Def. =
— (3) ∃X∀y(Xy ↔ ϕy) Comp.
4 (4) ∀y(Fy ↔ ϕy) Hyp.
4 (5) Ft ↔ ϕt 4 ∀E
∆ (6) Ft → Fu 2 ∀E
∆, 4 (7) ϕt → Fu 5,6 Trans.
4 (8) Fu ↔ ϕu 4 ∀E
∆, 4 (9) ϕt → ϕu 7,8 Trans.
∆ (10) ϕt → ϕu 3,9 ∃E

This rule then enables us to prove by →E an =E rule of the form:

Γ (1) ϕt Given
∆ (2) t = u Given
Σi (3) Det Pi ∀Pi ∈ Γ ∩ ∆, i ∈ I
Γ,∆,

⋃

i∈I
Σi (4) ϕu 1,2 [3.i] =E

We can also derive the symmetry (=Symm.) —∀x∀y(x = y → y = x)—
and transitivity (=Trans.) of identity under the given definition. Symmetry
is direct from the =E rule as is Transitivity in the form:

∀x∀y∀z(x = y → (y = z → x = z)).

One last proof-theoretic matter which should be looked at is mathematical
induction. One might think that there will be no need for induction in an
infinitary language like L. Thus instead of inductive proofs that e.g. commu-
tativity holds for each natural number, with respect to all others, one simply
has brute proofs for each number, with the property of being a number char-
acterised by an infinite disjunction of the form x = 0 ∨ x = 1...18 However
this is too sweeping a response. To be sure, if there are proofs for each
number that it has some property ϕ, this will give us, by infinitary &I, ∀nϕ
that is &ϕni,i∈ω where the ni are all the canonical numerals. But that is
not quite what we usually want, we want an explicit statement of the form
∀x(Num x → ϕx), where x ranges over everything, i.e. we need a regular
conjunction (of conditionals) over all simple terms and where Num x is the

18 See Gödel’s comments on infinitary languages in ‘Russell’s Mathematical Logic’ in
Paul Schilpp (ed.) The Philosophy of Bertrand Russell, Third Edition (London: Harper &
Row, 1963).
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standard inductive characterisation of being a number:

∀F((F0 & ∀y(Fy → Fy′)) → Fx)

Now we can get that if we can prove that

(i)∀x(Num x↔ x = 0 ∨ x = 1...);

indeed the left to right direction is enough for then we need only assume
Num t and use ∨E on the r.h.s. taken together with the proof of &ϕni,i∈ω.
But the obvious proof here of (i) will be an infinitary version of a standard
inductive proof. Moreover the typical basis we will have for supposing that
there exists an infinitary &I proof of &ϕni,i∈ω and other formulae of that
type will be quasi-inductive in the sense that we will be able to show in-
formally that for each term numeral n (to take the simple number-theoretic
case as an example), we can extend a proof of ϕt to one of ϕt′.19 There
will, however, be one important difference. Where in a standard inductive
proof one has an inductive step or steps in which one supposes for the sake
of argument that some inductive hypothesis is true —that ϕ holds of n, n a
parameter in the above example— in the infinitary case one will have rather
an Induction Theorem. That is, for each numeral there will be a proof of
ϕn and that proof, one informally sees, will be a proper sub-proof of an ex-
tended proof of ϕ for n′, the extension pretty much the same as the move
from ϕn to ϕn′ in a standard inductive step in finitary logic.

Finally, then, the definition of proofhood. As remarked proofs are to be
identified with strings of sequents, that is with functions from some initial
segment of the ordinals whose images are sequents. These are ordered pairs
consisting of a premiss set and a wff and are represented by X ⇒ P. We
characterise the subset of strings which are genuine proofs recursively by a
clause of this sort:

π ∈ PROOF ↔ ∃α Ord α & ∼Limit α & ∀β ≤ α
π(β) = A ⇒ A∨
∨π(β) = T ⇒ A for A an axiom20

19 But it would be wrong to respond that, if so, why do we not simply make do with the
indubitably finite, informal proof. For this is an informal proof of a mathematical existence
claim, here of the existence of the abstract structure of some particular formal proof. And it
will often be that this claim is only correct if the proof system and language are infinitary.

20 That is, an instance of one of the axiom schemata of singular term or predicate compre-
hension, or of naïve set comprehension or an instance of Ant/Det or Maximin or a member
of AXDET.
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∨∃Iπ(β) = X ⇒ Ai, i ∈ I & ∃γ < β s.t. π(γ) = X ⇒ &Ai i∈I ∨ ...
21

∨∃Iπ(β) = Ui∈IXi ⇒ &Ai i∈I & ∀i ∈ I, ∃γ < β s.t. π(γ) = Xi ⇒ Ai

∨∃I,J(π(β) = X,Ui∈IYi,Uj∈JZj ⇒ C
& ∃γ < β s.t. π(γ) = X ⇒ ∨Ai i∈I
& ∀i ∈ I, ∃δ < β s.t. π(δ) = Yi,Ai ⇒ C
& ∀B ∈ X ∩ Ui∈IYi, ∃ε < β ∃j ∈ J, π(ε) = Zj ⇒ Det B)
& (X ∪ Ui∈IYi) ∩ Uj∈JZj = ∅∨

∃I(π(β) = X,Y Ui∈IZi ⇒ C &
& ∃γ, δ < β s.t. π(γ) = X ⇒ A & π(δ) = Y ⇒∼A
& ∀B ∈ X ∩ Y, ∃δ < β ∃i ∈ I s.t. π(δ) = Zi ⇒ Det B)22

& (X ∪ Y) ∩ Ui∈IZi = ∅∨
π(β) = X,Uj∈JYj ⇒ Ai i∈I → B & ∃γ < β π(γ) =

X, {Ai i∈I} ⇒ B & ∀C ∈ X, ∃δ < β ∃j ∈ J s.t.
π(δ) = Yj ⇒ Det C & X ∩ Uj∈JYj = ∅∨

∃I,J,K (π(β) = Ui∈IXi,Y,Uj∈JZj ,⇒ B &
∃γ < β s.t. π(γ) = Y ⇒ Ai i∈I → B & ∀i ∈ I, ∃δ < β
(π(δ) = Xi ⇒ Ai & ∀C ∈ (Y ∩ Ui∈IXi) ∨ (Xi ∩ Xk), k 6= j
∃ε < β ∃j ∈ J(π(ε) = Zj ⇒ Det C & Uj∈JZj ∩ (Ui∈IXi ∪ Y) =
∅ & Uj∈JZj ∩ (Xi ∪ Xk), i 6= k,= ∅)))

3. Soundness and Completeness

The next task is to prove soundness and completeness theorems for the for-
malised system L which is our regimentation of naïve set theory. The the-
ory23 of L is to be a semantically closed theory since resort to ascent up
hierarchies is firmly eschewed; what is required, then, is an informal demon-
stration that there are, in L, soundness and completeness proofs for L. First,
however, we need to develop a semantics for L in order to pair semantics
notions with those from proof theory. Our highly impredicative form of
second-order comprehension permits a recursive definition of truth by en-
suring that there is some property P —for familiarity let us instantiate the
variable with ‘True’— satisfying:

True x↔ x = Ft & Ft ∨ x = Rtu & Rtu∨ ... [through all the atoms]

21 Similarly for the other ‘singular premiss’ rules:– ∨I, MM, ∀E, ∃I, ∼I, Expansion, εI,
ε = and Contraposition.

22 With a similar clause for Transitivity.

23 I will treat L ambiguously as both the language of the theory and the theory itself, the
ambiguity being harmless in this context.
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∨ Neg x & ∀ [or ∃] y in x, ∼True y
∨ Conj x & ∀y(y in x→ True y)
∨ Disj x & ∃y(y in x & True y)
∨ Cond x &

&(((&(Ant um x↔ ∨(um = ti)[i ∈ I])[m ∈ Ω]
& True ti)[i∈I] → ∀z(Cons z x→ True z)))I ∈ P(Ω)

Some explanation is in order. The first clause deals in ‘brute’ fashion with
truth for atoms.24 Of course, we could have replaced conjuncts such as
x = Ft & Ft with x = Ft & f(t) ∈ f(F) (or indeed g(t) ∈ g(F), for
any interpretation function g, thus generalising to a notion of truth relative to
a possibly ‘unintended’ interpretation function g). A fair amount of obvious
detail has been skipped here —in particular definitions of syntactic notions
such as x is a conjunction (Conj x), y is an immediate constituent of x (y
in x), xi is an antecedent of conditional x (Ant xix), y is a consequent of
conditional x (Cons yx) and so on. These definitions will ensure we have
such theorems as:

` Ant tu → ∃x, y u = 〈→, x, y〉 & t ∈ x

The right conjunct of the final clause

&(((&(Ant um x↔ ∨(um = ti)[i ∈ I])[m ∈ Ω] & True ti)[i∈I] →

∀z(Cons z x→ True z)))I ∈ P(Ω)

is a conjunction in which we go through all subsets of the set of simple
terms.25 Each conjunct, indexed by some given subset, is an infinitary con-
ditional whose antecedent contains for each term ti in the subset a conjunc-
tion one conjunct of which is the claim that ti is true, the other being an

24 Note that if we tried to define truth in general in brute fashion, e.g. by True x ↔
∨(x = ϕ

i
& ϕi)i∈I where I is a meta-linguistic set indexing all the canonical names of L

wffs, then we run into the problem that the defining formula must have rank ON in V since
the component canonical terms are of unbounded rank, and indeed must include the truth
formula itself. Hence the formula is not definitely a wff since it is not determinate whether
ON ∈ VON.

