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WHY THE LARGEST NUMBER IMAGINABLE IS STILL A FINITE
NUMBER∗

JEAN PAUL VAN BENDEGEM

1. Introduction

The object of this paper is straightforwardly philosophical. Its subject is
strict finitism: the view that there are such things as the largest (and the
smallest) number and hence that infinities play no part whatsoever in (ap-
plicable) mathematics. One of the standard criticisms directed against strict
finitism concerns both the ontological and epistemological status of these
limit numbers. After all, so the basic remark goes, if I can imagine a largest
number N, then I can equally imagine N+1, so N isn’t the largest number. If,
however, I cannot imagine such N, then how can I claim that it is the largest
number? The argument seems as devastating as Herman Weyl’s classic argu-
ment directed against a discrete geometry if it is meant to be an approxima-
tion of Euclidean (infinite) geometry. In his own words: “If a square is built
up of miniature tiles, then there are as many tiles along the diagonal as there
are along the sides; thus the diagonal should be equal in length to the side.”
(Weyl, [1949], p. 43). As this argument has no longer the strength it once
had,1 and therefore no longer the status of a “killer” argument against strict
finitism, it is necessary to deal with the largest number argument as well (if
only for symmetry’s sake). Which is the philosophical aim of this paper.

A different way of formulating what is done here is by referring to Priest’s
paper [1994], where he writes the following: “As long as the greatest nu-
meral possible with our notation system is so large that it has no physical

∗My thanks to one of the referees of this paper, who made a very thorough analysis
and has allowed me to make clear improvements. Of course, if the end result is still not
convincing, this is entirely my responsibility.

1 There are actually quite simple considerations to counter the argument. See my [1987]
and Forrest [1995], to name but two. In my attempt I introduced the notion of the width of
line, that is supposed to be large compared to the size of miniature tiles. Defining the length
of a line as its surface in terms of the number of tiles divided by the constant width, leads to
a distance function that approximates the Euclidean distance function as close as necessary.
Forrest on the other hand defines a line as a set of touching circles with a fixed radius and
defines the length in terms of the number of circles needed to make up the line.
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108 JEAN PAUL VAN BENDEGEM

or psychological significance ...” (p. 8, my emphasis). One might expect,
although it is not a trivial matter, as I will show in this paper, that for a
strict finitist the idea of “no physical significance” seems quite meaningful.
It seems less likely that the same holds for “no psychological significance”.
After all, does it not mean that psychological considerations are introduced
in a discussion about the nature of mathematics? Is this not psychologism all
over again? It is my aim to show that a clear understanding can be given of
this idea without ending up in a form of psychologism. This paper can thus
be read as an elaboration of Priest’s proposal.

Finally, the paper can also be read as (I hope) an improved presentation
of the first chapter of my [1987] where I tried to justify strict finitism, based
on similar ideas as presented here. However that approach did not seem to
carry an awful amount of convincing power. Hence this second attempt. In
the next paragraph I really start from scratch —I will discuss the properties
and particularities of the act of labelling— as I firmly believe that the roots
of the misconceptions about the (mere) possibility of strict finitism are to be
found at this fundamental level.

2. Basic assumptions about labels

Let us start by assuming that the world is indeed finite:2

(A1) A finite world W is given. That is, it consists of a finite set or totality
of “objects” w1, w2, ..., wn. The “objects” wi are considered to be atoms.

Comments on (A1):

In the first place, it is obvious that this formulation is meant to be as gen-
eral as possible. Therefore nothing is said about (i) what precisely these
“objects” are (space points, time points, space-time points, regions of space,
time, objects with extension, sharply delineated objects or vague objects, ...),
(ii) how these objects are related to one another (in mereological terms, is
there a part-whole relation?, is overlapping possible or not?, ...). The mere

2 Note that in this assumption and others to follow terms will occur such as “finite”,
“set”, “totality” and that indices are used. It should be understood that these do not have their
standard mathematical meaning, i.e., I do not take these terms to be imbedded in a standard
mathematical theory. The best way of looking at these words at this stage of the presentation
is as vaguely defined terms that will get refined and sharpened during the presentation. This
allows for a control mechanism: rereading the paper with the “final” definitions in mind
should lead not to incoherencies or inconsistencies. In yet different terms, what I am looking
for is self-consistency.
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purpose of (A1) is to guarantee that the world W is finite “in the large”, i.e.,
there are only a finite number of objects and that it is finite “in the small”,
i.e., the objects themselves are no further analysable.3 One should note two
things. The first is the asymmetry between the large and the small, the for-
mer one has to do with the number of objects, the latter one with the objects
themselves. The second is that there is no necessity for the objects to be
atomlike. One could imagine each object wi being composed of some other
objects wj.4

