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“STRENGE” ARITHMETICS

ROBERT K. MEYER AND GREG RESTALL

Abstract
In Entailment, Anderson and Belnap motivated their modification E
of Ackermann’s strenge Implikation Π′ as a logic of relevance and
necessity. The kindred system R was seen as relevant but not as
modal. Our systems of Peano arithmetic R# and omega arithmetic
R## were based on R to avoid fallacies of relevance. But problems
arose as to which arithmetic sentences were (relevantly) true. Here
we base analogous systems on E to solve those problems. Central
to motivating E is the rejection of fallacies of modality. Our slogan
here for this is, “No diamonds entail any boxes.” Form the strenge
Peano arithmetic E# like R#, adding appropriate forms of the Peano
axioms to Ackermann’s E∀x. Extend E# to the strenge omega arith-
metic E## by adding the ω-rule A(0), A(1), ... ⇒ ∀xA(x). E# and
E## make explicit a rejection of “fallacies of modality” implicit in
R#, where already “equations” work like boxes and “unequations”
like diamonds. (And no unequations relevantly imply any equa-
tions.) The R# theory of secondary formulas extends straightfor-
wardly to our strenge arithmetics. Finally metavaluing E## yields
the strenge true arithmetic TE#. TE# treats truth-functions and
quantifiers truth-functionally, settling sentences like 0 = 2 → 0 = 1
by affirming their negations (as Belnap once suggested).

1. Introduction

Restall objected to Meyer’s claim in [1] that the system R## of that paper
is “true” relevant arithmetic. “How can that be,” he wanted to know, “when
there are sentences A of R## such that neither A nor ∼A is a theorem?” (An
example is 0 = 2 → 0 = 1; see [1].) “We can fix that up,” retorted Meyer,
“by applying metavaluations to R##.” But, noted Restall, that doesn’t work
either. For R## requires that ∼A be equivalent to A → 0 6= 0, whereas
this may not happen on a metavaluation. O.K., let’s switch from R to E,
suggested Meyer. The result is this paper.
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206 ROBERT K. MEYER AND GREG RESTALL

We have discussed formulating arithmetic using a relevant logic in a num-
ber of places; see [2] for an ABD survey and for references.1 We have most
often chosen R as that relevant logic, as Meyer did in [3].2 But see Restall’s
[4, 14] for arithmetics developed on a wide choice of substructural logics.3

True, Meyer did bid “farewell to entailment” in [5]. (Should this paper be
called “Hello again”?) But Meyer was aware even while writing [3, 5] that
there is an odd resonance in R# of the “fallacies of modality” story that An-
derson and Belnap used to motivate E in [6]. For just as, in E, no negated
entailment entails an entailment, just so in R# and R## no negated equation
entails an equation.4

It will be our purpose here to base relevant arithmetic on E and related
systems. This will produce systems E# and E## analogous to R# and R##.
More accurately, the systems proposed here will be systems of strenge arith-
metic, since we formulate E in the manner of Ackermann’s [7].5 This means
that we make explicit Ackermann’s rules γ and δ, which ABD chopped. We
then extend E## to a system TE# of strenge true arithmetic. Let there be
definitions, axioms, and rules, which follow a brief interlude on modal fal-
lacies.

2. Ackermann, Anderson, Belnap and fallacies of modality

Prominent in early relevant polemics were the identification and condemna-
tion of some classes of fallacies. Of these, purported fallacies of relevance
drew the most ink.6 But so-called fallacies of modality were also chastised
in [7], [6] and elsewhere. The root of this chastisement was the thought that,
from necessary propositions, what follows is further necessary stuff. But the

1 ‘ABD’ stands, here and henceforth, for ‘Anderson, Belnap & Dunn’.

2 We did consider basing arithmetic on E in [5], for some of the reasons viewed here as
conclusive.

3 [4] was a Ph.D. thesis on logics without the contraction principle (A → (A → B)) →
(A → B), which R has.

