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MINIMIZING AMBIGUITY AND PARACONSISTENCY∗

GUIDO VANACKERE

Abstract
Ambiguity-adaptive logics offer a natural and rich formal solution to
(possibly) inconsistent theories. Three views on ‘ambiguities’ result
in three different, intuitively correct ambiguity-adaptive logics with
interesting applications. We present their semantics and proof the-
ory, and illustrate that ambiguity-adaptive logics form an excellent
alternative to paraconsistent logics that focus on the characteristics
of the logical constants.

1. Introduction

Inconsistencies frequently arise due to the ambiguity of our vocabulary. I
give some examples. The word “chair” refers to a thing to sit on, and to a
chairman. The name Albert Einstein is used for indicating Albert Einstein
as a grown up, but also for indicating him at the age of three. “It’s raining”
is said when it is pouring and when some raindrops are falling. Due to the
fact that one expression is used to refer to different ‘realities’, we obtain
contradictions like: “A chair has four legs, but a chair does not have four
legs.” “Einstein is a physicist, but Einstein is not a physicist.” “It rains” says
one person, “it does not rain” says another person.

How should logicians deal with such ‘stupid’ inconsistencies? Classical
logicians say that the formalization should be more precise. Paraconsistent
logicians say that we should use a logic that allows for inconsistencies. In
this paper a third approach, that meets the purposes of both other views, and
establishes interesting results, is proposed. The first question is not about
the logic, but about the non-logical terms. We want to reach the optimum
between two (unrealistic) ideals, viz. (i) the non-logical terms should be
precise enough, and (ii) our language should be compact (in order to keep it

∗Research for this paper was supported by subventions from Ghent University and from
the Fund for Scientific Research – Flanders, and indirectly by the Flemish Minister responsi-
ble for Science and Technology (contract BIL98/73).
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140 GUIDO VANACKERE

understandable). We should also take into account that the required precision
is dependent on the actual text or theory we are dealing with.

The classical view is right in that the formalization of our premises could
be more precise. For instance: if we formalize the word “chair”, we should
make use of at least two different predicates. Same thing for Einstein as a
grown up, and Einstein at the age of three, and for expressions as “it rains”.
Nevertheless, this view does not give an answer to the question “Which (oc-
currences of) non-logical terms should be precise enough?”. Obviously we
can not make all occurrences of non-logical terms as precise as possible—
this would be an enterprise with no limits. Should we use a new predicate
whenever we meet the word “chair”? Should we use a new constant for
indicating Einstein at each of his moments?1 Should we make use of an
infinite number of names for sentences in order to formalize the expression
“it rains”? The answer to each of these questions is obviously not yes, for
then, we would never know what these expressions refer to. Communica-
tion becomes impossible if our expressions do not have a certain degree of
generality. We should not only be worried about being precise enough, we
should also think about concise theories and smooth communication. We
have to start talking before we have reached the most precise formulations.
At this point, I agree with the paraconsistent logicians: we better accept that
our language cannot be absolutely precise and will always give birth to in-
consistencies. But I disagree with most paraconsistent logicians in that the
negation-rules of CL are not desired rules. Where our language is precise
enough, we are better off using rules as Disjunctive Syllogism, Modus Tol-
lens and Reductio ad Absurdum.

The question is: is there a formal way to choose between concision and
precision?2 The here presented ambiguity-adaptive logics offer a splendid

1 If not, we keep on meeting stupid inconsistencies, like “Einstein (01/01/1930) is older
than Einstein (31/12/1929)” and “Einstein is not older than Einstein”.

2 This question is situated within the larger problem of the relation between language
and reality. If, for simplicity’s sake, we consider the set of units of reality R, and the set of
units of language L, we can define two ‘border’-relations between R and L, namely (i) a
function Ω that maps all members of R to the same unit of language, e.g. the expression “ω”,
Ω : R → L : x → ω, and (ii) a bijection P : R ↔ L, that maps every unit of reality on one
unit of language, and vice versa. The function Ω has the advantage that our vocabulary would
become very concise—one expression refers to all units of reality. The bijection P makes our
language as precise as possible. In spoken or written language, there is a double tendency:
towards more precision and towards more concision and generality. If we are interested in
maximizing precision, we tend to be as close as possible to the bijection P: (i) different units
of reality get a different name; (ii) units of reality that are subject to change, get a different
name whenever they change. If we are interested in smooth and concise communication,
we need expressions that make abstraction of difference and change, and hence we need
units of language that refer to different or changing units of reality. Without this kind of
generalization, communication would be impossible: all of our words would be unique and
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solution. They consider a given text or theory as maximally concise and
detect and isolate those (occurrences) of expressions that need to be more
precise.

Within the field of formal logics we can only detect ambiguity if some
inconsistency surfaces. As to avoid inconsistencies, we could consider each
occurrence of a non-logical constant (henceforth NLC) in our premises as
a new NLC.3 This way, we meet the ideal of being as precise as possible,
and we can use all rules of Classical Logic (henceforth CL). The drawback
of this approach is that we can no longer make the derivations we wish to
make. For instance, if we consider the premises p and p ⊃ q, and we refuse
to identify the two occurrences of p, we can no longer derive q. The solution
I propose, can be resumed as follows: we use CL, and we identify two
occurrences of one and the same NLC unless (and until) this would lead to
the derivation of an inconsistency.

The first step of the here presented approach is to suspect all occurrences
of an NLC in the premises to have a different meaning. Formally this is
done by giving every occurrence of an NLC in the premises a different su-
perscript.4 This reading of the premises is called the maximally ambiguous
interpretation. The second step exists in re-identifying the different occur-
rences of one and the same NLC, unless and until this leads to the derivation
of an inconsistency.5 If a set of premises is not inconsistent,6 this approach
will—obviously—give the same result as CL applied to the original inter-
pretation of the premises. If a set of premises is inconsistent, our approach
will detect and isolate ambiguous (occurrences of) NLC.

would refer to unique (states of) things, and hence, none of our words would be understood
by someone else. If we want our language to be concise and general, the function Ω can be
considered as an ideal. The obvious drawback of this ideal is that we never know for sure
what the word “ω” refers to.