In the second place, it must be clear that (A1) is an empirical claim. A
thought experiment5 to sustain this claim is the following: consider the pos-
sibility that the universe, as well as man has an infinite past. Infinitely long
ago, a secret society was formed: The Ancient Pythagorean Society (APS).
What they have done is to check case-by-case Goldbach’s conjecture (every
even number is the sum of two primes) “starting” at infinity. Thus, n days
ago, they checked case 2n. This implies that the APS can in fact decide today
Goldbach’s conjecture. In fact, yesterday they have checked the “last” case.
Thus, if the APS were to exist, strict finitism in my view becomes pointless.
Do note that, although the thought experiment suggests otherwise, the ques-
tion is not a purely ontological one, i.e., whether or not an APS can exist, but
also an epistemological one, in the sense that the experiment presupposes
an extended form of mathematical proof, to be very specific, why would
you believe the president of the APS when she announces that Goldbach’s
conjecture is true (or proved?).

It is tempting to believe that, if the world is (ontologically) infinite one
way or another, then that means the end of strict finitism. But one has to take
into account the question whether and, if so, how we come to know this.
Either we have direct access —and, yes, in that case it does mean the end
of strict finitism as we know it— or we do not. The former case can be put
aside as no one, as far as I know, has directly experienced an infinite number
of objects.6

3 There is a close analogy here with Euclid’s definition of a point in the first book of the
Elements: a point is that which has no further parts.

4 The idea should be explored further, for it opens the possibility of a curious combination
of the finite and the infinite. Suppose we have three objects w1, w2 and w3, such that each
one is made up of the two others. Then at the same time there is a strictly finite model W =
{w1, w2, w3} and an infinite model if we take into account the fact that w1 = {w2, w3} =
{{w1, w3}, {w1, w2}} = ... However, in this paper I will restrict myself to the atomic case.

5 With thanks to Gerald J. Massey who first put this problem to me.

6 This statement is to be taken quite literally. I am not talking about, e.g., mystical expe-
riences whereby the mystic claims to have experienced God as an infinite being. Although
it is an important discussion to decide whether or not one can consider such mystic ability
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110 JEAN PAUL VAN BENDEGEM

So, unless humans acquire entirely new epistemic capacities, we can safely
ignore this possibility. However, in the latter case there can still be arguments
that support the idea of an infinity out there in the world. The question then
is how definitive these arguments can be. Can they be necessary in some
sense? It is my firm belief that the necessity of such arguments can always
be doubted.7 An illustration will perhaps make clear what I have in mind.

Suppose that —and one might forcefully argue that the present-day situ-
ation shows this supposition to be true— one were to tell me that our best,
say, physical theories about the universe are such that the world is infinite,
both in terms of space and time, and that no alternatives are available. In
this particular case as well, I would argue that this need not mean the end
of strict finitism. After all, given our epistemic capacities, only a finite part
of the universe is accessible. Therefore all statements having to do with the
global structure of the universe —and most definitely so, if it is supposed to
be infinite— are extrapolations in one sense or another and thus presuppose
principles that allow for these extrapolations, say, isotropy, homogeneity, to
name the “classics”. However alternatives for such principles are imagin-
able. To give but one concrete example. Suppose we have a model M of
the universe that is spatially infinite. Let M∗ be the accessible part of the
model M. Then it is always possible to construct a new model M′ such that
M′ coincides with M∗, but outside of M∗, M′ no longer obeys the same phys-
ical laws and nothing prevents one from introducing such laws that express,
among other things, that M′ is spatially and temporally finite, the extreme
case being that where quite brutally M′ = ∅. This raises the question of
course why the laws would change from one part of the universe to another,
but then it is instructive to read Paul Davies ([1994], especially chapter 10:
Sudden Death – and Rebirth) where precisely such a scenario (with stan-
dard quantum mechanics in the background to indicate that the author is not
exploring a pythonesque world) is presented.