4 For proof of the R facts, see Appendix 1 of this paper.

5 See [2], esp. pp. 129–141, for more on the relation between E and Ackermann’s original
systems.

6 See [6] and the prior Anderson-Belnap papers cited there for more on fallacies of
relevance.
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root went to the top and the tree grew upside down. And the purported thesis
became something like,

FoM1. Unnecessary stuff does not entail necessary stuff.
Alas, FoM1 is clearly false, as even [6] came to concede.7 We now make
contact with the jaw-breaking terminology of [6] (for which it was suitably
contrite), where what we shall call a box was identified on pp. 36ff. as a
necessitive. For the record,

DB. A is a box if it is demonstrably equivalent to some �B.
DD. A is a diamond if it is demonstrably equivalent to some ♦B.

Having abandoned FoM1, [6] decided that what it had had in mind was that
boxes were choosy about the sorts of propositions that they followed from.
In particular, [6] agreed with [7] that

FoM2. p → (A → B) is never valid, for a propositional variable p and
any formulas A, B. Reason: A → B is itself a necessitive (as [6] sees it).
And boxes do not follow from variables. FoM2 is inapplicable in this paper,
since nothing in the formal theories of arithmetic that we shall be examining
works like a variable p. But not far off is the further E-metatheorem

FoM3. ♦A → �B is never valid. I.e., diamonds don’t entail boxes.
Note that FoM2 follows quickly from FoM3. Consider the following argu-
ment:

Given: 1) No diamonds entail any boxes. (FoM3)
Assumption: 2) p → (A → B) is nonetheless E-valid, for some

p, A, B. (For reductio)
Of course the rule of uniform substitution for propositional variables like p
is admissible for the logic E. Letting A′ and B′ be the result of substituting
♦p for p in A and B we get

Conclusion: 3) ♦p → (A′ → B′) is a theorem of E.
But, according to E, the entailment A′ → B′ is already a box, whence 3)
contradicts 1). Moral: the reductio assumption 2) is false, whence FoM2 is
established.

That fallacies of modality are bad is not yet widely accepted (even by us)
as good philosophy. Imagine our surprise, accordingly, when some formulas
of relevant arithmetic (like anything of the form u = v) started acting like
boxes. To complete the shock, their negations behaved like diamonds. Even
(the advertised as non-modal) R# and R## respect FoM3, it would seem. We
adapt all this to the E environment here, where FoM3 holds ab initio.

What should we think, philosophically, of the FoM3 prohibition against
♦A ever entailing �B? An off-the-cuff thought is that it makes good sense,
since diamonds regularly come from boxes. But who extracts boxes from
diamonds? Nor is it unreasonable to let E speak for itself on the point. “I

7 See it and [5] for discussion and references, mainly to Sylvan and Plumwood, formerly
Routley & Routley.
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208 ROBERT K. MEYER AND GREG RESTALL

am not the sort of logic,” E might say, “to permit �B to follow from any old
thing. I particularly object when the old thing is a diamond. On the recently
fashionable Kripke semantics for modal logics, ♦A is true at a “world” w
just in case w sees some world a such that A is true at a. But �B is true at
w iff B is true at every world b that w sees. It sounds like a quantifier mix-
up to me. Why should w’s looking in one direction, say to the northeast,
and seeing A true thataway, ever lead us to suppose that B is true in every
direction? Is this not a fallacy based on a ‘Come one, come all’ maxim?”

At this point many readers —maybe even Kripke himself— will want to
quarrel with E. “What,” they may interject, “of the case when B is itself a
logical truth, and is accordingly true everywhere?” E has a quick rejoinder,
since on the semantics of relevant logics not even the logical truths are true
everywhere.8 Renewing the attack S5’ers may point to their thesis ♦�A →
�A, a diamond entailing a box if ever there was one.9

“So much the worse,” E will respond, “for S5. I always preferred S4 my-
self.”10

3. Axioms for strenge arithmetics

Our systems are formulated in a traditional arithmetical vocabulary, with
terms built up from the constant 0 and individual variables x, y, z, etc., using
the successor operation ′ and the dyadic function symbols × and +. Atomic
formulas are of the form t = u, where t and u are terms. Formulas A, B,
C, etc. are then built up as usual from the atomic ones under &, ∨, ∼, and
→, together with the universal quantifier ∀. Sentences shall be formulas in
which no variable occurs free. We enter the following additional definitions:

8 The chief tool for refuting paradoxes of implication in relevant semantics lies precisely
in admitting points in frames at which even theorems of logic can be falsified. Cf. [16]. For
how this works for the logic E, see [17]. Or [2], for an older Meyer plan.