3 Inconsistencies deriving from premises as (∀x)∼(x=x) cannot be weeded out with this
approach.

4 In [3] Bryson Brown presented a similar approach to paraconsistency: if you derive
p&∼p, choose which one of these two p’s you wish to preserve, and replace the other by p′.

5 The latter sentence is typical for adaptive logics. For the adaptive part, I am indebted to
Diderik Batens. By creating ambiguity-adaptive logics, I do nothing but completing the wide
range of corrective adaptive (or abnormality-adaptive) logics. Diderik Batens dealed with all
logical abnormalities, I happened to have the idea to think of non-logical abnormalities.

6 Γ is inconsistent iff Γ `CL A&∼A for some A.
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142 GUIDO VANACKERE

There are two strong reasons to elaborate ambiguity-adaptive logics: (i)
Ambiguity-adaptive logics are very close to ‘natural’ reasoning in incon-
sistent situations. In a lot of situations inconsistencies arise from the am-
biguous meaning of non-logical terms. People who meet an inconsistency
will not weaken their logic, they will suspect some words to have a dou-
ble meaning. (ii) The application requires nothing but CL. Where other
abnormality-adaptive logics oscillate between a weakening of CL and CL
itself, ambiguity-adaptive logics oscillate between CL applied to a maxi-
mally ambiguous interpretation of the premises and CL applied to the nor-
mal interpretation of the premises.

In the field of abnormality-adaptive logics, two strategies are well elabo-
rated, namely, the reliability strategy and the minimal abnormality strategy.
The idea behind the minimal abnormality strategy is that given the fact that
we tolerate some logical abnormality (e.g. inconsistency or ambiguity), we
should not tolerate more abnormal cases than required in order to safeguard
a the theory from triviality. I think it is only natural that we hang on to
the minimal abnormality strategy when we are dealing with ambiguity. It
is not our purpose to indicate as much as possible expressions that might
be ambiguous; to the contrary: if we can render the premises consistent by
weeding out one ambiguous expression, there is no need to assume that the
premises contain two ambiguous expressions.

2. About ambiguities

Let me first clear out that I only consider primitive propositions, predicates
and names for individuals, i.e, the three kinds of NLC that are used in first
order predicative logics. Moreover, I do not study ambiguities that are due to
different grammatical functions of one and the same expression.7 For short,
I only consider these cases in which two occurrences of one propositional,
individual or predicative constant have the same grammatical function, but a
different meaning.8

7 For instance, I am not dealing with the following example; “I am surrounded by animals.
My cat is an animal. Hence I am surrounded by my cat.” Bernardo Martelli (Bologna)
mentioned me the following Italian example: “La vecchia porta la sbarra.” In a first reading
“vecchia” is a noun, “porta” is a verb, and “sbarra” is a noun, in the second reading “vecchia”
is an adjective, “porta” is a noun, and “sbarra” is a verb. My approach can only deal with this
ambiguity by roughly formalizing the whole sentence as one propositional constant p and
saying that occurrence 1 of p is not the same as occurrence 2 of p.

8 I mentioned three examples in the introduction.
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If we talk about an ambiguous constant C, we need (at least) two occur-
rences C1 and C2 of the constant, that have a different meaning, in order to
meet an ambiguity. We restrict our attention to a formal approach of ambigu-
ities, and hence, ambiguities can only be detected if an inconsistency arises.
The general scheme of the ambiguities I study is, for a set of premises Γ, an
NLC C occurring at least twice in Γ and a well-formed formula A:

Γ, “C1=C2”`CL A&∼A

Obviously, if we want to avoid the derivation of an inconsistency, we have to
question the identification of occurrence 1 of C (C1) and occurrence 2 of C
(C2). We may consider three kinds of causes of the ambiguity at hand, each
of which requires a specific approach.

1. We have in mind a specific intended meaning of C.
Hence either C1 or C2 does not have the intended meaning. The formal so-
lution in this case exists in saying that either C1 6=C or C2 6=C. In natural
languages we will replace either C1 or C2 by another expression. For in-
stance, if we talk about furniture, and especially about chairs, we better not
say that the chair of our department needs a new table, but, e.g. the chairman
of our department.9

2. We do not have in mind a specific intended meaning of C.
In this case it does not make sense to say that either C1 6=C or C2 6=C. The
solution at hand is as follows: the fact that C seemingly has (at least) two
different meanings indicates that we should question every other occurrence
Ci of C. For any Ci we have either C i=C1 & Ci 6=C2 or Ci=C2 & Ci 6=C1.
In natural languages we will replace every occurrence of C by a either C1 or
C2, which are both new expressions. For instance, instead of “Einstein”, we
may talk about “Einstein as a kid” and “Einstein as a scientist”.

3. We doubt whether C is a good expression at all.
In this case the solution may be very drastic: every occurrence is to be re-
placed by a new expression and all derivations based on the identification of
occurrences of C are ruled out. Technically we have, if C1 6=C2, then for
all i, j, Ci 6=Cj . Consider for instance a moral theory that turns out to be
inconsistent. This might be due to the use of a predicate (e.g. “being good”)
that is so vague and ambiguous that the theory would be much better if the
predicate did not occur at all.

9 This view is very close to the preservationist’s view, as established in [3].
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144 GUIDO VANACKERE

3. Minimal abnormality: one ambiguity logic, three ambiguity-adaptive log-
ics

The three mentioned approaches result in three sets of abnormalities:10

(1) A1 = {Ci | Ci 6=C}
(2) A2 = {〈Ci, Cj〉 | Ci 6=Cj}
(3) A0 = {C | Ci 6=C for some Ci, Cj}

The idea behind adaptive logics based on the minimal abnormality strategy
is very intuitive: with respect to a given set of formulas, we should not allow
for more abnormalities than necessary in order to keep the set of formulas
classically consistent. The abnormalities at hand are ambiguities of NLC.
We established that there are (at least) three kinds of abnormalities, and
hence we may consider three ambiguity-adaptive logics based on the min-
imal abnormality strategy, resp. AAL1, AAL2 and AAL0.11 These logics
are based on the application of CL to a maximally ambiguous interpretation
of the premises, and a selection of the minimally ambiguous models of this
interpreted set of premises.