I do realize that this sort of argumentation should raise doubts. After all,
on the one hand, I am claiming that it is empirical, hence, roughly speaking,
“facts” can decide the matter, but, on the other hand, our best theories of the
moment, that rely on infinities, seem to have little or no impact on the very
same matter. My defence should be read in first instance as a rejection of the

as an epistemic ability or accessibility, whether or not this experience can be communicated
to others, this is not the issue at stake here. In terms of a classic example, it seems quite out
of the question to see or experience all natural numbers at once. Thus the image of a row of
numbers “disappearing on the horizon” is an inadequate image, in the very same sense that
the notation 1, 2, 3, ... is inadequate.

7 I am not claiming that this holds in general. In other contexts it can very well be that
there are arguments that do have this compelling force.
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idea that it is a straightforward empirical problem. In other words, I am not
particularly impressed by the argument: “How can you be a strict finitist, if
our best theories need infinities? Surely you must be wrong.”

As the next step, since we are dealing with numerals and numbers,8 let us
introduce some counting mechanism in this finite world. Obviously, the sim-
plest counting or notation system imaginable consists of a list of strokes,
such that for every object to be counted a stroke is associated with it. Put
otherwise, in this finite world labels are given to objects, the labels them-
selves being objects.

(A2) In this world W a labelling machine (or entity if a more neutral term
is needed) is present, call it M. The actions of M are quite simple: what M
does is to pick out particular objects w∗

1
, w∗

2
, ..., w∗

k and to use these objects
as labels for other objects. It is assumed that (i) label and the labelled object
are to be distinct (or distinguishable), (ii) labels are not labelled themselves,
and (iii) one label labels one object and vice versa.

Comments on (A2):

In the first place —and, to a certain extent, this is the basic postulate of strict
finitism— it must be clear that it will be impossible for M to label all objects
in W.9 As a label is itself an object w∗

i , distinct of the object it labels because
of (i), and, because of condition (ii), self-labelling cannot occur,10 at most
half of the objects can be labelled by the other half. If we assume in addition
(though this is not a necessary requirement) that the objects making up the
machine M do not enter into the game, it is even less than half of it, namely
half of W\M.

8 This paper does not deal with the strict finitist approach to geometry. I refer the reader to
my [1995], where such an approach is outlined. From a strict finitist perspective, arithmetic
and geometry turn out to be quite distinct things.

9 This trivial observation has a grave consequence. M cannot know that W is finite
through labelling all objects. Hence the finitude of the world is just as abstract a statement as
it’s being infinite.

10 This includes also the case of cyclical labelling. Suppose —I owe this example to the
referee— a world consisting of three objects w1, w2 and w3. w1 labels w2, w2 labels w3 and
w3 labels w1. This contradicts the second condition, because w1 is itself a label and is now
labelled by w3.
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112 JEAN PAUL VAN BENDEGEM

Short digression

It is important to realize that this rather “innocent” statement —at
most half of the objects in the world can be labelled—, when written
out in more detail is actually a very delicate matter. Take for instance
the problem to find out what the minimal assumptions are needed
to actually prove such a statement. Assume in formal terms that we
have the following:

(a) a finite set W,
(b) a relation L over W, i.e., a subset of W x W (the labelling relation).
I will denote by
(c) D(L) the domain of L, i.e., D(L) = {x | (∃y)xLy},
(d) R(L) the range of L, i.e., R(L) = {x | (∃y)yLx}.

A first problem is to reformulate such phrases as “labels are distinct
from things labelled” in formal terms. At least the following sen-
tences are potential candidates:

(i) (∀x)((∃y)xLy ⊃ ∼(∃z)(zLx))&(∀x)((∃y)yLx ⊃ ∼(∃z)(xLz)),
(ii) (∀x)(∀y)(∀z)(xLy ⊃ ∼zLx) & (∀x)(∀y)(∀z)(yLx ⊃ ∼xLz),
(iii) ∼(∃x)(∃y)(∃z)(xLy&zLx) & ∼(∃x)(∃y)(∃z)(yLx&xLz),
(iv) (∀x)(∀y)(xLy ⊃ x 6= y),
(v) D(L) ∩ R(L) = ∅.