9 This thesis has been invoked in a (purportedly valid) version of the Ontological Argu-
ment for the Existence of God. Dunn has quipped that S5 must be false, since one can prove
therein that God exists. We remark in rebuttal that an invalid argument to a true conclusion
is best replaced by a valid one. Cf. [18], owed in part to Putnam, which proves the true
conclusion.

10 Sharing this preference was A. R. Anderson, who identified S4 as the true one among
many modal logics.
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(D⊃) A ⊃ B =df ∼A ∨ B
(D↔) A ↔ B =df (A → B) & (B → A)
(D∃) ∃xA =df ∼ ∀x∼A
(Dt) t =df 0 = 0
(Df) f =df ∼t
(D6=) u 6= v =df ∼ (u = v)
(D�) �A =df t → A
(D♦) ♦A =df ∼ � ∼A
(D1) 1 = df 0′

(D2) 2 = df 1′

etc. In particular, we take 0, 1, 2, 3... as the numerals, each of them to be
thought of as the name of the corresponding natural number. These defi-
nitions give the items defined their usual properties in systems of strenge
implication. 0 6= 0, which is f, will have the properties of [7]’s das Absurde.
We largely follow [7] (rather than ABD) in our choices of axioms and rules.

We divide the axioms of E# and E## into three parts (like Gaul).11

(S) Propositional axioms (of E)12

AxI A → A
AxB (B → C) → (A → B) → A → C
AxB′ (A → B) → (B → C) → A → C
AxW (A → A → B) → A → B
Ax&E A&B → A and A&B → B
Ax→&I (A → B)&(A → C) → A → B&C
Ax∨I A → A ∨ B and B → A ∨ B
Ax→∨E (A → C)&(B → C) → A ∨ B → C
AxDist A&(B ∨ C) → B ∨ A&C
AxTranspos (A → B) →∼ B →∼ A
AxCounterex A& ∼ B →∼ (A → B)
Ax∼∼E ∼∼ A → A
Ax∼∼I A →∼∼ A

11 “Gallia est omnis divisa in partes tres,” said Caesar.

12 For the time being, we allow free variables in theorems here. We rank binary connec-
tives thus in order of increasing scope: &, o, ∨, ⊃, →, ↔. We break with standard relevant
practice by (i) eschewing dots as parentheses & (ii) associating → to the right. As usual,
× precedes + among term-forming operators, and we may drop × for simple juxtaposition.
Unary operators and quantifiers have minimal scope. Our only (binary) predicate is =.
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210 ROBERT K. MEYER AND GREG RESTALL

(Q) Quantifier axioms (of E∀x).13 We follow [2] in writing Ax for a formula
in which x may (but need not) occur free; and Au shall be the result of proper
substitution of the term u for the individual variable x in Ax.
The quantifier axioms, then, will be the following:

Ax∀E ∀xAx → Au, u any term
Ax→∀I ∀x(A → Bx) → A → ∀xBx, x not free in A
Ax∀∨ ∀x(A ∨ Bx) → A ∨ ∀xBx, x not free in A
Ax∀→ ∀x(A → B) → ∀xA → ∀xB
Ax∀& ∀xA & ∀xB → ∀x(A&B)

These are most of the quantifier axioms for E∀x in [2], with a few notational
and other inessential changes. One change is reflected in ∀E axioms, which
take Au as the result of properly substituting u for x in Ax, when u is free for
x.14 Another nominal change is that we now permit terms to be complex, in
view of the additional term-forming operators ′, ×, and +; while ABD state
their axioms (on p. 72 of [2]) only for the case where u is another individual
variable.15

The arithmetical particles and proper axioms of E# are stolen from those of
[1] for R#. The same goes for the relation between E## and R##. Here they
are.