3.1. The maximally ambiguous interpretation

Let L be the language of CL, containing ⊃, ∼, &, ∨, ≡, ∀, ∃, = and the
members of S, Pr, C, V . S is the set of sentential letters. Pr is the set of
letters for predicates of rank r (r ≥ 1). C is the set of letters for individual
constants. V is the set of letters for individual variables.

Let LI be obtained from L, by replacing S,Pr, C by respectively SI ,PrI ,

CI . For i = 1, 2, ..., P i ∈ SI iff P ∈ S , πi ∈ PrI iff π ∈ Pr, βi ∈ CI iff
β ∈ C.

Where C ∈ S ∪Pr ∪C, C is called an NLC and we define I(C) = {C i ∈
SI∪PrI∪CI}. Ci ∈ I(C) is called an indexed NLC. Let the normal set W

10 The superscripts 1, 2 and 0 refer to the number of meanings we are willing to ascribe to
C; approach 1 results in A1, approach 2 results in A2 and approach 3 results in A0.

11 Within the wide field of adaptive logics, it would be more appropriate to call these logics
resp. AAL1

2, AAL2

2 and AAL0

2. The subscript 2 refers to the minimal abnormality strategy,
whereas the subscript 1 usually refers to the reliability strategy. See e.g. [1]. As I think that
the minimal abnormality strategy is more appropriate when we are dealing with ambiguities,
I only consider this second strategy. For aesthetic reasons, I omit the subscript 2 in this paper.

In [5] I presented the logic ACL2, which is a predecessor of AAL1. As opposed to AAL1,
ACL2 was defined to be applied to a maximal ambiguous interpretation of the premises,
which is —from a logical point of view— quite unusual. Diderik Batens suggested me to
define these logics in the same style as e.g. Jaskowski’s Discussive logics. In [2] Diderik
Batens deals with a variant of AAL2.



“08vanackere”
2002/3/5
page 145

i

i

i

i

i

i

i

i

MINIMIZING AMBIGUITY AND PARACONSISTENCY 145

of well-formed CL-formulas (henceforth wffs) in the language L be defined
as usual and let WI be defined in the language LI in the same way. In what
follows, the language of CL will be LI .12 The syntax and the semantics of
CL are as usual. Where Γ ⊂ W , let I(Γ) be such that ΓI ∈ I(Γ) iff

(i) ΓI ⊂ WI ,
(ii) each element of SI ∪ PrI ∪ CI occurs at most once in ΓI , and
(iii) deleting the superscripts from the elements of SI ∪ PrI ∪ CI that

occur in ΓI , results in Γ.
It can be shown that all ΓI ∈ I(Γ) give an equivalent result, and hence

it is justified to restrict our attention to one paradigmatic ΓI ∈ I(Γ). The
simplest convention for a set of premises in an actual proof, is to replace
the i-th occurrence of an NLC C in Γ by C i. If, for instance, p has seven
occurrences in Γ, the interpreted set of premises ΓI ∈ I(Γ) will contain
p1, ..., p7, in that order. In what follows the name ΓI will always refer to this
specific member of I(Γ). Where A ∈ W , let I(A) be such that AI ∈ I(A)
iff

(i) AI ∈ WI .
(ii) deleting the superscripts from the elements of SI ∪ PrI ∪ CI that

occur in AI , results in A.13

Definition 1 : Γ `AL A iff there is some AI ∈ I(A) such that ΓI `CL AI

Definition 2 : Where C ∈ S , C i 6=Cj =df ∼(Ci ≡ Cj)

Definition 3 : Where C ∈ Pr, Ci 6=Cj =df ∼(∀α1)...(∀αn)(Ciα1...αn ≡
Cjα1...αn)

Definition 4 : Where C ∈ C, C i 6=Cj =df ∼(Ci=Cj)

3.2. Semantics of AAL1

Definition 5 : Where M is a CL-model, A
1(M) = {Ci | vM(Ci 6=Cω) = 1}.

ω is an arbitrary index, and Cω does not occur in ΓI .

12 For short: L contains only NLC without indices, LI contains only NLC with indices.

13 Some indexed NLC may occur more than once in AI .
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146 GUIDO VANACKERE

Definition 6 : A CL-model M is minimally 1-ambiguous with respect to ΓI ,
iff M is a CL-model of ΓI , and there is no CL-model M

′ of ΓI , such that
A

1(M′) ⊂ A
1(M).

Definition 7 : M is an AAL1-model of ΓI iff M is minimally 1-ambiguous
with respect to ΓI .

Definition 8 : Γ |=AAL1 A iff some AI ∈ I(A) is true in all AAL1-models
of ΓI .

3.3. Semantics of AAL2

Definition 9 : Where M is a CL-model, A1(M) = {〈Ci, Cj〉 | vM(Ci 6=Cj) =
1}.

Definition 10 : A CL-model M is minimally 2-ambiguous with respect to ΓI ,
iff M is a CL-model of ΓI , and there is no CL-model M

′ of ΓI , such that
A

2(M′) ⊂ A
2(M).

Definition 11 : M is an AAL2-model of ΓI iff M is minimally 2-ambiguous
with respect to ΓI .

Definition 12 : Γ |=AAL2 A iff some AI ∈ I(A) is true in all AAL2-models
of ΓI .

3.4. Semantics of AAL0

Definition 13 : Where M is a CL-model, A
0(M) = {C | vM(Ci 6=Cj) = 1,

for some i, j}.

Definition 14 : A CL-model M is minimally 0-ambiguous with respect to ΓI ,
iff M is a CL-model of ΓI , and there is no CL-model M

′ of ΓI , such that
A

0(M′) ⊂ A
0(M).

Definition 15 : M is an AAL0-model of ΓI iff M is minimally 0-ambiguous
with respect to ΓI .