Note that (i), (ii) and (iii) do not require an identity predicate,
whereas (iv) does, and (v) requires (a part of) the language of set
theory. Even if we make a choice for the weakest formulation in
terms of the expressibility of the language used, then (i), (ii) and (iii)
have to be shown provably equivalent. From the viewpoint of clas-
sical logic, the three statements are indeed equivalent. In addition,
if there are no language restrictions, then classically speaking, (v) is
equivalent to (i), (ii) and (iii) as well. However, if one restricts one-
self to, e.g., intuitionistic logic, then one cannot go from (iii) to (ii) or
(i). This raises the difficult question what kind of logical principles
and rules can be justified when thinking about the world and labels in
such general terms as is proposed here. The obvious argument that,
since everything is assumed to be finite, all classical rules are appli-
cable, has to be rejected. As Wim Veldman in his [1995] shows, even
for finite sets the excluded middle can fail.11 To a certain extent

11 Examples are easily produced. Suppose a set A consisting of two elements 0 and n, A
= {0,n}. n is defined as follows: n = 0 if Goldbach’s conjecture is true, n 6= 0 if Goldbach’s
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what we have here is a similar problem as with proofs for the exis-
tence of God. What logical inference rules can be used or not when
talking about divine entities? What kind of justification is accept-
able? I will not pursue this philosophical matter further, but it is
clear that the matter is complicated.

A second problem concerns the exclusion of self-labelling. It is easy
to demonstrate that all proposals, excluding (iv), do not allow for self-
labelling.12 The one-label-one-object condition is easily translated (if
the identity predicate is available):

(α) (∀x)(∀y)(∀z)((xLy & xLz) ⊃ (y = z))
(β) (∀x)(∀y)(∀z)((xLz & yLz) ⊃ (x = y))

It remains a nice exercise to show that, given a set of objects and
the principles (a)–(d), (v) and (α)–(β), at most half of them can be
labels.13 Perhaps this digression might appear as a trivial mathemat-
ical exercise —after all, I am only showing that, if L is one-to-one
without loops, then the domain of L cannot be larger than half of
W— but one should read it as a form of reverse mathematics, i.e.,
what are the minimal principles needed to prove such a statement.

End of digression

In the second place, it is also assumed in (A2) that all the objects wi are
accessible to the machine M. There is obviously no necessity at all to accept
this condition, which will make things even worse. To be as concrete as
possible: if the basic objects making up W are space-time regions with a

conjecture is false. Now take the statement that A contains either one element or more than
one element. For the classical logician, this will be obviously true, but on an intuitionistic
reading of the disjunction, this no longer holds, as we cannot decide which alternative is the
case. It then follows that, since if n = 0, then A = {0}, and, since if n 6= 0, then A = {0,n},
we also cannot decide its cardinality, although the set is finite.

12 Suppose it does happen, then we must have aLy, for some y, and zLa for some z. From
the former it follows that (∃y)aLy, but according to (i), it then follows that ∼(∃z)zLa, contra-
dicting yLa.

13 Suppose that W = {w1,w2,w3,w4}. Take w1 as the first label, w∗

1. Then there must be
an object labelled by w∗

1, distinct from w1, say w2. Thus w∗

1Lw2. Because of (β), w∗

1 is no
longer available as a label, and, because of (v), so is w2. Hence, w3 is the next candidate,
thus w∗

3 becomes a label for w4, as w2 is excluded because of (α), thus w∗

3Lw4. Thus D(L)
= {w∗

1 ,w∗

2} and R(L) = {w3,w4}. Question: how problematic or not is the (at first sight)
innocent phrase “take an element of W” in this proof sketch?
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lower limit on size, say, in the order of Planck length and time, and if the
machine M has capacities similar to human beings, then the objects needed
for the labelling are on a much larger scale than the objects to be labelled,
i.e., the space-time regions.

In the third place, I have assumed right from the start of this paper that
the world is discrete: the objects wi are distinct and make up the world W.
Thus it is thereby assumed that, whatever a (mathematical) continuum might
be, it cannot be “for real”. This raises the interesting question how it is
possible that we humans have this strong illusion of continuity in our daily
experience. I have no doubt that a biological-psychological-epistemological
explanation is possible, if not already available. However, it would represent
an intriguing situation if there would be strong arguments that show that such
an explanation is impossible. Then we would have a deep problem for strict
finitism.

These two quite simple assumptions immediately lead to a first important
thesis:

(T) M will not be able to give a label to all objects in W. If we assume that
the act of counting involves at least the capacity to give labels distinct from
the objects being counted, then the totality of objects in W is, although finite,
not countable.