(N) Arithmetical axioms of E# and E##
E#1 x = y → x′ = y′
E#2 x = y → x = z → y = z
E#3 x + 0 = x
E#4 x + y′ = (x + y)′

E#5 x × 0 = 0
E#6 x × y′ = xy + x
E#7 x′ = y′ → x = y
E#8 x′ 6= 0

We now require some rules. For the strenge P-arithmetic E# we choose the
following:16

13 We follow [2] in replacing the old name EQ by E∀x for first-order E. Since we have
defined ∃ as the (DeMorgan) dual of ∀ by (D∃) above, we do not follow [2] in having explicit
axioms governing ∃ (since these are proved using dual ∀ theorems).

14 The dual ∃I axiom, explicit in [2], is Au → ∃xAx. This is by definitions a theorem
scheme. See the preceding footnote.

15 But ABD clearly intend the more general forms of the axioms.

16 P is for Peano. ⇒ is a metalogical “if”. Thus read α below as the →E rule, β as &I,
and γ as ⊃E.
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α A → B ⇒ (A ⇒ B) →E
β A and B ⇒ A & B &I
γ A ⊃ B and A ⇒ B ⊃E
δ A → (B → C) and B ⇒ A → C
∀I A ⇒ ∀xA
RMI ∀x(Ax → Ax′) and A0 ⇒ ∀xAx

In E#, as in R#, we may replace RMI (the Rule of Mathematical Induction)
by its deductive equivalent

E#9 ∀x(Ax → Ax′)&A0 → ∀xAx
But RMI makes sense for a wider class of formal arithmetics than does the
axiom scheme E#9.17 We extend E# to the strenge ω-arithmetic E## by
adding the well-known ω-rule

ω A0 and A1 and ... and An and ... ⇒ ∀xAx
I.e., the premisses of ω are the An for every numeral n, and its conclusion
is ∀xAx. Note also that, given ω, we can drop RMI as primitive; for RMI
is easily shown admissible anyway by induction in the metatheory of E##.
Other rules, including δ, remain primitive for E##.

4. Elementary consequences of the axioms

In our previous work in relevant arithmetic, we have recalled that the natural
numbers are built up from the fundamental number 0 by adding 1’s. Just
so, we have claimed, propositions about these numbers ought reasonably to
be taken as following from some fundamental true proposition t, to be inter-
preted (following ABD) as the conjunction of all such fundamental truths.
The t that we have previously chosen for this role is 0 = 0; we choose it
again, motivating Dt. But it is not so clear in the E# case that this t will play
the role that we have assigned to it. Specifically, we shall want as a theorem
(from E#8)

E#8t. t → ∀x(x′ 6= 0)
But to get this theorem requires some care. We follow Ackermann and re-
store the primitive rule δ of [7]. For it is easy to see (and to prove) that we
have

(1) 0 = 0 → (A → A)
as a theorem scheme of E#, by structural induction on A. And we then get
E#8t from (1) by applying rule δ to (1) and the E# theorem ∀x(x′ 6= 0), de-
taching a second antecedent in (1). So,

Fact 1. A ⇒ �A is an admissible rule of E# and of E##.
17 See [3, 4, 14]. Dunn suggested E#9 as an axiom scheme of mathematical induction.

RMI is ours.
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212 ROBERT K. MEYER AND GREG RESTALL

Proof. Use (1) and δ as just above to show t → A for all theorems A, ending
the proof.

There was, in R#, an interesting theory of what we called secondary formu-
las in [3]. A version of this theory passes over to the strenge arithmetics E#
and E##. We observe first

(2) x = y → (x = y → y = y) E#2
(Symmetry and transitivity of =)

(3) x = y → y = y AxW, (2), →E
(4) y = y → 0 = 0 Subtraction

(Hint: use E#7, RMI)18

(5) x = y → 0 = 0 (3), (4), AxB′, →E

Thus by (5) and Dt, all equations entail t. Let us accordingly call any formula
A of E# which entails t a secondary equation. We call a negated equation an
unequation. By transposition in (5) it is evident that f entails every unequa-
tion. Generalizing again, any formula B of E# which is provably entailed
therein by f shall be a secondary unequation. Finally C is a secondary for-
mula iff C is either a secondary equation or a secondary unequation. We
have now

Fact 2. All →-free formulas of E# are secondary formulas, and they are
provable in E# iff provable in classical Peano arithmetic P#.
Proof. We have noted that both equations and unequations are secondary
formulas; to show that this property is preserved under truth-functional com-
bination and quantification is by a straightforward induction. (Note that it is
not in general preserved under combination by →.) As for the final claim,
on direct translation E# is evidently a subsystem of P#. A good exercise,
which we commend to readers, is to show that the axioms of P# (in the
truth-functional vocabulary, with ⊃ for →) are theorems of E#. Whence be-
cause E# is closed under the rules of P# (in particular under γ, by fiat), any
classical proof of a P# theorem is (near enough) an E# proof.19 Q.E.D.