Definition 16 : Γ |=AAL0 A iff some AI ∈ I(A) is true in all AAL0-models
of ΓI .
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3.5. Examples

The examples given in this section establish the difference between and the
characteristics of the three ambiguity-adaptive logics. We consider Γa, Γb,
Γc and Γd, such that:

Γa = {p ∨ q, q ⊃ p}
Γb = Γa ∪ {q ⊃ r, q ⊃ ∼r, q}
Γc = Γb ∪ {r,∼r}
Γd = Γc ∪ {∼p}

Hence ΓI
a, ΓI

b and ΓI
c are respectively:

ΓI
a = {p1 ∨ q1, q2 ⊃ p2}

ΓI
b = Γa ∪ {q3 ⊃ r1, q4 ⊃ ∼r2, q5}

ΓI
c = Γb ∪ {r3,∼r4}

ΓI
d = Γc ∪ {∼p3}

(1) Applying AAL1 to the examples.

The ambiguity-adaptive logic AAL1 focuses on the question whether all oc-
currences of an NLC have the intended meaning. The set of abnormalities
A

1(M) of an AAL1-model M of a set of premises exists of specific occur-
rences of NLC. An occurrence C i of an NLC C is a member of A

1(M) if
and only if the model would not be a model of the premises if it did not
verify Ci 6=Cω. The use of Cω results in the fact that C i ∈ A

1(M) does not
imply that some other Cj needs to be a member of A

1(M). AAL1 isolates
the specific ambiguous occurrences of an NLC; from all other occurrences
of the same NLC, AAL1 derives all classical consequences, as we can see in
this example. All CL-models of ΓI

a verify:

p1 ∨ p1 6=pω ∨ p2 6=pω ∨ q1 6=qω ∨ q2 6=qω (1)

For all AAL1-models M of ΓI
a: A

1(M) = ∅, and hence vM(p1) = 1 and
hence

Γa |=AAL1 p

All CL-models of ΓI
b verify (1), and

r1 ∨ q3 6=qω ∨ q5 6=qω (2)
∼q3 ∨ q3 6=qω ∨ q4 6=qω ∨ r1 6=rω ∨ r2 6=rω (3)
q3 6=qω ∨ q4 6=qω ∨ q5 6=qω ∨ r1 6=rω ∨ r2 6=rω (4)

Hence all AAL1-models of ΓI
b verify one of the disjuncts of (4), and hence,

the models that verify q3 6=qω or q5 6=qω do not necessarily verify r1. Neither
do the models that verify q3 6=qω, q4 6=qω, r1 6=rω or r2 6=qω necessarily verify
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∼q3. Still, none of these models verifies p1 6=pω, p2 6=pω, q1 6=qω or q2 6=qω,
and hence they all verify p1. Hence:

Γb |=AAL1 p Γb 6|=AAL1 r
Γb 6|=AAL1 ∼q

All CL-models of ΓI
c verify (1)–(4) and

r3 6=rω ∨ r4 6=rω (5)

Hence all AAL1-models of ΓI
c verify one of the disjuncts of (3) and one of

the disjuncts of (4) which has no surprising influence on the consequences:

Γc |=AAL1 p Γc 6|=AAL1 ∼q
Γc |=AAL1 r

It is instructive for the reader to check the correctness of:

Γd 6|=AAL1 p
Γd 6|=AAL1 ∼q

(2) Applying AAL2 to the examples.

The ambiguity-adaptive logic AAL2 first detects couples of occurrences
〈Ci, Cj〉 of NLC, the members of which cannot be identified with one an-
other without making the premises inconsistent. Next the logic focuses on
the question whether the other occurrences of the same NLC can be iden-
tified with either Ci or Cj . The drawback of a formal approach is that
one cannot tell from looking at Ck whether Ck= Ci&Ck 6=Cj or Ck=
Cj&Ck 6=Ci. Hence, as soon as 〈C i, Cj〉 ∈ A

2(M) for some AAL2-model
M, there will be AAL2-models that verify Ck 6= Ci and there will be AAL2-
models that verify Ck 6= Cj , and so on; hence as soon as 〈C i, Cj〉 ∈ A

2(M)
for some AAL2-model M, there will be a AAL2-model that verifies Ck 6=C l

for any k, l ! This is a result that this ambiguity-adaptive logic should ob-
tain. The decision whether Ck= Ci&Ck 6=Cj or Ck= Cj&Ck 6=Ci is an
informal decision, and cannot be made by means of a formal logic.

All CL-models of ΓI
a verify:

p1 ∨ p1 6=p2 ∨ q1 6=q2 (6)

For all AAL2-models M of ΓI
a: A

2(M) = ∅, and hence vM(p1) = 1 and
hence:

Γa |=AAL2 p

All CL-models of ΓI
b verify (6) and

r1 ∨ q3 6=q5 (7)
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∼q3 ∨ q3 6=q4 ∨ r1 6=r2 (8)
q3 6=q4 ∨ q3 6=q5 ∨ r1 6=r2 (9)
q3 6=q4 ∨ q4 6=q5 ∨ r1 6=r2 (10)
q3 6=q5 ∨ q4 6=q5 ∨ r1 6=r2 (11)

Hence all AAL2-models of ΓI
b verify exactly one of the disjuncts of (9),

(10) and (11). Every model that verifies q3 6=q4 either verifies q1 6=q3 or
q1 6=q4, and also verifies either q2 6=q3 or q2 6=q4. Some of them verify q1 6=q2.
For instance: the model that verifies q3 6=q4, q1 6=q3, q2 6=q4 and q1 6=q2 and
falsifies q1 6=q4 is an AAL2-model of ΓI

b . Thus we get a much weaker result
in comparison with AAL1:

Γb 6|=AAL2 p
Γb 6|=AAL2 r
Γb 6|=AAL2 ∼q

All CL-models of ΓI
c verify (8)–(13) and

r3 6=r4 (12)

Hence all AAL2-models of ΓI
c verify one of the disjuncts of (9), (10), (11)

and (12) which has no surprising influence on the consequences. Indeed,
not all AAL2-models of ΓI

c that verify (12) verify r1 6=r2; and all of these
models verify 2 members of {q3 6=q4, q3 6=q5, q4 6=q5}

(3) Applying AAL0 to the examples.