25 Hitherto the metalinguistic notation &(ϕi)[i ∈ I] has represented an infinitary conjunc-
tion any two conjuncts of which differ solely by substitution of one term indexed by a member
of I for another. Here we have a slightly more complex case —the notation &(ψI)[I ∈ P(Ω)]
represents a conjunction whose conjuncts differ by virtue of being themselves regular con-
junctions, as in the previous sentence, but with the variation occurring across different sets of
simple terms. But in this case as before the metalinguistic expression picks out a well-formed
formula of L.
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infinitary conjunction (the same in each case) expressing the claim that the
referents of the simple terms in the given subset are exactly the antecedents
of x. The consequent of the infinitary conditional states (relative to the hy-
pothesis given in the antecedent) that if all the antecedent wffs of x are true
then the consequent of x is true.

Call a wff ϕ syntactically definite, or s-definite, iff ψ(θ) is definitely true
or definitely false, in the intended interpretation, where ψ is any syntactic
claim and θ any sub-formula of ϕ (this will be tightened up later). Then
every instance of the naïve Tarskian schema:

True ϕ
i
↔ ϕi

is provable for all s-definite wffs in L (see the Appendix I: Tarskian equiv-
alences). So we could define |= ϕ by True ϕ at least for s-definite (mathe-
matical) ϕ. However granted the Tarskian equivalences we can simply use
ϕ itself to express pϕq is valid (for mathematical ϕ) and we will not go
wrong, granted those equivalences, over s-definite wffs. Moreover the in-
finitary conditional enables us to define X |= B by Ai i∈I → B where the
levels of the Ai in X have some upper bound so that Ai i∈I → B is definitely
a wff; in this way, the weak completeness result:– if ` ϕ then |= ϕ —is in
fact equivalent to an apparently stronger result:– if X ` ϕ then X |= ϕ —for
very many sets of wffs X.

Given the above semantics, and with lower case ‘true’ representing truth
in the interpretation selected as ‘intended’ (and in terms of which the con-
stants T and ⊥ are defined) we have restricted meta-theoretic soundness and
completeness results:

THEOREM:

∀ϕ ∈ ∆, ϕ is true iff ` ϕ

Here ∆ is the class of all sentences such that every sub-formulae of a mem-
ber is either definitely true or definitely not true.

Completeness: by induction on wff complexity we prove that if ϕ is defi-
nitely true then ` ϕ and if it is definitely not true then `∼ϕ.

Atomic case: If A is definitely true then A is a conjunct of T then ` ϕ by &E.
If A is definitely not true, then A is a disjunct of ⊥ so that ∼A is provable by:
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1 (1) A Hyp.
1 (2) ⊥ 1 ∨I
— (3) ∼A 2, ∼I

Inductive clauses:– consider the case for →. If Ai i∈I → B is definitely true
and in ∆ then either some Ai is definitely untrue or B is definitely true. In
the first case we have:

— (1) ∼Ai IH
2 (2) Ai Hyp.
Ai i∈I (3) B 1,2 ∼E, Exp.
— (4) Ai i∈I → B 3 →I

whilst the second is similar using the provability of B. If, on the other hand,
Ai i∈I → B is definitely untrue then since every sub-formula is either def-
initely true or definitely untrue, all of the Ai are definitely true and B is
definitely not true. Hence the conditional is refutable via:

1 (1) Ai i∈I → B Hyp.
— (2.i) Ai IH, i ∈ I
1 (3) B 1,2.i i ∈ I →E
— (4) ∼B IH
1 (5) ⊥ 3,4 ∼E
— (6) ∼ (Ai i∈I → B) 5, ∼I

Corollary: For ϕ ∈ ∆, ` ϕ or `∼ϕ. Proof: Every ϕ in ∆ is either definitely
true or definitely not true. o

Hence if the language of arithmetic is in ∆, as seems plausible, then all arith-
metic truths are neoclassically provable in naïve set theory; if the language
of ZFC is in ∆ then all truths of ZFC set theory are provable.26

Soundness: by induction on proof length. Since the key sentences belong
to ∆, the proof can use the classical reasoning of the soundness proofs for
Lukasiewiczian semantics (but with the simplification that untruth and fal-
sity are equated). Again consider the case for the basic → rules, in particular
the trickier falsity preservation directions:

26 Of course many theorems of ZFC, e.g. the Axiom of Foundation, will fail as usually
expressed. But they will hold relativised to Vκ, for inaccessible κ.
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→I:
X,Ai i∈I (1) B Given
Yj j∈J (2.j) Det C for all C ∈ X
X,

⋃

j∈J
Yj (3) Ai i∈I → B 1, [2.j] j ∈ J →I

where X ∩
⋃

j∈J
Yj = ∅.

Falsity Preservation: Suppose Ai i∈I → B is false (untrue) and all of X, but
P are true. Since Ai i∈I → B belongs to ∆, it follows from the fact that it is
untrue that all of the Ai are (definitely) true but B is (definitely) untrue. The
inference here is from

Not: [if all of the Ai are true then B is true and if B is untrue and all
of the Ai but Aj are true then Aj is untrue]

to
Either: Not [if all of the Ai are true then B is true] or Not: [if B is
untrue and all of the Ai but Aj are true then Aj is untrue]

For the first disjunct it follows (here we require that Ai i∈I → B is in ∆ so
questions of truth for all its components are determinate) that all of the Ai

are true but B is untrue, whence, by the correctness of line 1, P is false.

For the second disjunct, it follows in like fashion that B is untrue, all of the
Ai but Aj are true and Aj is also true so the conclusion is the same.

→E:
Xi (1.i) Ai Given, i ∈ I
Y (2) Ai i∈I → B Given
Zk (3.k) Det Cj ∀Cj ∈ Σ⋃

i∈I
Xi, Y,

⋃

k∈K
Zk (4) B 1.i i ∈ I, 2, 3.k, k ∈ K, →E

where Σ is the set of all wffs which either belong to
⋃

i∈I
Xi ∩ Y or else be-

long to Xi ∩ Xk for some i 6= k and where
⋃

j∈J
Zj ∩ (

⋃

i∈I
Xi ∪ Y) = ∅ and

⋃

j∈J
Zj ∩ (Xi ∪ Xk) = ∅ for i 6= k.

Falsity Preservation: Suppose B is untrue and all wffs in
⋃

i∈I
Xi, Y,

⋃

k∈K
Zk

other than P are true. Since Ai i∈I → B ∈ ∆, either all of the Ai are true or
one at least is untrue. If the first holds, Ai i∈I → B is untrue, P ∈ Y and is
untrue by line (2). If the second disjunct is the case and Aj is untrue then P
∈ Xj and is untrue by line 1.j. o
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But these soundness and completeness results are restricted to the classical
sector of the language ∆ where all wffs are determinate. Since our reasoning
in the naïve theory deals with indeterminate sentences and, particularly when
interpreting the theory, with classes such as U, ON and V concerning which
many matters are indeterminate, we need to extend the soundness result. We
need also to show how soundness and completeness results are provable for
L from within L, if L is to have the semantic closure property which any
stable theory ought to have.27 In fact, as our troubles at the beginning of
section 2 showed, soundness from within is the only way we will be able to
generalise the result. It is necessary, first of all, to show that L can express
its own syntax and proof theory. We note firstly that every member x of the
universal set U has a ‘primitive’ name pxq, this being the converse image
of f1 the restriction of our ‘intended’ interpretation f to the simple terms.
Moreover the informal specifications of syntactic properties and relations —
e.g. being a wff, being an λ-sized conjunction each of whose conjuncts is a
relational predication one of whose terms occurs in the set X, and so on—
can clearly be formalised themselves in L so that all our syntactic notions
are definable in L.

Let the empty set be canonically named by some fixed simple term p∅q
which designates it in the intended interpretation; write this CAN ∅p∅q (∅ is
canonically named by p∅q)and extend the definition of CAN via the recur-
sive definition (instance of set comprehension)

CANxy↔ x = ∅ & y = p∅q∨
∨(∃I y = pεv(∀w(w ∈ v ↔ ∨(w = zi)))q[i ∈ I], &
& ∀i ∈ I, ∃t ∈ x CANtzi &
∀t ∈ x, ∃i ∈ I CANtzi).28

Thus a class term canonically names a class if it lists (perhaps infinitely),
by means of a disjunction of identity statements, all its members each des-
ignated by one of its canonical names. There will be infinitely many such
terms for each x which is canonically named, of course, but using epsilon
terms we can specify a unique canonical name as εw(CANxw) and represent
the canonical name of x meta-theoretically by x. Every member of V has a
canonical name.

27 See again my ‘Naïve Set Theory is Innocent!’ op. cit.

28 Here logical symbols such as “=” and “→” are used ambiguously as both as parts of
the mathematical English of the metalanguage and as names of the corresponding operators
in the object language.
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Proof. Suppose for all β < α, ∀x ∈ Vβ , ∃y CNxy. Let a be an arbitrary
member of Vα; from the definition of Vα, each member y of a belongs to
some Vβ as above, (if a has no members then CNap∅q). Hence by IH for
each such y there is a z with CNyz so that y exists for each such y and hence
pw = yq exists for each such y. Letting the index class I be just the class of
all y in a, hence I = a, we get the existence of an infinitary disjunction ϕ of
the form: ∨pw = yq, ∀y ∈ I. The class term {w : ϕ} is thus an expression
which lists all and only the canonical names of members of a in an infinite
disjunction of the type specified in the definition of CAN. For any y in I,
there is a t such that CANty namely y and for any t in a there is y in I with
CANty namely y once again. o

As promised in section 2, I will extend the use of the metalinguistic device
of underlining so that where pϕq is a (perhaps complex) metalinguistic term
referring (under assignments to any component parameters) to an object lan-
guage expression x, pϕq refers (under the same assignment to parameters)
to an object language canonical name εw(CANtw) where t refers to x in
the intended interpretation (here we presuppose some choice function over
canonical names). Thus, e.g. ‘A → B’, refers, given an assignment of wff x
to ‘A’ and wff y to ‘B’ to some object language term εw(CANtw) where t
refers in the intended interpretation to the string whose first term is the con-
ditional, second term is x and third term is y.