18 Alternatively, follow Dunn by multiplying both sides by 0, invoking E#5. Cf. [2],
p. 437.

19 Contrast the R# situation, which does not have Ackermann’s γ as a primitive or even
as an admissible rule. For (thanks to Friedman) we refuted γ by producing in [8] a theorem
QRF of P# which was not (even truth-functionally) a theorem of R#. However we think it
no great virtue of E# that it delivers P# so simply. In relevant theories we prefer to prove γ,
not to impose it by fiat. The contrasting and more interesting result for R# is that secondary
unequations are provable in R# iff provable in P#. This leads in [3] to a direct homomorphic
exact translation from P# to R#, preserving both theorems and non-theorems.
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5. The modal structure of E#

We have decided to make something of the modal distinctions of E. So it is
time to draw some. First, we wish to show that our identification back in R#
of equations with boxes and unequations with diamonds holds in a structured
way in E# (and so in its super-systems E## and TE#). Here is our

Fact 3. Among the theorem schemes of E# are the following:
E#10. x = y ↔ �(x = y)
E#11. x 6= y ↔ ♦(x 6= y)
E#12. A → B ↔ �(A → B)
E#13. t → (A → A)
E#14. �A → A
E#15. t → x = x

Proof. Recall that we have defined �A as 0 = 0 → A. E#14 then follows
immediately from �A → �A and an application of δ, “detaching” 0 = 0.
Easy application of Fact 1 produces both E#13 and E#15. E#11 follows
from E#10 by transposition and D♦. We conclude the verification of Fact 3
by showing E#10, E#12 from left to right. For the former, note x = y →
(x = x → x = y) by transitivity of =, after which apply E#15 and D�.
Similarly, we get E#12 from L to R by E#13, from the instance (A → B) →
((A → A) → (A → B)) of AxB. Q.E.D.

Among the boxes of E# (and super-theories like E##) are all the u = v and
all the A → B. (Apply E#10, E#12.) If A and B are both boxes then A&B
and A∨B are boxes. (Apply Ax→&I, Ax→∨E.) If A is a box then ∀xA and
∃xA are boxes. (Apply Ax→∀I.) Dually, negations of boxes such as the u 6=
v and ∼ (A → B) are diamonds. The class of diamonds is closed likewise
under the lattice connectives & and ∨ and quantifiers ∀ and ∃.

To show that E# (and its super-systems) reject modal fallacies, we recall
Ackermann’s ± ([2], p. 136). Its Hasse diagram and → table are as follows:

u

u

u

u

u

u�
�

�
��

Q
Q

Q
QQ

Q
Q

Q
QQ

�
�

�
��

PPPPPPPPPt
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The Ackermann matrix ± for E20

→ F 1 f t 4 T ∼

F t t t t t t F T
1 F t t F t t 1 4

f F F t F F t f t
*t F F F t t t *t f
*4 F F F F t t *4 1

*T F F F F F t *T F

Inspection of ± shows that the box values are t (for true → statements) and F
(for False ones). Consulting the ∼ table the corresponding diamond values
are f and T. Thus we can turn ± into a matrix for all of strenge arithmetic on
the interpretation I that assigns t to correct21 equational sentences22 u = v
and F to incorrect ones. We have set out the Ackermann → and ∼ tables for
±; otherwise, as ± (being finite) is a complete distributive lattice, the values
to be assigned to arbitrary sentences are determined homomorphically. We
lay it down that the homomorphic determination of the value of a sentence
∀xAx on interpretation I in ± is just the meet of {I(An) : n is a numeral};
otherwise I(A ∨ B) = I(A) ∨ I(B), etc. It is evident that all closed theorems
A of E# (and indeed of E##) are true on our suggested interpretation I, in the
sense that I(A) takes one of the (starred) designated values t, 4, T. But then