In the case of AAL0, the abnormalities are non-indexed NLC. This has an
important influence on the sets A

0(M) of the AAL0-models. If C ∈ A
0(M),

and M verifies, e.g. C i 6=Cj ∨ Dk 6=Dl, there is no need that D ∈ A
0(M).

This characteristic results in the fact that AAL0 is more sensitive to ‘incon-
sistent extensions’ of the premises than AAL1 and AAL2. For all AAL0-
models M of ΓI

a: A
2(M) = ∅, and hence

Γa |=AAL0 p

For all AAL0-models M of ΓI
b : A

0(M) = {q} or A
0(M) = {r}. Hence we

get the following result:

Γb 6|=AAL0 p
Γb 6|=AAL0 r
Γb 6|=AAL0 ∼q

For all AAL0-models M of ΓI
c : A

0(M) = {r}. Hence:

Γc |=AAL0 p Γc 6|=AAL0 ∼q
Γc |=AAL0 r
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For all AAL0-models M of ΓI
d: A

0(M) = {p, r} or A
0(M) = {q, r}. Hence:

Γc |=AAL0 r Γc 6|=AAL0 p
Γc 6|=AAL0 ∼q

(4) Overview

|= p? |= ∼q? |= r?
ΓI

a ΓI
b ΓI

c ΓI
d ΓI

b ΓI
c Γd ΓI

b ΓI
c ΓI

d

AAL1 yes yes yes no no no no no yes yes
AAL2 yes no no no no no no no yes yes
AAL0 yes no yes no no no no no yes yes

It is also interesting to notice that the three logics derive both p6=p ∨ q 6=q
and r 6=r from Γd. Moreover they all prevent the derivation of p and ∼q
because of the fact that ∼p and q are premises. The fact that both r and ∼r
are derivable is due to the fact that the two of them are premises.

4. Proof theory of AAL0

4.1. Final derivability

I start with defining a new rule, which is typical for CL when applied to a
maximally ambiguous interpretation of a set of premises.

Definition 17 : The rule DR: to derive A ∨ DA0{C1, ..., Cn} from A ∨ Ci
1

6=C
j
1∨...∨Ck

n 6=C l
n for any non-indexed NLC Ci and any indexes i, j, ..., k, l.

Definition 18 : DA0(Σ) is a minimal DA0-consequence of Γ iff ΓI `CL

DA0(Σ), and there is no ∆ such that ∆ ⊂ Σ and ΓI `CL DA0(∆).

Definition 19 : ΦΓ is the set of all sets ϕ that (i) contain exactly one element
of each minimal DA0-consequence of Γ and that (ii) are no proper supersets
of such a set.

For instance: if DA0{p, q} and DA0{p, r, s} are the only minimal DA0-
consequences of ΓI , then ΦΓ = {{p}, {q, r}, {q, s}}. The reader can easily
see that every ϕ ∈ ΦΓ is equal to some A

0(M) of an AAL0-model.14

14 Definition 13, p. 146.
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Definition 20 : Γ `AAL0 A iff there is a AI ∈ I(A) and there are one or
more (possibly empty) Σi, such that ΓI `CL AI ∨ DA0(Σi), and for any
ϕ ∈ ΦΓ, one of the Σi is such that Σi ∩ ϕ = ∅.

Obviously, if ΓI `CL AI then Γ `AAL0 A. The following example il-
lustrates the AAL0-derivability relation. Consider the set Γ, containing a
formalization of the following sentences:

The “liar’s paradox” is the name of a sentence that is both true and false.
All true sentences are well-formed.
All false sentences are well-formed.
If something is true and false, it is a paradox.
Paradoxes are well-formed.
If a sentence is true, then it is not false.

Γ = {(∃x)((x = l&Sx)&(Tx&Fx)), (∀x)((Tx&Sx)⊃Wx), (∀x)((Fx&
Sx)⊃ Wx), (∀x)((Tx&Fx)⊃Px), (∀x)(Px⊃Wx), (∀x)((Tx&Sx)⊃
∼Fx)}

It is easily seen that Γ is inconsistent. Applying CL to ΓI results in the
following proof:
(1) (∃x)((x = l1&S1x)&(T 1x&F 1x)) Prem
(2) (∀x)((T 2x&S2x)⊃W 1x) Prem
(3) (∀x)((F 2x&S3x)⊃W 2x) Prem
(4) (∀x)((T 3x&F 3x)⊃P 1x) Prem
(5) (∀x)(P 2x⊃W 3x) Prem
(6) (∀x)((T 4x&S4x)⊃ ∼F 4x) Prem
(7) (S1l1&T 1l1)&F 1l1 1
(8) (T 2l1&S2l1)⊃W 1l1 2
(9) (F 2l1&S3l1)⊃W 2l1 3
(10) (∀x)((T 3x&F 3x)⊃W 3x) ∨ DA0{P} 4,5
(11) (T 3l1&F 3l1)⊃W 3l1) ∨ DA0{P} 10
(12) W 1l1 ∨ DA0{S, T} 7,8
(13) W 2l1 ∨ DA0{S, F} 7,9
(14) W 3l1 ∨ DA0{T, F, P} 7,10
(15) W 1l1 ∨ DA0{S, F,W} 13
(16) W 1l1 ∨ DA0{T, F, P,W} 14
(17) (T 4l1&S4l1)⊃ ∼F 4l1 6
(18) (F 4l1&∼F 4l1) ∨ DA0{S, T, F} 7,17
(19) DA0{S, T, F} 18

Obviously all wffs occurring in this proof are, if we omit the superscripts,
AAL0-consequences of Γ. The formula in line (19) is the only minimal
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DA0-consequence of Γ and hence ΦΓ = {{T}, {S}, {F}}. In view of (12),
(15) and (16), Definition 20, and

{S} ∩ {T, F,W,P} = ∅
{T} ∩ {S, F,W} = ∅
{F} ∩ {S, T} = ∅,

we have Γ `AAL0 Wl. Notice that if one of the formulas in lines (12),
(15) and (16) would not be CL-derivable from ΓI , then Γ 6`AAL0 Wl. The
derivation of (19) is to be interpreted as follows: at least one of the predicates
“being true”, “being false” or “being a sentence” is ambiguous (with respect
to these premises).