V completeness.

Our first completeness theorem shows us that naïve set theory in L decides
all ‘positive’ questions of identity and membership in V.

THEOREM: ∀y ∈ V, if x ∈ y then ` x ∈ y; if x = y then ` x = y;

Proof: If x ∈ y then v = x is one of the disjuncts in the class term which
is y hence by =I, ∨I and set comprehension ` x ∈ y. If x = y then by the
uniqueness of canonical names x = y hence ` x = y by =I. o

We do not have the negative halves of these principles and a consequence
of this is that our language L is a ‘fuzzy’ set with it being indeterminate
whether certain strings, ON-long strings, for example, are wffs. But this
does not leave us incapable of proving negatives, e.g. that string s is not a
wff or not a proof. Thus we can prove by induction that no wff starts with
two predicate letters, none however long is of the form FF ... . Similarly we
can prove by induction that every wff and every proof string is a member of
V.

Moreover consider any property ϕx. It may well be indeterminate, for
many x, whether or not ϕx applies to x but we can narrow ϕx down to a
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‘slimmer’, more precise property pDefinitely ϕxq defined, as remarked ear-
lier, by oϕx (i.e. T → ϕx). For ϕt is true (in the mathematical sector) just
when oϕt is but when ϕt is indeterminate oϕt is false:–

1 (1) oψ Hyp.
2 (2) ψ Hyp.
2 (3) ψ∨ ∼ ψ 2 ∨I
— (4) ψ → (ψ∨ ∼ ψ) 3 →I
1 (5) Det ψ 1,4 Trans.
— (6) oψ → Det ψ 5 →I

so by contraposition, ∼Detψ →∼oψ. By moving from ϕx to oϕx we
extrude the indeterminate elements which are now part of the negative ex-
tension of the concept pDefinitely ϕq.

Of course higher-order indeterminacy means we may never be able, for a
particular ϕ, to expunge all indeterminacy. Let us define Det1 P ≡df. Det P,
Detβ+1P ≡df. Det (DetβP) and DetγP, for γ a limit, by

∨(&(Detα P)β ≤ α < λ)0 < β < λ

(Thus Detλ P says that P is determinate all the way up to —but without
reaching— λ from some point β or other below.)

We can describe P as ‘quasiα-determinate’ when Detα+1P holds and as
hyperα-indeterminate with ∼Detα+1P holds (quasi-determinacy and hyper-
indeterminacy being quasi1-determinacy and hyper1-indeterminacy). It may
be hyper-indeterminate whether or not ϕu in which case it will be indetermi-
nate whether or not oϕu and though in such a case ooϕu will be false via :–

1 (1) ooψ Hyp.
2 (2) oψ Hyp.
— (3) oψ→ Det ψ Theorem
2 (4) Det ψ 2,3 →E
2 (5) Det ψ ∨ ∼Det ψ 4 ∨I
— (6) oψ → (Det ψ∨ ∼Det ψ) 5 →I
1 (7) Det Det ψ 1,6 Trans.
— (8) ooψ→ Det2ψ 7 →I29

(9) ∼Det2ψ →∼ooψ 8 Contrap.

29 This proof may be generalised to show oαϕ → Detαϕ with the obvious definition of
oα.
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there may be a hyper2-indeterminate m for which ooϕx is indeterminate
and so on.

Still, though indeterminacy may never be completed expunged by iterating
the definitely operator applied to a concept ϕx —there is always some x or
other such that ∼Detoλϕx— nonetheless it will never be the case that an
object is both definitely ϕ and definitely not ϕ. There can be blobs which
are not definitely yellow nor definitely red (pace Williamson)30 but any blob
which is on the definitely red/not definitely red boundary (however fuzzy it
is) will not be on the definitely yellow/not definitely yellow boundary. Or
at any rate, such a principle holds for indeterminacy in the current naïve set
theory framework for we have `∼ (oP & o∼P):31

1 (1) oP & o∼P Hyp.
1 (2) oP 1 &E
1 (3) o∼P 1 &E
1 (4) P →∼T 3 Contrap.32

5 (5) ∼T Hyp.
5 (6) ⊥ 5 MM33

— (7) ∼T →⊥ 6 →I
1 (8) P →⊥ 4,7 Trans.
1 (9) T →⊥ 2,8 Trans.
— (10) T Hyp.
1 (11) ⊥ 9, 10 →E
— (12) ∼ (oP & o∼P) 11 ∼I

Our focus, now, will be on the concepts of definite provability and definite
unprovability, that is o(` ϕ) and o(Not: ` ϕ). By our V completeness

30 Vagueness (London: Routledge, 1994).

31 In fact we can make do with the weaker ` oP →∼o∼P.

32 Eliding a double negation elimination.

33 This move is one from a wff of the form ∼&(Bi)[i ∈ I] to one of the form ∨(∼Bi)[i ∈
I].
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result, the classes of determinately provable wffs and of determinately un-
provable wffs are represented by two terms, let us say Bew and NBew re-
spectively. So we have:34

REPRESENTABILITY (REP):

a) o(` P) then ` Bew P.
b) o(Not: ` P) then ` NBew P

(writing, more familiarly, Bew x for x ∈ Bew). By the result `∼ (oP &
o∼P) we know that for every member of x of U and any term t which stands
in the intended interpretation for x,

Not: o(` t) & o(Not: ` t).

holds in the intended interpretation. So by metatheoretic completeness:

Lemma: ∀P, `∼ (Bew P & NBew P).

Hence we can show that the following soundness result is provable in L for
the sub-sector Π ⊆ L such that ∀P ∈ Π, o(` P) or o(Not: ` P).

SOUNDNESS: ∀P ∈ Π, ` Bew P → P.35

Proof:
1 (1) o(` P) or o(Not: ` P). Hyp.
2 (2) o(` P) Hyp.
2 (3) ` P 2 →E (from T ` T)
2 (4) ` Bew P → P 3 → I
5 (5) o(Not: ` P). Hyp.
5 (6) ` NBew P 5 REP
— (7) Bew P ` Bew P Hyp.

34 In what follows, pDet ϕq is used both as a metalinguistic abbreviation for pnecessarily
ϕ or it is not the case that ϕq and as an abbreviated name for an object language operator
T → (ϕ∨ ∼ϕ), ϕ a schematic variable and similarly oϕ will function both as abbreviation
and name of object language operator. English operators will often be used for metalinguistic
conjunction, disjunction etc. so that for example, pit is not the case that P is provableq will
be represented by pNot: ` Pq. The single turnstile ‘`’ is thus another piece of metalinguistic
notation.

35 Soundness is thus only demonstrable for wffs which are definitely provable or definitely
not provable: but why should we be concerned about soundness for any other wffs:– dodgy
characters all!
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5 (8) Bew P ` Bew P & NBew P 6,7 &I
— (9) `∼ (Bew P & NBew P) Lemma
5 (10) Bew P ` P 8,9 ∼ E
5 (11) ` Bew P → P 10 → I
1 (12) ` Bew P → P 1, 4, 11 ∨E

In proofs such as the above, rules which are underlined are mentioned in the
metalanguage not used: more fully we are appealing to clauses in the recur-
sive definition of proofhood. Thus at step (10) we appeal to the conditional:

If Bew P ` P then ` Bew P → P.

which is derivable from the recursive definition of proofhood by using ∀I’s
then ∨I to derive the right hand side of the appropriate instance (instantiating
with pBew P → Pq) then →E to get the conclusion. Note that we could
widen our language to include non-mathematical sentences so that P can
contain the intensional conditional subject to the intensional proof rules. For
there are no uses of the intensional → rule in the proof and the →E at line
three is legitimate for the intensional conditional too.

As a corollary of the above theorem we can see that there is a consistency
proof for the theory of L from within that theory, i.e. `∼Bew ⊥

Proof:
1 (1) Bew ⊥ Hyp.
— (2) Bew ⊥ → ⊥ Theorem
1 (3) ⊥ 1,2 →E
— (4) ∼ Bew ⊥ 3 ∼I

In the converse direction, meta-theoretic completeness ensures that there
is an object language completeness proof for members of ∆ the set of all
wffs all of whose sub-formulae are either definitely true or definitely untrue.

COMPLETENESS: For all P ∈ ∆ ` P → Bew P

Proof:

1 (1) P is true ∨ P is untrue Hyp.
2 (2) P is true Hyp.
2 (3) ` P 2 Metacompleteness
2 (4) ` Bew P 3 REP
2 (5) ` (P → Bew P) 3 → I
6 (6) P is untrue Hyp.



“04weir”
2002/6/11
page 319

i

i

i

i

i

i

i

i

NAÏVE SET THEORY, PARACONSISTENCY AND INDETERMINACY: PART II 319

6 (7) `∼P 6 Metacompleteness
6 (8) ` P → Bew P 7 Hyp. ∼ E,→ I
1 (9) ` P → Bew P 1,5,8 ∨E

4. Superparadox?

It might be objected that these results are rather trivial since they are not
soundness and completeness results on the relations between proof and truth,
defined metatheoretically for the object language L. Rather they are demon-
strations that we can prove the soundness and completeness of L, from within
L (i.e. from within naïve set theory expressed in that language) itself. As we
have seen, we can prove metatheoretically soundness and completeness re-
sults for a narrow fragment of L, the class ∆. But the most interesting feature
of L is the fact that it provides for expression of indeterminate propositions
which classical logicians officially abjure (whilst having unofficial resort to
them) and if we are to be happy reasoning with such propositions we need at
least soundness proofs for the sentences of the language which express them,
at any rate where it is determinate whether or not the sentence is provable.
But in the last section we did not prove, in our informal metatheory, sound-
ness and completeness results for the sectors Π and ∆, rather we showed in
the metatheory that, e.g. in Π ⊂ L we could prove soundness for Π.