Observations on (T):

First of all, a clear advantage of the way (T) is formulated is that statements
such as “If the universe is finite, then it must be possible for the strict finitist
to count all the elementary particles” are far more complex than is usually
assumed. It is, e.g., important to decide what the interpretation of the objects
will be. If the objects are the elementary particles themselves, then, accord-
ing to the analysis presented so far, it is clear that it is impossible to count
them all (ignoring all other technical problems this choice will unavoidably
generate). If, on the other hand, the objects are space-time regions, in such
a way that a space-time region is much smaller than the size of an elemen-
tary particle, then it might well be possible to count them all. But then of
course it will not be the case that “If the universe if finite, then it must be
possible for the strict finitist to count all the space-time regions (ignoring
once again all practical matters)”. Furthermore, “counting” is understood
here in the very narrow sense of one-one labelling, whereby label and object
labelled are distinct. In short, it is important to realize that such statements
that sound extremely plausible and simple at first hearing, in fact are quite
complicated statements containing a number of hidden assumptions. This
will also become clear(er) in the next chapter of this paper.
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Secondly, any mathematics that will rely on the use of these labels —one
can think, e.g., of elementary arithmetic in a stroke notation system or of
elementary geometry where all points in the space are labelled— will not be
able to give a full description of W. At best it will give us a description of a
real part of W.

Thirdly, in (T) the phrase “not countable” is used. In a rather peculiar
way, this reflects the same idea in standard (naive) set theory, where the set
of ordinals cannot, if paradox is to be avoided, have an ordinality. Thus,
although (T) mentions W, a “set” of “elements”, yet, it is not possible to
specify #W, the cardinality of W.

The last point is really the core of the matter: there is nothing paradoxical
about holding simultaneously the following two claims:

(C1) The world W consists of a set of objects wi,
(C2) The world W does not have a cardinality, #W, expressible in a particular
labelling system (such as the stroke notation system),
or, in a weaker version,
(C2′) Even if the world W did have a cardinality, this cardinality could never
be expressed in a particular labelling system (such as the stroke notation sys-
tem).

As soon as one thinks that (C1) must imply the negation of (C2), then of
course strict finitism cannot make sense. By denying this implication at least
the possibility exists for strict finitism.14

3. Assumptions involving the structure of the world and of labels

Let us complicate matters, as we must. There seems to be a rather sim-
ple counterargument to the above reasoning. Suppose that we agree that a
space-time region of the size (Planck-length)3× Planck-time could very well
represent the smallest meaningful object in the world. This is quite compati-
ble with present-day physical theories. Suppose that in addition we can rely
on cosmological models to give us information about the global volume-age
of the universe. Let us fill in the details:15

14 It is interesting to note that similar ideas (although differently motivated) have been
expressed by the later Wittgenstein according to the work of Victor Rodych. See his [to
appear].

15 These numbers are to be found in Davies [1982], p. 39 and p. 45.
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(a) Planck-length = 10−35 m
(b) Planck-time = 10−43 s
(c) basic space-time region = 10−148 m3s
(d) volume of the universe = 1078 m3

(e) age of the universe = 1018 s
(f) volume-age of the universe = 1096 m3s

Finally, (g) number of objects in the world = (f)/(c) = 10244.

Then, is the number in (g) not a perfect candidate for a specific value of
#W?16 This reasoning will not be in conflict with the argument above, show-
ing that #W cannot be determined, once we realize that (C2) is restricted to a
particular labelling system. As must be obvious, in the physicist’s argument
all kinds of additional properties are used in the argument.

This raises the question what these properties could be. One observation
is crucial: it has at least to be possible to label objects that could not be
labelled before (besides other considerations). We have been able to create
more labels than in the initial situation. Or, in other words, there must exist
labelling systems that are more efficient. This leads me straightforward to
assumption (A3), that I will call an economy principle:

(A3) Because the labels w∗

i are themselves world objects, specific properties
of these labels as objects can be invoked to optimise and thereby extend the
use of labels.