Ackermann theorem for E# and E##. No fallacies of modality hold in strenge
arithmetic; specifically, no diamonds entail boxes.
Proof. It is clear that diamonds take one of the values f, T on our suggested
interpretation of sentences of arithmetic in ±. By contrast boxes are re-
stricted to the values t, F. Inspection of the ≤ relation of our Hasse diagram
makes it clear that if a ∈ {f, T} and b ∈ {t, F} then it is not the case that
a ≤ b; or, what comes to the same thing, a → b is in all such cases the un-
designated value F. So ± rejects all candidate theorems of E## of the form
♦A → �B.

20 Identify F, 1, f, t, 4, T respectively with the 0, 1, 2, 3, 4, 5 of p. 136 of [2]. Set ∼ b =
5 − b. Designate 3, 4, 5.

21 Being number terms, each of u,v denotes a unique natural number in virtue of the al-
gorithms that you learned by 3rd grade. And u = v is correct if both of u,v denote the same
number, else it is incorrect.

22 Recall that a formula is a sentence if it contains no free variables.
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6. Metavaluing E## to get TE#

It is time to keep our promise to make ω-arithmetic into a true arithmetic,
by specifying that exactly one out of each pair of sentences A, ∼A shall be
a theorem. We may take E## as reformulated so that only sentences shall
count as theorems (like our presentation in [1] of R##). We may achieve this
by substituting for each axiom all its universal closures (and counting, if the
reader wishes, open formulas as theorems iff their universal closures are).
The rules remain the same (except that they now apply only to sentences),
while the ω-rule in particular is available to take up any slack. We now
define a metavaluation V of E##, specifying a set TR of truths, as follows on
all sentences A, B, C of the arithmetical vocabulary:

VAt If A is an atomic sentence u = v, then A ∈ TR
iff A is arithmetically correct

V∼ ∼B ∈ TR iff B /∈ TR
V& B&C ∈ TR iff, B ∈ TR and C ∈ TR
V∨ B ∨ C ∈ TR iff, B ∈ TR or C ∈ TR
V∀ ∀xBx ∈ TR iff, for all numerals n, Bn ∈ TR
V→ B → C ∈ TR iff both (i) E## ` B → C

and (ii) B ∈ TR ⇒ C ∈ TR

We have, more or less, reverted to our original characterization of a metaval-
uation in [9], as a valuation that is truth-functional on intended truth-func-
tional particles, while satisfying a more intricate condition (here, V→) on the
non-truth-functional →. Let now TE# be the system TR of true sentences
on V. The true sentences are evidently closed under Ackermann’s rules α, β
and γ. But they are not closed under δ.

Soundness theorem for E##. E# ⊆ E## ⊆ TE#
Proof. We know already that E## is a super-system of E#. So it will suffice

to complete this proof to show that all (closures of) theorems of E## are true
on our metavaluation V above. This involves a straightforward deductive
induction, verifying the axioms of E## on V, and showing also that the rules
preserve truth on V for theorems of E##. We do some cases, and leave the
rest to the reader. We carry out the inductive argument only for sentences.
It then suffices in all cases to examine an arbitrary numerical instance of an
axiom or rule, leaving it to the ω-rule and its mate V∀ to deliver universal
closures.
Ad AxB. You need to show (B → C) → (A → B) → A → C ∈ TR, where
all of A, B, C are sentences. It’s a pleasant exercise, mixing appeals to (i)
and (ii) of V→. Enough, ad AxB!
Ad Rule δ. Suppose A → (B → C) and B are closed theorems of E##,
which on inductive hypothesis both belong to TR. By δ we have A → C as
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216 ROBERT K. MEYER AND GREG RESTALL