Notoriously, soundness proofs have a boot-strapping quality about them
but is this not taking boot-strapping too far? Could we not show in similar
boot-strapping fashion that in a language LP containing Prior’s connective
‘tonk’, soundness could be proved if we can utilise the tonk rules themselves
in the language? However we know in advance that the ‘tonk’ rules are
unsound so that proofs using those rules are worthless. We do not know that
about the naïve rules (whatever classicists might think they know).

Moreover standard soundness proofs prove soundness for an object lan-
guage theory θ in object language L from within a stronger theory θ* in
metalanguage M at least as rich as O. For example, we prove soundness for
ZFC from the theory ZFC plus ‘there exists at least one inaccessible’. For
all their technical value, such proofs are philosophically worthless. They are
akin to a ‘super-naturalised epistemology’ in which one proves the reliabil-
ity of perception by physical organisms of the ordinary physical world by
positing a mysterious interaction between brain activity and Cartesian souls
mediated by an intermediary link I. If such an epistemologist ‘explained’
how the link I worked by postulating a link I−1 between brain and I and a
link I1 between I and the soul, ‘explained’ the link operation of the link I−1

by postulating a link I−2 between brain and I−1 and so on, no one would
think this explanatory regress was virtuously circular. I suggest that proving
the soundness of a theory θ by resort to a stronger theory θ* which one can
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only show to be sound by appeal to a yet stronger theory θ**, and so on and
so on, is as epistemologically empty as the supernaturalised epistemologists
explanation of how perception gives us knowledge of the world. Genuine
naturalised epistemology —assuming our best theory of the world and then
attempting to show how, according to that very theory itself, we could come
to reliably believe it— is far from a trivial task. Similarly, proving the sound-
ness of Π ⊂ L, from within Π, is far from a trivial matter, as we have seen;
we had to “warp up” to infinitary logic to effect it, after all.

As remarked re the comparison with the ‘tonk’ case, the neo-classical sys-
tem is not obviously trivial. The logic, as we saw in Part I, has been tested
for soundness in an approximate simulation, via the gappy Lukasiewiczian
semantics, of the full non-gappy naïve set theoretic framework. But the boot-
strapping nature of all soundness proofs does mean that the existence of a
soundness proof for L in L does not rule out with certitude the possibility
that the system is incoherent. It is fairly uncontentious now that one cannot
find certitude even in mathematics, not for complex and powerful mathemat-
ical systems at any rate. None of this, however, obviates the need to make it
at least reasonably plausible that the system is coherent by showing that it is
not vulnerable at those stress points which have proved fatal to other systems
by generating paradoxes which turn into irresoluble antinomies.

One of the most common ways to generate paradox in a formal system is
via self-referential sentences such as liar sentences. To do this in a formal
language, we need a fixed point or diagonalisation lemma assuring us that
for any canonical predicate ϕ there is a sentence ϕ* such that:

` ϕ* ↔ ϕϕ* :

How might we attempt to prove the fixed point lemma in the neo-classical
framework? Let us consider the set of one-place open formulae with a fixed
free variable x. These are the results of substituting the fixed variable x
(variables being terms not occurring in L) for a singular term of L. Since the
set 1-Wff of such formulae is a subset of V, every member of 1-Wff has a
canonical name. Provably, in L —from second-order comprehension— we
get the existence of a ternary relation Rabc representing [a is the result of
substituting b for a fixed free variable x in a one-place open formula c] such
that

Rabc ↔∼ (1-Wff c & STb) & a = b∨
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1-Wff c & STb & ∃F ∈ Ω2, c = (Fx & a = Fb) ∨ ...
∨∃S ∈ Ω3, ∃d ∈ ST, (c = Sxd & a = Sbd)∨
∨(c = Sdx & a = Sdb)∨
∨∃y∃z∃λ(Conj y & Conj z & ln y = ln z = λ &
a = y & c = z & ∀i ∈ λ, ∀v, w, ((v = yi & w = zi)
→ R(vbw) ∨ ...)

with similar clauses for ∨, & and →. So Rabc holds if i) either c is not a
one-place open formula (1-Wff) or b is not a singular term (ST); or ii) that
is not so and c is an atom in which case we specify the replacement in brute
fashion; or iii) c is a complex sentence, for example a conjunction, in which
case we specify that a is a wff of the same length (ln = λ), that is we can
index both conjuncts by an ordinal λ, and the corresponding conjuncts (yi,
zi) under the mapping are such that a’s conjunct is the result of applying the
R operation to c’s.

Now consider formulae such as ∼ ϕεy(R(y(εzCANxz)x)) for any prim-
itive second-order ternary predicate R. We will be particularly interested, of
course, in ∼Bew εy(R(y(εzCANxz)x)). For each R, the 1-wff will have a
canonical name; fix on one particular R and suppose ∼Bew εy(R(y(εzCAN
xz)x)) has canonical name t. Consider next the wff

∼ Bew εy(R(y(εzCANtz)t))

Suppose that under the assignment to R in the intended interpretation the
above biconditional defining Rabc is true so that the wff ‘says of itself that it
is unprovable’:– the result of substituting a (and therefore, by functionality,
the) canonical name of the referent of t into ∼Bew εy(R(y(εzCANxz)x)) is
just the wff ∼Bew εy(R(y(εzCANtz)t)). If the identity sentence:

∼ Bew εy(R(y(εzCANtz)t)) = εy(R(y(εzCANtz)t))

belongs to the classical sector of the language then by Classical Complete-
ness:

` ∼ Bew εy(R(y(εzCANtz)t)) = εy(R(y(εzCANtz)t))

hence by =E

`∼ Bew εy(R(y(εzCANtz)t)) ↔∼ Bew ∼ Bew εy(R(y(εzCANtz)t))

or, abbreviating ∼ Bew εy(R(y(εzCANtz)t)) by G, we have an instance
(GL) of the fixed point lemma:
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` G ↔∼Bew G.

If, however, G is either definitely provable or definitely unprovable so that
G ∈ Π then antinomy looms in the metatheory via the following proof:

1 (1) ` G Hyp.
1 (2) ` Bew G 1 REP
1 (3) `∼Bew(G). 1 GL Proof Theory
1 (4) ` ⊥ 2,3 Proof Theory
1 (5) ⊥ 5, MetaSoundness36

— (6) Not: ` G 5 ∼I
— (7) `∼Bew G 6 REP.
— (8) ` G 7 GL Proof Theory
— (9) ` 6,8 ∼E

The conclusion which must be drawn, of course, is either that

∼ Bew εy(R(y(εzCANtz)t)) = εy(R(y(εzCANtz)t))

does not belong to ∆, where R is interpreted in the intended interpretation
as the substitution function, that is the identity of the Gödelian sentence is
an indeterminate matter, or else that G /∈ Π.

The latter is clearly the preferable option since if the diagonalisation lemma
fails in general then of course the usual self-referential antinomies are not
derivable. But since self-reference is clearly part of normal English, it would
be an inadequate formalisation which was not able to represent such para-
doxical reasoning as occurs in natural language. However diagonalisation
might hold fairly generally but not in full generality. After all, ‘This sen-
tence is not provable’ is arguably not paradoxical in English because ‘proof’
in natural language is an informal notion, perhaps an incomplete one, at any
rate one for which we have no reason to think representation theorems hold
in full generality. On the other hand, ‘this sentence is not true’ is paradox-
ical because the naïve interderivabilities —from ps is trueq conclude P and
from P conclude ps is trueq— where substituends for ‘s’ name substituends
for ‘P’, are, it is plausible to suppose, part of our ordinary concept of truth.
So we certainly would want the liar to be representable in any formalisation
of our informal mathematical and philosophical language. But there is no

36 Here we assume that it is determinate whether or not ` ⊥ so that the soundness theorem
applies.
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reason to think that adding

Det ∼ True εy(R(y(εzCANtz)t)) = εy(R(y(εzCANtz)t))

to AXDET yields antinomy because the fixed point:

True λ↔∼ True λ

is not neo-classically inconsistent.
Of course there is always the threat of inconsistency in the system via

‘Revenge Liars’. These typically work by taking the concept introduced in
an attempt to resolve paradox and building it into strengthened liars. Thus
gap approaches are vulnerable to sentences of the form:

γ :∼ Trueγ ∨ Gappy γ

hierarchical approaches to the appropriate variant of

η : ∀α ∼ True-at-level-α η.

Since indeterminacy has been the key concept used to block the derivation of
contradiction from neoclassical naïve set theory, the standard Revenge attack
on the theory outlined here would look to sentences such as

ı :∼ True ı∨ ∼ Det True ı

to cause trouble.
Informally, the argument would go thus: suppose sentence ı is untrue.

Then it is either untrue or indeterminate (i.e. indeterminate whether or not
it is true), hence true. By consequentiae mirabilis, ı is provably true. By
the naïve truth rule it is therefore either untrue or indeterminate; but we have
ruled out the first disjunct. Hence it is provably indeterminate. But how can
a sentence be both provably true and provably indeterminate? Moreover, the
Revenger continues, you cannot wriggle out the above problem by appeal to
indeterminacy. To be sure, the preceding reasoning —the use of consequen-
tiae mirabilis in particular— is classical. But to block it the neoclassicist has
to aver that ı is indeterminate. But if it is indeterminate, it is true: how can
one be committed fully both to its truth and to its indeterminacy?