The most obvious candidate for such properties are the spatial aspects of ob-
jects. To give but one example: since the labels are situated in space (and
time) we can differentiate between an object w at a particular place and an
identical object w′ at another place, i.e. w and w′ have all properties in com-
mon except spatial location. Thus we can construct a labelling system that
uses a particular label and differentiates this label at different places. This
produces (something similar to) a positional labelling system. It can then
very well be that the set of labels is much smaller than the set of objects it
can label. Just think of a stroke notational system compared with the decimal
system (seen as a labelling system). It follows that of all the objects of W\M,
we will need less than half of them to label the remaining ones. Thus we
can extend the process beyond half of all the objects. However, this cannot

16 I must add that this number should rather be considered as a lower limit, in the sense
that if we allow a “set” of basic space-time regions to be an object on its own right, then of
course we find numbers in the order of 2 to the power of #W. I restrict myself to the basic
objects themselves at this stage, but when I deal with imagined numbers, I will be able to
handle this problem.
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be the end of argument. Because, no matter what we do, we will need some
labels and, since self-labelling is prohibited, thus again not all objects can be
labelled. So, the question remains: how is it possible in the above physicist’s
reasoning to give a number (and thus a label) for all objects in the universe,
as this is what the argument seems to be doing? How is this possible?

The answer has to be found in the fact that, although the reasoning above
seems to suggest that a direct labelling (and hence a direct count) of all the
objects is taking place, actually a lot more is needed. Among other things,
apart from the need of a labelling system, a counting and calculating system
is required. In addition one needs a theoretical framework that allows one
to talk about Planck time and length, it involves cosmological models to de-
rive the age of the universe. In that sense the argument is indeed a highly
theoretical argument. Putting aside for the moment the precise details of the
process that allows one to give an estimate of #W, thus of all objects, it is
clear that we must accept the following principle:

(A4) A theoretical framework or structure allows one to further reduce the
set of labels needed to label the objects of the world W, including the possi-
bility of constructing a label for all objects, i.e., #W.

Note that (A4) is not in contradiction with the prohibition of self-labelling.
To give a concrete example: suppose that 2n objects are given. Then we will
be able to label n of them at most, one by one. If we are now allowed to
perform groupings of the objects, say in k groups, each of size n/k. Then we
have to label just one group to get n/k and to label the k groups to arrive at
n. This requires n/k+k labels, a number that is smaller than n, for n, k ≥ 2.
In the same sense if we find out that n objects can be labelled, then doubling
that figure gives us the total amount (more or less) of all objects. It is clear
that what we have not done is to label each object separately, we actually
“jumped” half of them. This is unfortunately not the end of the story.

We now face another problem. Apparently, if we are willing to be more
generous in what we accept as labelling systems (and there seems little rea-
son not to do so), then it is possible after all to give an explicit expression
for the cardinality of W, #W. And, as one can see quite explicitly above, it
does not take up all that much space to write #W down. Therefore nothing
prevents us to write down the double of that number, or, if we agree that #W
itself can function as a label, then we can consider #W#W. This surely is
a label that has no physical significance (in the sense of being realized at a
particular space-time region). This must bring us to the following difficult
question: how many labels are constructible, if we are so generous? Or,
to reformulate the question: how many labels are imaginable under these
conditions?
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Before taking on this problem, let me note that the economy principle
also generates “waste”. As different labelling systems are introduced, some
“sets” of objects will be characterized by a number of different labels ac-
cording to the labelling system used. And if theoretical considerations are
invoked, then the number of labels can become quite large. In standard clas-
sical infinitistic mathematics, the number can be actually infinite.17 On the
one hand, there is a cost reduction but one cannot thereby avoid the intro-
duction of unnecessary complications, thus increasing the costs. One step
further leads to the suggestive idea that in a strict finitist framework a la-
belling system of zero cost is impossible. I must at this moment leave open
the problem what evidence could be given in favour of this idea.

4. The role of imagination and communication

The preceding analysis has brought us to the conclusion that the question
to answer is not what is the label (if any) of the largest totality (such as W)
existing, but what is the largest label imaginable ? At first sight, this seems
an impossible problem. Are there limits to human imagination? Are we
forced to assume one or other position in the debate concerning the relations
between body and mind? For, if all thoughts I have are reducible to (sets
of) brainstates and these are counted in terms of the objects of W, then I
will end up with quite a different story if instead I assumed that the world of
thoughts, say Wt, is a separate world from W. What reasons do I have then
for assuming that Wt is finite? In a quite desperate attempt to avoid these
problems —as they lead to a total impasse— I will address the problem
along the following lines.

Whatever goes on in one’s mind is not the relevant issue here. Whatever
it is that is imagined by someone, in order that I can judge whether or not
what is imagined is a label (or an element of a labelling system) it has to be
communicated to me. In short:

(A5) If different labelling systems M1, M2, ..., Mk are present in the world
W, then it is necessary that whatever the labelling system Mi one comes up
with, it has to be communicable to the other labelling systems.