a theorem of E##. To show A → C ∈ TR this is (i) of V→; for (ii) assume
A ∈ TR and show C ∈ TR. But now we may use (ii) of V→; since A and
A → (B → C) are both true, we have by (ii) that B → C ∈ TR as well; but
then, since B ∈ TR we have again that C ∈ TR, which ends the verification
that A → C ∈ TR.
Ad Rule ω. Suppose An is a true theorem of E## for each numeral n. By ω,
we have E## ` ∀xAx. Then by V∀ we have ∀xAx ∈ TR, which suffices.
Ad Ax∀∨. We verify (i) and (ii) under V→ for any sentence ∀x(A ∨ Bx) →
A ∨ ∀xBx. (i) of V→ is immediate; as an axiom, the sentence is an E##
theorem. For (ii), assume ∀x(A∨Bx) ∈ TR. Then for each numeral n either
A is true or Bn is true, by V∀, V∨. If A ∈ TR then A ∨ ∀xBx ∈ TR, sufficing
for (ii) by V∨. Otherwise Bn ∈ TR for all n, whence ∀xBx ∈ TR by V∀ and
A ∨ ∀xBx ∈ TR by V∨.
Ad E#8. Note that n′ = 0 is always incorrect; whence by V∀ we have
∀x(x′ 6= 0) ∈ TR by V∀. We rest our cases, leaving others to the reader, and
declare the soundness theorem proved.

Observe, if you will, the delicacy of our argument ad the rule δ in the argu-
ment just concluded. We do not say that δ preserves truth on V when applied
to arbitrary members A → (B → C) and B of TR. It does not. To show A
→ C ∈ TR, we must by (i) of V→ prove A → C in E##. For this we need
not merely that B is true on V, but that it is a true theorem of E##. With that
information δ can be applied in E## —and the difficulty disappears.23

Anyway, our goal of having specified the strenge truths is now accom-
plished. For in view of V∼ above and our understanding of intuitive ‘not’,
TE# has split arithmetic sentences univocally into the truths and their nega-
tions, namely the falsehoods. But what, the reader may wonder, has hap-
pened to our old counterexample, 0 = 2 → 0 = 1? Easy —it’s false. For
as a non-theorem of E##, it fails part (i) of our truth-condition on →; as that
suffices for 0 = 2 → 0 = 1 /∈ TR, we need look no further for its refutation.
And so much, by V∼, assures TE# `∼ (0 = 2 → 0 = 1). By the same
argument, whenever A and B are sentences such that A → B is unprovable
in E##, then TE# `∼ (A → B).

All of this returns us to a point made by Belnap when we told him of our
initial work on R#. “It would seem,” he observed, “that propositions like
0 = 2 → 0 = 1 should fail.” We pass, at least for now, from relevant
implication to entailment to make that observation stick. As, we suppose,

23 Another way to make the same point is the following: E#13 says that E# ` t → (A →
A). So this is true, by the soundness theorem. What Restall saw was that, if we allowed
ourselves unlimited appeal to δ on members of TR, we should have A ∈ TR ⇒ �A ∈ TR.
That is not the idea from our present perspective.
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Anderson and Belnap might have advised from the outset!

Appendix 1. How fallacies of modality showed up rejected in R# and R##.
For proof that diamonds (e.g., unequations) imply no boxes (e.g., equa-

tions) in arithmetics based on R, consider the chain ¯ = 〈F, t, f, T〉 = 〈0, 1, 2,
3〉, totally ordered as usual. ¯ is a DeMorgan lattice, on Dunn’s definition
in [6], if we set b ∧ c = min(b,c) and b ∨ c = max(b,c); moreover, define
negation24 by setting ∼b = b → f on the implicative extension to be intro-
duced immediately, with the following → table (due originally to Church):

→ table for the DeMorgan monoid ¯

→ F t f T
F T T T T
*t F t f T
*f F F t T
*T F F F T

¯ is now not merely a DeMorgan lattice but a DeMorgan monoid in the
sense of [6], taking t as the monoid identity and fusion o as defined by
boc =∼ (b →∼ c). DeMorgan monoids verify all theorems of R, since
for each theorem B and algebraic interpretation I, t ≤ I(B). We may verify
also all the theorems of R##, on an extremely simple-minded plan. Just as-
sign t to each atomic formula v = w and let ∀xA have the value of A. But as
identities are assigned t their negations will be assigned f; whence s 6= u →
v = w will get in ¯ the value f → t = F, for all terms s, u, v, w. So in this
sense no “fallacies of modality” are theorems of R## (or of its subsystem
R#). We express again our shock. R is not supposed to have any doctrine
of modality. In spite of itself, it does. And all this is grist to the mill of E,
which is formulated to avoid modal fallacies.