Let us look at this reasoning more carefully. First of all note that from the
Ant/Det Rule we have i) Det P a` Det ∼P and that ii) if ` ϕ ↔ ψ then `
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Det ϕ ↔ Det ψ37 and so, by contraposition, `∼Det ϕ ↔∼ Det ψ. Fact ii)
generalises:– a simple inductive proof establishes that if ` ϕ ↔ ψ then `
Detα ϕ ↔ Detα ψ and (by contraposition) `∼Detα ϕ ↔∼ Detα ψ (for the
limit case we use in each direction ∨E and &E followed by ↔E from the
premiss, then &I, ∨I and finally →I). In particular, using the Tarskian bicon-
ditionals derivable from the naïve rules, we have, for all α and all sentences P

Lemma: ` X ⇒ Detα P iff ` X ⇒ Det Trueα P iff ` X ⇒ Detα ∼True P.

Bearing these facts in mind, we can formalise the above argument as:

1 (1) ∼True ı Hyp.
1 (2) ∼True ı ∨ ∼Det True ı 1 ∨I
1 (3) True ı 2 Naïve Truth
4 (4) Det ı Hyp.
4 (5) Det ∼True ı 4 Lemma
1,4 (6) ⊥ 1,3 [4] ∼E
4 (7) True ı 6 ∼I
4 (8) ∼True ı ∨ ∼Det True ı 7 Naïve Truth
1,4 (9) ⊥ 1,7 ∼E
10 (10) ∼Det True ı Hyp.
4 (11) Det True ı 4 Lemma
4,10 (12) ⊥ 10,11 ∼E
13 (13) Det Det ı Hyp.
4, 13 (14) ⊥ 8,9, 12 [13] ∨E

This proof shows that the combined assumptions (4) and (13), that is Det ı
and Det Det ı, are inconsistent and from this we can conclude that Det ı /∈
AXDET for if it was axiomatic so would be Det Det ı which we have just
seen to be impossible.

However, the Revenger needs to derive a contradiction in the neo-classical
system outright, thus far all she has is the joint incompatibility of two deter-
minacy wffs. Moreover the obvious development of the above proof towards
outright contradiction is blocked by the disjointness restrictions (DR) we
place on determinacy premisses in our rules. For instance, in ∼E:

37 The proof uses transitivity. From our premiss ` ϕ↔ ψ we get ` (ϕ∨ ∼ ϕ) → (ψ∨ ∼
ψ) so from T → (ϕ∨ ∼ ϕ) we get T → (ψ∨ ∼ ψ) by transitivity, the converse direction
being exactly symmetrical.
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X (1) A Given
Y (2) ∼A Given
Zi, i ∈ I (3.i) Det Q Given, ∀Q ∈ X ∩ Y
X,Y,

⋃

i∈I
Zi (4) C 1,2, [3.i, i ∈ I], ∼E

the determinacy restriction DR is:
⋃

i∈I
Zi ∩ (X ∪ Y) = ∅. Similarly in →E,

we restrict the rule:

Xi (1.i) Ai Given, i ∈ I
Y (2) Ai i∈I → B Given
Zj (3.j) Det Cj ∀Cj ∈ ∆j ∈ J⋃

i∈I
Xi, Y,

⋃

j∈J
Zj (4) B 1.i i ∈ I, 2, [3.j, j ∈ J], →E

where ∆ is the set of all wffs which either belong to
⋃

i∈I
Xi ∩Y or else belong

to Xi ∩ Xk for some i 6= k, by adding the conditions that
⋃

j∈J
Zj ∩ (

⋃

i∈I
Xi ∪

Y) = ∅ and that
⋃

j∈J
Zj ∩ (Xi ∪ Xk) = ∅ for i 6= k.

Nonetheless the neo-classicist cannot rest content with using such restric-
tions to block antinomy since they can be dropped without violating sound-
ness if we are prepared to complicate the rules still further. For example, in
∼E we can add a line 4.j j ∈ J and altered conclusion (5):

Wj , j ∈ J (4.j) Det R Given, ∀R ∈
⋃

i∈I
Zi ∩ (X ∪ Y)

X, Y,
⋃

i∈I
Zi,

⋃

j∈J
Wj (5) C 1,2, [3.i, i ∈ I, 4.j j ∈ J], ∼E

where for each 4.j, R /∈ Wj . This would still preserve soundness38 as would
similar amendments to ∨E, →E and →I. Thus for →E we amend the rule to:

38 Proof: the truth preservation direction is straightforward; in the falsity preservation
direction, suppose C is false and all of X,Y,

⋃

i∈I
Zi,

⋃

j∈J
Wj but P are true. If P is in X but not

Y or vice versa the proof is as before. If P is in both then we must have Zi ⇒ Det P as a
premiss. If all of Zi are true then P is determinate and so false for if it is true then the IH
ensures both A and ∼A are true, which is absurd. If not all of the Zi are true then P ∈ Zi as
well as X ∩ Y so that we have as a premiss Wj ⇒ Det P and such that P /∈ Wj ; hence all of
Wj are true so P is determinate and hence false, as required.
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Xi (1.i) Ai Given, i ∈ I
Y (2) Ai i∈I → B Given
Zj (3.j) Det Cj ∀Cj ∈ ∆⋃

k∈K
Wk (4.k) Det Dk ∀Dk ∈ Γ

⋃

i∈I
Xi, Y,

⋃

j∈J
Zj ,

⋃

k∈K
Wk (4) B 1.i i ∈ I, 2, [3.j, j ∈ J, 4.k, k

∈ K] →E

where Γ =
⋃

j∈J
Zj ∩ ∆ and where Dk /∈ Wk.

With these new, more complex but more liberal, rules, we can then con-
tinue the previous proof involving ı:

4,13 (14) ⊥ 8,9, 12 [13] ∨E
13 (15) ∼Det ı 14 ∼I
13 (16) ∼Det True ı 15 Lemma
13, T (17) ı∨ ∼ ı 16, ∨I ×2, Exp.
18 (18) Det Det Det ı Hyp.
13,18 (19) Det ı 17 [18] →I
13, 18 (20) ⊥ 15, 19 [18] ∼E
18 (21) ∼Det Det ı 20, ∼I

So from Det ı we can prove ı (apply naïve truth to line 7) and from Det
Det ı together with Det ı we can generate a contradiction so that Det Det ı
entails ∼Det ı (line 15) and hence ı. But we cannot prove ∼Det ı (and so
ı) outright; we cannot prove both ı and its indeterminacy but only prove it
on the assumption Det Det ı. And to go from this to Det ı we need the
further assumption of Det Det Det ı, (Det3ı) and the use of our more liberal
rule (at line 20). So overall we have only shown that Det3ı entails ∼Det2ı
(line 21). However this result is now stable in that ∼Det Det ı leads to no
further problems, we cannot prove ı from it by ∨I, for instance, since the
right disjunct of ı is equivalent to ∼Det ı, not ∼Det Det ı.

The upshot is that the strengthened liar which says of itself “I am untrue or
indeterminate” is hyper-indeterminate, that is it is not determinate whether
or not it is determinate, so that we must be agnostic on whether or not it
is indeterminate thereby blocking antinomy. But the intrepid Revenger will
doubtless now attempt to construct a hierarchy of strengthened Liars of the
form:

σα :∼ True σα ∨ (∨[∼ Detβ True σα]β < α)
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So σα says of itself that it is either untrue, or indeterminate or hyper-indeter-
minate or hyper-hyper-indeterminate and so on for each level of indetermi-
nacy below hyperα-indeterminacy.

At each stage α of this hierarchy, however, the neo-classicist can block
antinomy by showing how the generalisation of the intuitive argument we
started from becomes, in neo-classical format, merely a harmless proof of the
hyperα-indeterminacy of the sentence σα, i.e. (in the limit case in particular)
`∼Detα σ; see Appendix II: Hyperindeterminacy.

But now the Revenger scents blood: this move reeks, she may say, of the
stench of countless failed hierarchical resolutions of the antinomies.39 A
painful dilemma threatens, in all such cases. Either the concept involved in
the solution and in the strengthened liars, in this case ‘hyper-indeterminacy
to some arbitrary ordinal degree’, can be expressed in the object language or
not. If not, then the object language lacks the expressive power of the natural
language in which we give the solution, it is not semantically closed. But it
is the avoidance of antinomy in natural language which interests us:– that
some significantly weaker language is free of paradox is irrelevant, we wish
to model in a formal language this key feature of natural language that, at
any time, we can express paradox in the language and also devise solutions
to the paradoxes using it. Hence the need for a closed semantic theory:– our
formalised idealisation of natural language theorising and reasoning about
truth must be able to include the very theorising and reasoning which forms
part of the solution to the paradoxes. If, on the other hand, the concept
of hyper-indeterminacy to an arbitrary degree is expressible in our formal
language L, then will we not be able to use it to generate an ultimate super-
duper strengthened liar? For what is to stop us generalising on the parameter
here, and introducing a liar whose indeterminacy clause is not tied to some
fixed ordinal α ∈ ON but refers to indeterminacy at every ordinal level, that
is what is to stop us introducing an ultimate liar which says of itself that it is
either untrue or hyperα-indeterminate for every ordinal level α?