What are the consequences of this assumption? First of all, if the labels have
to be communicated, they must take up “public” space, thus the mere fact of

17 Strictly speaking in standard mathematics, a grouping of two objects can be labelled by
the numeral 2, but also by II or 4-2 or 8/4 or, for that matter, 2n/n for all n or ..., if the full
mathematical framework is available. Obviously if one dwells in infinite realms, discussions
about finite costs are inappropriate. Not so for the strict finitist.
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having to write down the labels requires objects in the world and since by
assumption W is finite, so are the labelling systems. Hence (A5) guarantees
that no matter what it is that we have imagined, it will have to be finite when
it is expressed.18

The second point is that the existence of different labelling machines —if
human beings can be seen, among different things, as labelling machines,
then this point is trivial— leads quite naturally to the existence of different
labelling systems. This recaptures the idea of Yessenin-Volpin and its further
development in the work of David Isles.19

The third point is that under these conditions it is straightforward to show
that the procedure “Give me any numeral n you can imagine, I will give
you the next one” has to break down at a certain point. Ask any person to
imagine a very large numeral, say, in decimal presentation. Usually what
we do is to form a picture, say, we see a blackboard and it is covered with
ciphers all over. But that won’t do. For once we have such a picture, it is
obvious that is communicable, hence that it is finitely expressible and hence
that there is room to imagine the next numeral and to communicate it. Thus,
the alternative must be that the numeral is so large that it cannot be imagined,
thereby making it senseless to talk about the next one. I will return to the
implicit paradoxical nature of what I just wrote. What is being asked is to
imagine a numeral so huge that it cannot be imagined.

Let me settle at this stage of the presentation an obvious counterargument:
is it not a silly notion that I can imagine all numerals up to n, and then sud-
denly for the next one, my imagination fails me? What the argument shows is
that the notion of the “largest numeral imaginable” must be a vague notion.
This observation is supported by the fact that paradoxes concerning vague
predicates also apply to this situation. One of the most straightforward con-
nections is with the Wang paradox, itself a variant of the Sorites paradox.
Suppose that Imag(x,n) is an abbreviation for “x is capable of imagining the

18 Do note that I am talking here about finite expressibility. In the next chapter I will
deal with what happens if the labels (or, by extension, the signs) talk about infinite struc-
tures. My aim here is to show how one can avoid the mind-body problem by relying on
communicability.

19 Yessenin-Volpin considers different number series or rather series of numerals, not just
the unique natural number sequence. All these sequences are finite, but the largest numeral
differs from series to series. Yessenin-Volpin does not speak of strict finitism, but of ultra-
intuitionism instead. I do not elaborate his ideas any further in this paper as his aim is quite
distinct from mine. He was looking for a kind of finitary consistency proof of ZF (do note the
“kind of”), which is not my objective at all. In addition, the work of Yessenin-Volpin is rather
cryptic and hence very difficult to understand, but David Isles has succeeded in “distilling”
his version from these papers that make a lot of sense. A very nice summary is given in
Epstein & Carnielli [2000], pp. 263–270, containing, of course, further references.
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numeral n”, then it is claimed that both:

(1) Imag(x,1)
(2) (∀n)(Imag(x,n) ⊃ Imag(x,n+1))

are extremely plausible. After all, (2) is nothing but a reformulation of the
idea that the next numeral can always be imagined. But, given (1) and (2),
the conclusion

(3) (∀n)Imag(x,n)

follows immediately by mathematical induction and that is nonsense. I will
not enter into the discussion of vague predicates here, suffice it to mention
that if the predicate ‘Imag’ is seen as a vague predicate, then there is no real
problem to the imagination gradually failing to produce pictures of larger
and larger numerals.20

However, our generosity might turn against ourselves and we might end
up at the bottom of a slippery slope. For what about the following argument.
Surely human beings have demonstrated that they can think about infinities
and that they can imagine infinite situations. In addition, we have perfectly
finite labels for such infinities, in the case of mathematical cardinal infinities,
we use the labels ℵ0, ℵ1, ℵ2, ... and we can write down finitely expressible
statements such as: ℵ0 +ℵ1 = ℵ1 +ℵ0, that can therefore be communicated.
All of this seems to satisfy the requirements presented above, so what then
does strict finitism actually claim? Does is not inevitably reduce to finitism
in (one of) the (many) sense(s) of Hilbert? The next chapter shows the way
out.