4.2. Dynamic proofs / provisionally derived formulas

Adaptive logics have dynamic proofs. I use to the example from Section 3.5
to illustrate this feature of AAL0.
(1) p1 ∨ q1 Prem
(2) q2 ⊃ p2 Prem
(3) p1 ∨ DA0{p, q} 1,2
(4) q3 ⊃ r1 Prem
(5) q4 ⊃ ∼r2 Prem
(6) q5 Prem
(7) ∼q3 ∨ DA0{q, r} 4,5
(8) r1 ∨ DA0{q} 4,6
(9) ∼r2 ∨ DA0{q} 5,6
(10) DA0{q, r} 6,7 or 8,9
(11) r3&∼r4 Prem
(12) DA0{r} 11
(13) ∼p3 Prem
(14) DA0{p, q} 7,8

If the proof had stopped at line (3), there were no DA0-consequences, and
hence p was derived. If the proof had stopped at line (10), there would
be only one minimal DA0-consequence. At this stage ΦΓb

= {{q}, {r}};
as {p, q} ∩ {q} 6= ∅, p is not derivable at line (10); neither are ∼q, r or
∼r. If the proof had stopped at line (12), there would be only one minimal
DA0-consequence, namely DA0{r}, and hence ΦΓc

= { {r} }, and hence
p at line (3) becomes derived again. Finally, at stage (14), there are two
minimal DA0-consequences, namely DA0{r} and DA0{p, q} , and hence
ΦΓd

= {{p, r}, {q, r}}; as {p, q}∩{p, r} 6= ∅, p is not derivable; as {q, r}∩
{q, r} 6= ∅, ∼q is not derivable.
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Please notice that if we omit the superscripts in the proof, the usual clas-
sical rules become conditional, i.e., we get the usual classical consequences
in disjunction with a DA0-formula.

When we are dealing with infinite sets of premises, or with ‘slowly ex-
tending’ sets of premises, we never know which formulas will be finally
derivable. In this cases, dynamic proofs offer a splendid provisional solu-
tion. For the user’s comfort we add a fifth element to each line in which sets
of abnormalities may occur. These sets are subject to the Conditional Rule
RC:

Definition 21 : The rule RC: from a line (i) to derive a line (j), and vice
versa:15

(i) AI ∨ DA0(Σ) (line numbers); Rule ∆
(j) AI (i); RC ∆ ∪ Σ

It is possible to define AAL0 by means of the rule RC, the unconditional
rule RU, and a marking rule RM. A proof in which only these rules are used,
is called an ACL0-proof.

Definition 22 : The rule RU: from lines (i1), ..., (in), with resp. AI
1, ..., A

I
n

as second element and Σ1, ..., Σn as fifth element (n ≥ 0), to derive a line
(j) with BI as second element, (i1, ..., in) as third element, UR as fourth
element, and Σ1 ∪ ... ∪ Σn as fifth element, given that AI

1, ..., A
I
n `CL BI .

Definition 23 : DA0(Σ) is a minimal DA0-formula of ΓI at line (i) of a
proof from ΓI , iff DA0(Σ) is the second element of a line (j) (1 ≤ j ≤ i)
the fifth element of which is empty, and there is no ∆ ⊂ Σ such that DA0(∆)
is the second element of a line (k) (1 ≤ k ≤ i) the fifth element of which is
empty.

Definition 24 : Φ(i) is the set of all sets ϕ that (i) contain exactly one element
of each minimal DA0-formula of ΓI at line (i) of that proof from ΓI and,
that (ii) are no proper supersets of such a set.

Definition 25 : Line (j) with AI as second and Σ as fifth element, fulfils the
integrity criterion at stage (i) of a proof from ΓI , iff (i) ϕ ∩ Σ = ∅ for some
ϕ ∈ Φ(i), and for each ϕ ∈ Φ(i) there is a line (k) (1 ≤ k ≤ i) such that,
where Σk is the fifth element of line (k), ϕ ∩ Σk = ∅.

15 Actually, the second direction is a derivable rule.
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Definition 26 : The rule RM: If a line does not fulfil the integrity criterion at
a stage (i) of a proof, then the line is market OUT.

Definition 27 : AI is derived at a stage (i) of a proof, iff AI is the second
element of a line that is not marked OUT.

When applied to the same example, we get the following ACL0-proof:
(1) p1 ∨ q1 Prem ∅
(2) q2 ⊃ p2 Prem ∅
(3) p1 1,2 {p, q} OUT(10) IN(12) OUT(14)
(4) q3 ⊃ r1 Prem ∅
(5) q4 ⊃ ∼r2 Prem ∅
(6) q5 Prem ∅
(7) ∼q3 4,5 {q, r} OUT(10)
(8) r1 4,6 {q} OUT(10) IN(12)
(9) ∼r2 5,6 {q} OUT(10) IN(12)
(10) DA0{q, r} 6,7 ∅
(11) r3&∼r4 Prem ∅
(12) DA0{r} 11 ∅
(13) ∼p3 Prem ∅
(14) DA0{p, q} 7,8 ∅

Definition 28 : AI is finally derived in a line of an ACL0-proof from ΓI , iff
it is the second element of that line and any (possibly infinite) extension of
the proof can be further extended in such way that the line is unmarked (or
marked IN).

Theorem 1 : Γ `AAL0 A iff some AI ∈ I(A) is finally derived at some line
of an ACL0-proof from ΓI .

Theorem 2 : If Γ `AAL0 A, then, for some AI ∈ I(A), it is possible to
extend any proof from ΓI into a proof in which AI is finally derived.16

5. Proof theory of AAL1

Definition 29 : A DA1-formula is a formula of the form C i1
1 6=Cω

1 ∨ ... ∨
Cin

n 6=Cω
n , abbreviated as DA1{Ci1

1 , ..., Cin
n }.