The second horn of the dilemma is certainly the one we should tackle, that
is we should not deny that our formal language lacks the power to express
the concepts involved in the solution. For the language will contain the one-
place predicate (∨[∼ Detα True x]α < ON) which says of x that it is hyper-
indeterminate at some ordinal level. The existence of this predicate in the
language then enables us to create an Ultimate Liar of the form:

υ :∼ True υ ∨ (∨[∼ Detα True υ]α < ON)

39 Cf. Graham Priest, Beyond the Limits of Thought (Cambridge, England: Cambridge
University Press, 1995) Section Three.
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The Revenger will want to argue that our old escape route is no longer open
to us. Where our strengthened liar expressed, in its right disjunct, hyper-
indeterminacy to some degree β <ON, we concluded that the liar in question
is hyperβ-indeterminate and there the matter rested. But, the revenger will
say, we cannot block paradox by that route in the case of the Ultimate Liar,
for in this case there is nowhere to go, no higher-degree of (harmless, non-
paradox-inducing) hyperindeterminacy to prove.

However the claim that there is no higher degree of indeterminacy is itself
simply indeterminate. For ON ∈ ON is simply indeterminate and that in
turn induces an indeterminacy about the length of υ and of DetONυ, and in
particular an indeterminacy regarding whether the latter has itself as one of
its own disjuncts. If we could prove contradiction from either the assumption
that it has itself as its own disjunct, or a contradiction from the assumption
that it has not, then we would be able to refute either the first or the second
assumption. And then we would be in trouble, for we would be able to decide
ON ∈ ON from whence disaster follows. Fortunately both alternatives are
coherent, see the Appendix II: Hyperindeterminacy.

Of course in our natural language reasoning about strengthened liars we
never utter infinitely long sentences; so how does this indeterminacy in the
syntax of our formal language, the indeterminacy as to whether DetONυ has
itself as its own disjunct or not, block the paradoxical reasoning in natural
language? Each actual strengthened liar we can utter will be of some finite
degree of hyper-indeterminacy and so antinomy is blocked as before —by
showing (on the assumption of further degrees of quasi-determinacy) that
the liar is hyper-indeterminate to a higher degree than that specified in the
liar itself. Attempts by a Revenger to convict this solution of falling into
further paradoxes lead to a generalisation of the solution to arbitrary degrees,
including transfinite degrees, of indeterminacy. The Revenger quite rightly
attempts to press the point once more, appealing only to the very concepts
we introduce in an attempt to avoid contradiction, namely the notion of being
indeterminate to any of the degrees mentioned in the solution. But now we
have moved inevitably but irreversibly away from actual concrete utterances
to theoretical constructs, to artificial formal languages which are themselves
mathematical entities; only by doing so can we talk of transfinite iterations of
the Det operator. And where the mathematical framework is naïve set theory,
we can use the full resources of this theory to show how, in the idealised
language, antinomy does not result even though the language itself is capable
of expressing, according to our formal semantics, the generalisation of our
intuitive notions.

It remains true, of course, that the above, if successful, merely blocks some
possible routes to showing the incoherence of the formal system outlined.
No soundness proof, whether in a semantically closed or semantically open



“04weir”
2002/6/11
page 329

i

i

i

i

i

i

i

i

NAÏVE SET THEORY, PARACONSISTENCY AND INDETERMINACY: PART II 329

language, can rule out with Cartesian certainty the epistemic possibility that
the system of the object language (a fortiori any stronger system in a sound-
ness proof in a semantically open language) is inconsistent. But once again,
such Cartesian certainty is not to be had even in mathematics, whether of the
standard or the naïve variety. One can only look at each threat in turn.

5. Conclusion

Naïve set theory in the neoclassical format I have outlined offers the prospect
of proving all of standard mathematics but also much more. It validates the
naïve interpretations that nearly all set theorists surreptitiously give to their
theories when reflecting on them as any responsible mathematician should
and so promises to restore coherence and good faith to the practice of set
theory. The cost is a certain artificiality in reasoning beyond the determi-
nate levels: but artificiality is better than a refusal to reason at all (a refusal
very difficult to stick to in practice) or a lapse into incoherence. The theory is
paraconsistent in the weak sense that it relies on a background logic in which
not all classically inconsistent theories are trivial but departs form the spirit
of most paraconsistent approaches by neglecting considerations of relevance
and embracing ∼E (and related principles such as the disjunctive syllogism)
unrestrictedly in their ‘operational’ forms, for instance as one-step natural
deduction rules. It is argued that the results of doing so provide a simpler
and more satisfactory recapture of standard set theory than the main para-
consistent alternative, dialetheism.

Appendix I. THE TARSKIAN EQUIVALENCES

The notion of an s-definite wff was defined by
θ is s-definite iff ψ(θ) is definitely true or definitely false, in the
intended interpretation, where ψ is any syntactic predicate and θ
any sub-formula of ϕ.

Somewhat more precisely, let us say that ψ is a syntactic predicate just in
case it is of the form x = t, for any singular term t, or of the form Ξx where
the latter is the object language definition of one of our syntactic concepts,
x is an atom, a conjunction, negation, disjunction, consequence, antecedent,
wff, one-place wff etc. It follows from Classical Completeness that any for
any such syntactic claim ψ and s-definite wff ϕ, ` ψ(ϕ) or `∼ ψ(ϕ). Any
such appeal to classical completeness for s-definite wffs and syntactic claims
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ψ will be cited as SDEF. Using this, we can prove

For all s-definite ϕ,` True ϕ↔ ϕ.

Proof: By induction on wff complexity. For atoms, suppose our atom is Ft
(the relational case is similar) and assume in the left-to-right direction True
Ft. Here once again is the definition of the truth predicate:

True x↔ x = Ft & Ft ∨ x = Rtu & Rtu & ... [through all the atoms] ∨
∨ Neg x & ∀ [or ∃] y in x, ∼True y
∨ Conj x & ∀y(y in x→ True y)∨
∨ Disj x & ∃y(y in x & True y)∨
∨ Cond x &
&(((&(Ant um x↔ ∨(um = ti)[i ∈ I])[m ∈ Ω] & True ti)[i∈I] →
∀z(Cons z x→ True z)))I ∈ P(Ω)

Provably, by SDEF, since Ft is not a non-atom,

True Ft ` Ft & Ft ∨ x = Rtu & Rtu & ... etc.

by ∨E on the right hand side of the above truth definition, we prove Ft; the
minor premisses, in all other cases except Ft = Ft, use ∼E on Ft = Gu
(for example) plus the provable (from SDEF) Ft 6= Gu, to conclude Ft. The
provability of the other direction is a straightforward ∨I from Ft = Ft & Ft.

For the inductive clauses, consider the trickiest case, that for the condi-
tional.

Right to Left: Take any set I of simple terms such that I is not the set of
exactly those terms ti such that ` Ant ti Ai i∈I → B. Assume

(i) ` &(Ant um Ai i∈I → B ↔ ∨(um = ti)[i ∈ I])[m ∈ Ω].

Let us abbreviate this particular wff ϕ. Given our assumption about I, for at
least one ti we have Not: ` Ant ti Ai i∈I → B; since Ai i∈I → B is s-definite:

(ii) `∼Ant ti Ai i∈I → B.

From um = um, where pumq = ptiq, then ∨I we get ` ∨(um = ti)[i ∈ I],
hence using the right to left direction of that particular conjunct of ϕ we con-
tradict (ii) yielding by ∼I on (i) `∼ ϕ hence also

(iii) `∼ (ϕ & True tk)
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for any k ∈ I. We can then derive the relevant instance of the right hand
conjunct of the conditional clause, namely:

(iv) ((&(Ant um Ai i∈I → B ↔ ∨(um = ti)[i ∈ I])[m ∈ Ω]& True ti)[i∈I] →
→ ∀z(Cons z Ai i∈I → B → True z))

by

— (1) ∼(ϕ & True tk) iii
2.i (2.i) ϕ & True ti Hyp. i ∈ I
2.i ∈ I (3) ϕ & True tk 2.k Exp.
2.i ∈ I (4) ∀z(Cons z Ai i∈I → B → True z) 1,3 ∼E
— (5) iv 5 →I

So we need concern ourselves only with the I* which indexes exactly those
terms ti such that ` Ant ti Ai i∈I → B. For this I* we will have by SDEF

— (1.i) ti = Af(i) i ∈ I* SDEF

where f is a function which maps one:one the simple terms indexed by I*
onto the canonical names of the antecedents of Ai i∈I → B. This instance of
(iv)–

(iv*): ((&(Ant um Ai i∈I → B ↔ ∨(um = ti)[i ∈ I*])[m ∈ Ω]
& True ti)[i∈I*] → ∀z(Cons z Ai i∈I → B → True z))

(with ϕ* thus being &(Ant um Ai i∈I → B ↔ ∨(um = ti)[i ∈ I*])[m ∈ Ω])
is then provable by:

2.i (2.i) ϕ* & True ti Hyp. i ∈ I*
2.i (3.i) True Af(i) 2.i &E, 1.i =E
— (4.i) True Af(i) ↔ Af(i) IH
2.i (5.i) Af(i) 3.i, 4.i↔E
— (6.i) (ϕ* & True ti) → Af(i) 5.i→I
7 (7) (Ai i∈I → B) Hyp.
7 (8) ((ϕ* & True ti)[i∈I*] → B) 7, 6.i i ∈ I*,

Trans.40

40 This application of infinitary transitivity is correct since the f(i) enumerate all the
antecedents.
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— (9) B → ∀z(Cons z Ai i∈I → B → True z) Lemma
7 (10) ((ϕ* & True ti)[i∈I*] →