Appendix 2. What are some other modal arithmetics to which these ideas
apply?

We have set out arithmetics based on E in some detail. But save for the
interplay between relevance and modality at which E aims, there is nothing
that special about our choice. Still in the relevant ballpark, for example,
we might have preferred the system NR of [11] as our vehicle to axioma-
tize arithmetic.25 We might still avoid fallacies of modality as in section 4

24 Numerically, this means that ∼ b = 3 − b for all b in {0, 1, 2, 3}.

25 On the conventions of [2] NR is called R�.
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above. This would produce a set of truths of TNR#, applying a metavalua-
tion to an NR## as we did to E## in section 5. Going even further afield we
might follow Shapiro [12] in metavaluing what we’d call S4## to get a TS4#.

Appendix 3. What crazy modal notions does strenge arithmetic enjoin?
There is an old view of how modality enters our understanding of the

world. This view (to be traced to Plato, Leibniz, Hume, Kant, and the gang)
says that necessary truth is the unique province of mathematics and of logic;
whatever is true in these areas is true of necessity; other truths (e.g., about
the world) just happen (more or less) to be true.

We mention all this just because our research into strenge arithmetic does
not seem to confirm it. It is perfectly conceivable, we have said above, that
there are truths of TE# which are not necessary.26 It is probably not sur-
prising that our paradigm instances of these truths are about entailments that
fail. An idea that we could have, perhaps, is that 0 = 2 might have en-
tailed 0 = 1; but, in sober fact, it doesn’t. Anyway, we enjoin our readers to
develop a Complete System of the World, starting from TE#.

Meanwhile, there is another set of modal notions —those that accompany
the so-called “logics of provability” in [10] and elsewhere— that it is inter-
esting to attempt to wed to relevant logics. As a prominent place is reserved
in these logics for “Löb’s Rule” (which is the inference from �A → A to A),
readers may be pardoned if they can contain their enthusiasm for the idea.
Still, as provability logics derive much of their motivation from the arithme-
tization of metamathematics, we would like to know how these things work
out in the context of (say) E#. We know already that they work out classi-
cally; as E# contains P# as its truth-functional part, it also contains classical
provability logic, classically expressed. “But what,” we hear you say, “is
relevant about that?” We’d like to know, too. Something more sui generis,
appealing to properties of a relevant →, would be more interesting still. Hav-
ing looked with Mares into a relevant provability logic based on R in [15],
we challenge you to advance the subject.

Appendix 4. Why do we insist on Ackermann’s Rule γ?
Following earlier work by Anderson and Belnap, [2] takes some pleasure

in chopping away at Ackermann’s rules. [2] chops specifically the rule ⊃E,
which is Ackermann’s γ. So when R# was first formulated in [3] it also did
without γ, in the hope that (as in our work with Dunn on R and E, etc., and
in much that Meyer has pursued since) this rule would turn out admissible
anyway for R#. But that hope was too sanguine, in view of the Friedman

26 It is certainly the case that there are rules of E## that are inadmissible in TE#. Cf. our
discussion of rule δ above.
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counterexample QRF of [8]. (Mints suggested in conversation that perhaps
we should simply add γ also to R#, as we added it above in formulating E#.
Well, maybe.) For as the “disjunctive syllogism” strikes us as a generally
OK inference (against views such as those expressed in [2] that it is rele-
vantistically awful), we have followed Ackermann here in restoring it to the
primitive logical equipment. But we do so with a definite lack of enthusi-
asm. For (like Gentzen’s cut, as Dunn said for us in [13]) we take it as a
sign of the stability (and niceness) of a system that γ should be admissible
therein without being primitive. As the argument of [1] can be adapted for
E##, we don’t need a primitive γ for strenge ω-arithmetic; for γ is anyway
admissible, whence E## will still be stable and nice. But we cannot so drop
γ from E#. ’Tis a pity.27
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