16 The proofs of Theorems 1 and 2 are analogous to the proofs of resp. Theorems 7.1 and
7.2 in [1].



“08vanackere”
2002/3/5
page 155

i

i

i

i

i

i

i

i

MINIMIZING AMBIGUITY AND PARACONSISTENCY 155

The definitions of (1) the conditional rule RC, (2) the unconditional rule UR,
(3) a minimal DA1-formula at a stage of a proof, (4) Φ(i), (5) the integrity
criterion, (6) the marking rule RM, (7) an ACL1-proof, (8) finally derived in
a line of an ACL1-proof, (9) minimal DA1-consequence, (10) and ΦΓ are
completely analogous as for AAL0.

Definition 30 : Γ `AAL1 A iff some AI ∈ I(A) is finally derived at some
line of an ACL1-proof from ΓI .

Theorem 3 : Γ `AAL1 A iff there is a AI ∈ I(A) such that there are one
or more (possibly empty) finite sets Σ, Σ, ... ⊃ A1, such that ΓI `CL AI ∨
DA1(Σi), ΓI `CL AI ∨ DA1(Σi), ..., and for any ϕ ∈ ΦΓ, one of the Σi is
such that Σi ∩ ϕ = ∅.

Theorem 4 : If Γ `AAL1 A, then, for some AI ∈ I(A), it is possible to
extend any proof from ΓI into a proof in which AI is finally derived.

Consider the following example. Let Γ be a formalization of
“John is the father of Paul. John and his relatives live in Yorkshire. Robert is a
brother of John. Robert is the father of Melanie, and Paul is the father of John. [If
you are father or brother of someone, (s)he is one of your relatives. “Being father
of” is an asymmetric relation.]”

The members of ΓI can be found in lines (1)–(6):
(1) F 1j1p1 Prem ∅
(2) (∃x)((x=j2&(∀y)((R1yx ∨ x = y) ⊃ Y 1y)))∅
(3) B1r1j3 Prem ∅
(4) F 4r2m1&F 5p2j4 Prem ∅
(5) (∀x)(∀y)((F 6xy ∨ B2xy) ⊃ R2yx) Prem ∅
(6) (∀x)(∀y)(F 7xy ⊃ ∼F 8yx) Prem ∅
(7) R2p1j1 1,5 {F 1, F 6} OUT
(8) R1p1j2 ⊃ Y 1p1 2 ∅
(9) Y 1p1 7,8 {F 1, F 6, R1, R2, j1, j2} OUT
(10) R2m1r2 4,5 {F 4, F 6}
(11) Y 1j2 2 ∅
(12) j1 = jω — {j1} OUT
(13) j3 = jω 15 {j3}
(14) DA1{F 1, F 5, F 7, F 8, j1, j4, p1, p2} 1,4,6 ∅

As long as we are not informed about the fact that John and his grandchild
have the same name, there are 8 possibly ambiguous occurrences of NLC,
viz. those in the DA1-formula in line (14). The ACL1-derivation of this
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DA1-formula blocks the AAL1-derivation of the formulas Rpj and Y p.
Notice that Γ ` AAL1Rmr, whereas Γ 6` AAL0Rmr. Indeed: the AAL1-
derivation of Rmr only depends on the normal behaviour of occurrences
F 4 and F 6, whereas the AAL0-derivation of Rmr depends on the normal
behaviour of all occurrences of F .17

Also notice that, although we intuitively know that j1, j2 and j3 have the
intended meaning of j, whereas j4 refers to the grandchild of j, we can
derive j2 = jω and j3 = jω, but neither j1 = jω nor j4 6= jω. This is
normal: AAL1 is a formal logic that does not take into account intuitive
preferences.

With respect to applications, it might be interesting to consider the follow-
ing consequence relation. Let Aω ∈ I(A) be a formula in which all NLC
have the index ω.

Definition 31 : Γ `AALω A iff
(i) ΓI `ACL1 Aω or
(ii) A ∈ I(A) and ΓI `ACL1 A, and for any formula AI ∈ I(A) ob-

tained by replacing a superscript i 6= ω in A by ω, ΓI 6`ACL1 AI

Interesting about this consequence relation is that all possibly ambiguous
occurrences of NLC and only those are replaced by new NLC.

A straightforward example is taken from the proof above. ΓI `ACL1

F 5p2j4, whereas ΓI 6`ACL1 Fωp2j4, ΓI 6`ACL1 F 5pωj4, and ΓI 6`ACL1

F 5p2jω, because these formulas can only be derived in a line with respec-
tively {F 5}, {j2} and {p4} as fifth element—conditions which are obvi-
ously overruled in view of (14). Hence Γ `AALω F 1j1p1. We also have
Γ `AALω Rmr, and Γ 6`AALω R2m1r2.

6. Proof theory of AAL2

Definition 32 : A DA2-formula is a formula of the form C i1
1 6=C

j1
1 ∨ ... ∨

Cin
n 6=C

jn
n , abbreviated as DA2{〈Ci1

1 , C
j1
1 〉, ..., 〈Cin

n , C
jn
n 〉}.

The definitions of (1) the conditional rule RC, (2) the unconditional rule UR,
(3) a minimal DA2-formula at a stage of a proof, (4) Φ(i), (5) the integrity
criterion, (6) the marking rule RM, (7) an ACL1-proof, (8) finally derived in

17 Γ `AAL0 DA0{F, j, p}
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a line of an ACL2-proof, (9) minimal DA2-consequence, and (10) ΦΓ are
completely analogous as for AAL0.

Definition 33 : Γ `AAL2 A iff some AI ∈ I(A) is finally derived at some
line of an ACL2-proof from ΓI .

Theorem 5 : Γ `AAL2 A iff there is a AI ∈ I(A) such that there are one
or more (possibly empty) finite sets Σ, Σ, ... ⊃ A1, such that ΓI `CL AI ∨
DA1(Σi), ΓI `CL AI ∨ DA1(Σi), ..., and for any ϕ ∈ ΦΓ, one of the Σi is
such that Σi ∩ ϕ = ∅.