∀z(Cons z Ai i∈I → B → True z)
8, 9 Trans

We then prove the conditional clause in the truth definition (x instantiated by
Ai i∈I → B) by proving the left conjunct Cond Ai i∈I → B using SDEF and
the right conjunct by &I over all the I sets. True Ai i∈I → B then follows
by ∨I and →E. The proof of the Lemma at line (9) utilises the facts that we
have from the IH ` B → True B and that from the definition of Cons and set
comprehension on Ai i∈I → B we have:

` ∀z(Cons z Ai i∈I → B → z = B

whence by transitivity we get:

— (1) True B → (z = B → True z) =E
— (2) B → True B IH
— (3) B → (z = B → True z) 1,2 Trans.
4 (4) B Hyp.
4 (5) z = B → True z 3,4 →E
— (6) ∀z(Cons z Ai i∈I → B → z = B) Given
4 (7) ∀z(Cons z Ai i∈I → B → True z) 5,6 Trans.
— (8) B → ∀z(Cons z Ai i∈I → B → True z) 7 →I

In the left to right direction we start out from the truth definition —TD—
then:

1 (1) True Ai i∈I → B Hyp.
1 (2) Con Ai i∈I → B & &(iv)[I ∈ PΩ] TD,1 ↔E ∨E SDEF
1 (3) iv* 2 &E

Here at line (2), SDEF, as in the atomic case, ensures that we can prove that
Ai i∈I → B is a conditional so that by ∨E and ∼E and &E we derive the
conjunction at line (2) whose right conjunct is:

&(((&(Ant um Ai i∈I → B ↔ ∨(um = ti)[i ∈ I])[m ∈ Ω] & True ti)[i∈I] →
∀z(Cons z Ai i∈I → B → True z)))I ∈ P(Ω)

At line three we instantiate by the set I* which indexes exactly the simple
names of the antecedents of Ai i∈I → B to yield (iv)*. Now from SDEF we
get for any um ∈ I*:
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— (4.j) Aj = um SDEF
— (5.j) Ant Aj Ai i∈I → B SDEF
— (6.j) Ant um Ai i∈I → B 4.j, 5.j =E
— (7.j) ∨(um = ti)[i ∈ I*] =I ∨I
— (8.j) Ant um Ai i∈I → B ↔ ∨(um = ti)[i ∈ I] 6.j, 7.j →I×2,

&I

Here the →Is at the last line are vacuous. Consider, next, the case of those
ur which are not simple names of antecedents of our conditional. The s-
definiteness of that conditional yields a similar proof of those biconditionals:

— (9.r) ∼Ant ur Ai i∈I → B SDEF
— (10.r) &(ur 6= ti)[i ∈ I*] SDEF
— (11.r) ∼∨(ur = ti)[i ∈ I*] 10.r ∼I MM
— (12.r) Ant ur Ai i∈I → B ↔ ∨(ur = ti)[i ∈ I*] As 8.j

whence by &I over the u terms we prove ϕ*

&(Ant um Ai i∈I → B ↔ ∨(um = ti)[i ∈ I*])[m ∈ Ω]

and can proceed

— (15.i) True Af(i) ↔ Af(i) IH i ∈ I*
— (16.i) Af(i) = ti SDEF41

— (17.i) Af(i) → True ti 15/16.i =E, &E
18.i (18.i) Af(i) Hyp. i ∈ I*
18.i (19.i) True ti 17/18.i→E
— (20) ϕ* As Above
18.i (21.i) (ϕ* & True ti) 20, 19.i &I
— (22.i) Af(i) → (ϕ* & True ti) 21.i→I
1 (23) (Af(i[i∈I] → ∀z(Cons z Ai i∈I → B

→ True z))
3, 22.i, i ∈ I* Trans.

— (23) ∀z(Cons z Ai i∈I → B → True z)
→ B

Lemma42

1 (24) Ai i∈I → B 23,24 Trans.43

41 Here, as before, f maps the indices of simple terms one:one onto the names of the
antecedents of Ai i∈I → B.

42 This Lemma proven in much the same way as the Lemma in the right to left direction.

43 Since the set of Af(i) and the set of Ai are one and the same.
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Appendix II. HYPERINDETERMINACY

The wff:

σ :∼ True σ ∨ (∨[∼ Detβ True σ]β < α)

α definitely less than ON, cannot be used to generate absurdity; from it we
derive merely ∼Detασ as follows, using the liberalised determinacy restric-
tions and the principles established in section 4, Lemma I:

` X ⇒ Detα P iff ` X ⇒ Det Trueα P iff ` X ⇒ Detα ∼ True P.

together with the following Lemma II:

For any limit κ and β < κ, &(Detµσ[β < µ < κ]) ` Det(&(Detµσ[β <
µ < κ])).

Proof: We use here the Det ii principle of Part I, that if all conjuncts of a
conjunction are determinate then the conjunction itself is determinate. This
is demonstrable for the language of naïve set theory.

The lemma is then provable by:

1 (1) &(Detµσ[β < µ < κ]) Hyp.
1 (2.µ) Det Detµσ 1 &E β < µ < κ
1 (3) Det(&(Detµσ[β < µ < κ])) 2.µ Det ii

With these principles and the above Lemma II we go on to show `∼Detα:

1 (1) Det σ Hyp.
2 (2) ∼True σ Hyp.
2 (3) σ 2 ∨I
2 (4) True σ 3 Naïve Truth
1 (5) Det ∼True σ 1 Lemma I
1,2 (6) ⊥ 2,4 [5] ∼E
1 (7) True σ 6 ∼I
1 (8) σ 7 Naïve Truth

Thus far, we follow pretty much the same path as the formalisation of the
intuitive reasoning involving ı.
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1,2 (9) ⊥ 2,7 ∼E
10.1.1 (10.1.1) ∼Det True σ Hyp.
10.1.1 (10.1.2) ∼Det σ 10.1.1 Lemma I
1,10.1.1 (10.1.3) ⊥ 1,10.1.2 ∼E
10.β (10.β) Detβ σ Hyp. 1 < β < α
10.β.1 (10.β.1) ∼Detβ True σ Hyp.
10.β.1 (10.β.2) ∼Detβ σ 10.β.1 Lemma I
10.β,10.β.1 (10.β.3) ⊥ 10.β, 10.β.2 ∼E
1, 10.β, 1 < β < α (11) ⊥ 8,9,10.β.3, 0 < β < α

∨E [10.2]
10.β, 1 < β < α (12.1.1) ∼Det σ 11 ∼I

We have now applied ∨E to the disjunction σ, assuming Detβ σ for every
β < α to get a contradiction and thereby refuting Det1 σ, line (1), discharg-
ing it.

10.β, 1 < β < α (12.1.2) ∼Det True σ 12.1.1 Lemma I
10.β, 1 < β < α, T (12.1.3) σ∨ ∼ σ 12.1.2 ∨I ×2, Exp.
10.β, 1 < β < α (12.1.4) Det σ 12.1.3 →I

[10.β, 2 < β < α]
10.β, 1 < β < α (12.1.0) ⊥ 12.1.1, 12.1.4 ∼E

[10.β, 2 < β < α]
10.β, 2 < β < α (12.2.1) ∼Det2 σ 12.1.0 ∼I

The proof of ∼Det σ from Detβ σ, 1 < β < α has now been extended to a
proof of ∼Det2 σ from Detβ σ, 2 < β < α.

10.β, 2 < β < α (12.2.2) ∼Det2 True σ 12.2.1 Lemma I
10.β, 2 < β < α, T (12.2.3) σ∨ ∼ σ 12.2.2 ∨I ×2, Exp.
10.β, 2 < β < α (12.2.4) Det σ 12.2.3 →I

[10.β, 3 < β < α]
10.β, 2 < β < α, T (12.2.5) Det σ∨ ∼Det σ 12.2.4 ∨I, Exp.
10.β, 2 < β < α (12.2.6) Det2 σ 12.2.5 →I

[10.β, 3 < β < α]
10.β, 2 < β < α (12.2.0) ⊥ 12.2.1, 12.2.6 ∼E

[10.β, 3 < β < α]
10.β, 3 < β < α (12.3.1) ∼Det3 σ 12.2.0 ∼I

And similarly we have extended further to a proof of ∼Det3 σ from Detβ σ,
3 < β < α.
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... ... ...
10.γ, δ + 1 < γ < α (12.δ+1.1) ∼Detδ+1 σ Given
10.γ, δ + 1 < γ < α (12.δ+1.2) ∼Detδ+1 True σ 12.δ+1.1 Lemma I
10.γ,
δ + 1 < γ < α, T

(12.δ+1.3) σ∨ ∼ σ 12.δ+1.2 ∨I ×2, Exp.

10.γ,
δ + 1 < γ < α, T

(12.δ+1.4) Det σ 12.δ+1.3 →I
[10.γ, δ+2 < γ < α],
Exp.

... ... ...
10.γ, δ + 1 < γ < α (12.δ+1.ε+ 2n+ 2)

Detε+n+1 σ
12.δ+1.ε+ 2n+ 1 →I
[10.γ, δ+2 < γ < α],
Exp.

... ... ...
10.γ, δ + 1 < γ < α (12.δ+1.λ)

&(Detζ σ) ζ < λ
12.δ+1.4/.6/.8 ... &I

10.γ, δ + 1 < γ < α (12.δ+1.λ.λ) Detλ σ 12.δ+1.λ ∨I
... ... ...
10.γ, δ + 1 < γ < α (12.δ+1.ξ + 2k + 4)

Detδ+1 σ
12.δ+1.ξ+ 2k+ 3 →I
[10.γ, δ + 2 < γ < α]

10.γ, δ + 1 < γ < α (12.δ+1.0) ⊥ 12.δ+1.1,
(12.δ+1.ξ+2k+4) ∼E
[10.γ, δ + 2 < γ < α]

10.γ, δ + 2 < γ < α (12.δ+2.1) ∼Detδ+2 σ (12.δ+1.0) ∼I

The result generalises to arbitrary successor levels δ+ 1 in which we extend
a proof of ∼Detδ+1 σ from Detβ σ, δ+ 1 < β < α to a proof of ∼Detδ+2 σ
from Detβ σ, δ + 2 < β < α. In the above section of the proof, λ is a limit
ordinal. The limit stage of the proof is slightly trickier:– κ below is a limit
ordinal:

... ... ...
10.γ, κ ≤ γ < α (12.κ.0.0)

(Detµσ[0 < µ < κ]) → ⊥
11 [10.γ, κ < γ < α]
→I, κ < α

10.γ, κ ≤ γ < α (12.κ.β.0)
(Detµσ[β < µ < κ]) → ⊥

12.β.0 [10.γ,
κ < γ < α]
→I, (0 < β < κ)

12.κ.β.1 (12.κ.β.1)
&(Detµσ[β < µ < κ])

Hyp. (0 ≤ β < κ)

12.κ.β.1 (12.κ.β.1.0)
Det &(Detµσ[β < µ < κ])

Lemma II 12.κ.β.1

12.κ.β.1 (12.κ.β.1.µ) Detµσ 12.κ.β.1
&E (β < µ < κ)
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10.γ, κ ≤ γ < α,
12.κ.β.1

(12.κ.β.2) ⊥ 12.κ.β.0, 12.κ.β.1.µ
[12.κ.β.1.1.0]
(β < µ < κ) →E

10.γ, κ ≤ γ < α (12.κ.0) ⊥ 10.κ, 12.κ.β.2, β < κ,
∨E

10.γ, κ < γ < α (12.κ.1) ∼Detκσ 12.κ.2 ∼I

In the above section we start from the fact that at line 11 we have shown Detβ
σ, 1 ≤ β < α ` ⊥ and so if we can show the determinacy of all Detγ σ,
κ ≤ γ we can, by →I, prove Detµ σ[0 < µ < κ]) → ⊥ from those remain-
ing, determinate, assumptions. But Detγ+1 σ, expresses the determinacy of
Detγ σ and γ + 1 < α, α a limit, so we have (using our liberalised determi-
nacy constraints) Detγ σ, κ ≤ γ < α ` Detµ σ[0 < µ < κ]) → ⊥. Similarly
at line 12.κ.β.0 we prove Detγ σ, κ ≤ γ < α ` Detµ σ[β < µ < κ]) → ⊥
with the antecedent wffs of the conditional being determinacy claims at all
levels below Detκ σ from some point β below. If we conjoin together these
antecedent claims we get one of the disjuncts of Detκ σ which thus entails ⊥
by →E so long as it is determinate: but this wff entails its own determination
by Lemma II. Finally we take the special case of the limit stage where κ = α.

... ... ...
— (12.α.0.0)

(Detµσ[0 < µ < α]) → ⊥
11 →I

— (12.α.β.0)
(Detµσ[β < µ < α]) → ⊥

12.β.0
→I, (0 < β < κ)

12.α.β.1 (12.α.β.1)
&(Detµσ[β < µ < α])

Hyp. (0 ≤ β < α)

12.α.β.1 (12.α.β.1.0) Det 12.α.β.1 Lemma II 12.α.β.1
12.α.β.1 (12.α.β.1.µ) Detµσ 12.α.β.1

&E β < µ < α
12.α.β.1 β < α (12.α.β.2) ⊥ 12.α.β.0, 12.α.β.1.µ

[12.α.β.1.1.0]
(β < µ < α) →E

12.α (12.α) Detα σ Hyp.
12.α (12.α.0) ⊥ 12.α, 12.α.β.2,

β < α, ∨E
— (13) ∼Detα σ 12.α ∼I

Here, at line (12.α.0.0) we apply →I to line (11) Detβ σ, 1 ≤ β < α `
⊥ but this time incorporate all the assumptions into the antecedent of the
succeedent wff by →I giving us (Detµσ[0 < µ < α]) → ⊥ —and more
generally at the next lines (Detµσ[β < µ < α]) → ⊥— as theorems so
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that the ∨E at line (12.α.0) yielding ⊥ has only Detα σ as its assumption,
enabling us to refute Detα σ.

So we have a somewhat stronger result here than that available for our
simple strengthened liar:– in the limit case we can prove outright that a sen-
tence which says it is either untrue or indeterminate to a degree up to but not
including α is indeterminate to degree α. This is achieved because in the
limit case the application of determinacy principles needed in rules such as
∨E at line 11 or →I at line 12.1.4 hits a fixed point at which the determi-
nation of each of the infinitely many premisses in the intersection is itself a
further premiss. Nonetheless we still block paradox —since ∼Detα σ is not
a disjunct of σ we cannot go on to prove σ from line 13; we conclude that σ
is hyper-α-indeterminate but do not have to conclude also that it is true.

Now consider the Ultimate Liar:

υ :∼ True υ ∨ (∨[∼ Detα True υ]α < ON)

It was argued that neither the supposition that υ contains a disjunct of the
form ∼DetON True υ nor the supposition that it does not leads to contradic-
tion. Suppose, firstly, that ON ∈ ON so that υ does contain a disjunct of the
form ∼DetON True υ. It also follows that ON = ON + 1 = ON + 2 =
ON + ON and so on. (I will use x′ for the successor x ∪ {x} of x in the fol-
lowing proof.) Under this supposition there exists a purported proof which
is an extension of the previous proof and which ends like this:

— (12.ON.0.0)
(Detµσ[0 < µ < ON]) → ⊥

11 →I

— (12.ON.β.0)
(Detµυ[β < µ < ON]) → ⊥

12.β.0
→I, 0 < β < ON

12.ON.β.1 (12.ON.β.1)
&(Detµυ[β < µ < ON])

Hyp. 0 ≤ β < ON

12.ON.β.1 (12.ON.β.1.0)
Det 12.ON.β.1

Lemma II 12.ON.β.1

12.ON.β.1 (12.ON.β.1.µ) Detµυ 12.ON.β.1
&E β < ν < ON

12.ON.β.1, β < ON (12.ON.β.0) ⊥ 12.ON.β.0,
12.ON.β.1.µ
[12.ON.β.1.1.0]
(β < µ < ON) →E

12.ON (12.ON) DetON υ Hyp.
12.ON (12.ON.0) ⊥ 12.ON, 12.ON.β.0,

β < ON, [12.ON] ∨E
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— (13) ∼DetON υ 12 ∼I
T (14) υ∨ ∼ υ 13 ∨I ×2, Exp.
— (15) Det υ 14 →I
T (16) Det υ∨ ∼ Det υ 15 ∨I, Exp.
— (17) Det2 υ 16 →I
... ... ...
— (18) DetON υ As 12.δ+1.4/6 etc.

of previous proof.
— (16) ⊥ 13, 18 ∼E

Note, though, that one of the disjuncts of DetON υ is the succeedent of line
(12.ON.ON.1) (since ON ∈ ON there is such a line) namely

&(Detνυ[ON < ν < ON])

and this is just DetON υ itself (granted that ON ∈ ON, i.e. ON<ON) so that
DetON υ has itself as one of its disjuncts. Inevitably, then, the assumption
that ON ∈ ON has as a consequence the ill-foundedness of our syntax. Thus
in the application of ∨E at line (12.ON.0), one of the discharged disjuncts is
in fact the disjunction DetON υ itself. But now we have an overlap between
the assumption on which the major premiss DetON υ at line 12.ON depends,
namely itself, and the assumption DetON υ made at line 12.ON.ON.1.ON
for the minor proof on the assumed disjunct DetON υ. Hence we require
the extra premiss that this assumption DetON υ is determinate. But granted
our assumption ON ∈ ON, ON = ON′ from which it follows that DetON+1

υ, that is Det DetON υ, is identical with DetON υ. So the additional deter-
minacy assumption we need for the ∨E at line 12.ON.0 is, in fact, DetON

υ itself. Similarly the determinacy assumption 12.ON.ON.1.0 is DetON υ
itself but so is the wff which is being declared determinate, the formula on
line 12.ON.ON.1. These applications are therefore illicit; thus the ∨E appli-
cation is incorrect not only on our original form of ∨E but even on the more
liberal form:
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X (1) ∨Ai i∈I Given
Yi i∈I, Ai (2.i) C Given i ∈ I
Wj j∈J (3.j) Det Rj Given, ∀Rj ∈ X ∩

⋃

i∈I
Yi

⋃

k∈K
Zk (4.k) Det Sk Given ∀Sk ∈

⋃

j∈J
Wj ∩(X∪

⋃

i∈I
Yi)

X,
⋃

i∈I
Yi,

⋃

k∈K
Zk,

⋃

j∈J
Wj (5) C 1,2.i i ∈ I, [3.j j ∈ J, 4.k k ∈ K],

∨E

with Sk /∈ Zk ∀k ∈ K. For in the present case, our determinacy assumption is

12.ON (12.ON) DetON υ Hyp.

which is the same as

12.ON (12.ON) Det DetON υ Hyp.

but this particular Sk, namely DetON υ does belong to Zk = {DetON υ}.
Thus this purported proof of contradiction is in fact not a proof at all.

Suppose, on the other hand, that ON /∈ ON. Then well-foundedness is
restored to the language. But now line 14 fails since ∼DetON υ is not a
disjunct of υ. So we are able to be agnostic one whether or not ∼DetON is
a disjunct of υ just as we are agnostic on whether or not ON ∈ ON and this
simple indeterminacy in the syntax enables us to deny that the language is
inconsistent, to deny that ` ⊥.