Theorem 6 : If Γ `AAL0 A, then, for some AI ∈ I(A), it is possible to
extend any proof from ΓI into a proof in which AI is finally derived.

When we look at the example given in Section 3.5, one may get the im-
pression that AAL2 is too weak. This weakness is due to fact that the
AAL2-ambiguities are more specified and fundamental than the AAL0- and
the AAL1-ambiguities. Indeed, from the fact that a couple 〈C i, Cj〉 is
AAL2-ambiguous with respect to the premises, we can imply that C i and
Cj are AAL1-ambiguous with respect to the premises and that C is AAL0-
ambiguous with respect to the premises, but not the other way round. This
property allows for specific strong applications. Let me first show that the
apparent weakness can be overcome very easily by making proofs with the
purpose to derive least DA2-consequences.

Definition 34 : If DA2(Σ) is a minimal DA2-consequence of ΓI , then it is a
least DA2-consequence of ΓI iff there is no DA2(∆) such that DA2(∆) is
a minimal DA2-consequence of ΓI and DA2(∆) `CL DA2(Σ).

For instance, if p1 6=p2 is a minimal DA2-consequence of ΓI , then p1 6=p3 ∨
p2 6=p3 is also a minimal DA2-consequence of ΓI . In view of p1 6=p2 `CL

p1 6=p3 ∨ p2 6=p3, the latter is not a least DA2-consequence of ΓI . It is the
purpose of AAL2 to divide the occurrences of ambiguous NLC into parti-
tions. For instance if p1 6=p2 is the only least DA2-consequence in which
p occurs, the intended partitions for p will be Π(p1) = {pi | pi=p1} and
Π(p2) = {pi | pi=p2}. Clearly is not the duty of a formal logic to decide for
every pi whether pi ∈ Π(p1) or pi ∈ Π(p2); this is the aim of the one who
applies the logic in a specific situation. The least DA2-consequences sug-
gest which partitions one should consider. The specific situation may offer
sufficient information to decide whether pi=p1 or pi=p2.
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In [6] a very interesting application of AAL2 is presented. If we only
allow for ‘ambiguities’ with respect to the individual constants, we can con-
sider the superscripts as time-indexes. This results in a change-adaptive logic
which is very useful in all fields that deal with changing objects. This ap-
proach allows, e.g. to work with the following kind of formulas (t1, t2 are
time-indexes, i, j are variables for time-indexes):

(t1 < i < t2 & t1 < j < t2) ⊃ (Pai ≡ Paj).
(i < t2 < j) ⊃ ∼(Pai ≡ Paj).

7. Soundness and completeness

Theorem 7 : Γ `AAL0 A iff Γ |=AAL0 A.

The proof follows from ΓI `CL AI iff ΓI |=CL AI , and the fact that ΦΓ

is exactly the same as the set of all A
0(M) of all AAL0-models M. An

analogous remark holds for Theorems 8 and 9.18

Theorem 8 : Γ `AAL1 A iff Γ |=AAL1 A.

Theorem 9 : Γ `AAL2 A iff Γ |=AAL2 A.

8. The logical constants of the ambiguity logic

It is interesting to take a closer look at the behaviour of the logical constants
in the ambiguity logic AL. Obviously, all CL-theorems are AL-theorems.
As for instance `CL ((p1 ⊃ q1) ⊃ p1) ⊃ p1, we have `AL ((p ⊃ q) ⊃ p) ⊃
p. Also, all CL-theorems are AL-derivable from any set of premises.

The implication is not detachable. We have A `AL (A ⊃ B) ⊃ B, but we
do not have A, A ⊃ B `AL B.

There is no contraction for the disjunction. We have `AL (A ∨ A) ⊃ A,
but we do not have A ∨ A `AL A. Obviously, addition is valid.

The negation is highly paraconsistent. Although `AL (A&∼A) ⊃ B, still
A&∼A 6`AL B.

The conjunction behaves classically: A&B `AL A; A&B `AL B; A, B
`AL A&B.

18 For a more detailed soundness- and completeness theorem, I refer to [5].
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There is a remarkable similarity between the behaviour of the connectives
of the logic AL and e.g. Priest’s logic of paradox. In [2], Diderik Batens
proves that (full) LP can be defined within a variant of AL.

9. Concluding remarks

The results of this paper and papers like [2], [3] and [5], shed a new light on
paraconsistency. Usually the paraconsistent approach exists in weakening
the strength of one or more classical connectives. I think this paper made it
clear that paraconsistency is also possible without such a weakening, and a
fortiori without true inconsistencies. If we consider the fact that most logical
rules rely on the identification of two or more non-logical constants, it is
right to say that ambiguity logics deal with a fundamental logical issue.

Where all classical and most paraconsistent logicians assume that —or
act as if— all occurrences of one NLC can be identified with one another,
ambiguity-adaptive logics explicitly question this assumption and offer a re-
sult that meets the purposes of both classical and paraconsistent logics.

Let AAL refer to either AAL0, AAL1 or AAL2. If Γ is classically consis-
tent, then Γ `CL A iff Γ `AAL A. If the premises do not contain a formula
in which no NLC occurs and that is inconsistent with a CL-theorem,19 then
CL derives triviality, whereas AAL does not. Moreover, ‘outside the scope’
of the members of the minimal DA-formulas, AAL behaves completely
classically. Ambiguity-adaptive logics do not only block derivations from
possibly ambiguous NLC, they also indicate which NLC (AAL0) or spe-
cific occurrences of NLC (AAL1) are possibly ambiguous, or which pairs
of occurrences can not be identified with one another (AAL2). The conse-
quence relation `AALω solves inconsistencies in a creative way: it replaces
ambiguous occurrences of NLC by new NLC.

Centre for Logic and Philosophy of Science
University of Ghent

E-mail: Guido.Vanackere@rug.ac.be

19 For instance ∼(∀x)x = x.
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