5. Tackling the general problem

In general terms the problem we have to deal with is the following. Suppose
that a finite set of sentences A1, A2, ..., An, all finitely expressible, is given.21

20 The technicalities involved are unfortunately not all that simple. As far as I know, there
is little or no consensus on an appropriate formalisation of vague predicates. See, e.g., Keefe
& Smith [1997] for an overview. In my [2000], I have presented a form of vague mathe-
matics, using a supervaluational method that obviously has the drawback that it supposes
classical models “in the background” with non-vague predicates. It thereby suggests that
vague predicates cannot be formally expressed “on their own”, but require sharp predicates
in the background. The aim however was merely to show that such a kind of mathematics is
possible.

21 I restrict myself to first-order predicate logic, as most of mathematics (and that is what
the paper is about) is expressible in this language.
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Suppose that what the sentences talk about requires infinities in some way.
To be more precise, in standard logical terms, suppose that the set of sen-
tences has models with infinite domains. Is the strict finitist not forced to
accept this model, as all is finitely expressible, and hence to accept infini-
ties? The answer I propose here is the following: in all such cases, there will
always be finite (quasi-)models as well. I realize the implausibility of this
claim, so let me present an example to indicate what I have in mind.

One of the “classic” examples is the following set of three sentences:

(a) (∀x)∼xRx
(b) (∀x)(∃y)xRy
(c) (∀x)(∀y)(∀z)((xRy & yRz) ⊃ xRz).

It is easy to show that there cannot be a finite model for R. Hence any model
of this set must have an infinite domain. However one should be clear about
the notion of a model. If the question is whether a finite model can be for-
mulated such that the syntactical elements occurring in (a), (b) and (c) refer
in one way or another to elements in the domain and such that (a), (b) and
(c) are true in the model, then actually the answer is trivial. As nothing else
besides the given sentences comes into play, nothing prevents me from in-
terpreting the universal quantifier as an existential quantifier and leave the
existential quantifier as it is. Then (a), (b) and (c) are translated as:

(a)* (∃x)∼xRx
(b)* (∃x)(∃y)xRy
(c)* (∃x)(∃y)(∃z)((xRy & yRz) ⊃ xRz).

This set obviously has a finite model, to be specific: take a two-element
domain {a,b} and stipulate the interpretation of the relation R as: {<a,b>}.
In a way the position that I am defending here is to take Hilbert’s formalist
view seriously. What I have in mind for R is not important, the problem is to
find a model that satisfies certain conditions.

If this procedure were available at all times, then the solution to our prob-
lem would be very simple indeed. Replace all universal quantifiers by exis-
tential quantifiers, thereby obtaining a finite set of existential sentences and
that set, of course, if satisfiable at all, can be satisfied in a finite domain.

Unfortunately, this is only half of the story. We are not particularly inter-
ested in finite sets of sentences in isolation, but we also want to reason about
them. Thus I need logical rules, say the rule that (∀x)A(x) ≡ ∼(∃x)∼A(x),
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but as is clear, under the given interpretation, this does not hold.22 For-
tunately, several strategies are possible. I will sketch one such possibility.
Suppose for simplicity that all sentences can be formulated in prenex nor-
mal form. Then, replace from left to right each occurrence of a universal
quantifier (∀x)A(x) by (∀x)(x ≤ K ⊃ A(x)), for K some finite number, and
likewise for the existential quantifier, i.e., (∃x)A(x) is replaced by (∃x)(x ≤
K ⊃ A(x)).

As an illustration, let us have another look at the classic example. (a), (b)
and (c) are in prenex normal form and to keep matters simple assume that
K = 2. Thus we have a two-element domain with names a and b. Then the
three sentences are rewritten as follows, following the outlined procedure
and some additional simplifications:23

(a)+ (∀x)(((x = a) ∨ (x = b)) ⊃ ∼xRx)
(b)+ (∀x)(∃y)(((x = a) ∨ (x = b)) & (y = a) ∨ (y = b)) ⊃ xRy)
(c)+ (∀x)(∀y)(∀z)((((x = a) ∨ (x = b)) & ((y = a) ∨ (y = b)) &

((z = a) ∨ (z = b))) ⊃ ((xRy & yRz) ⊃ xRz)).

It is easy to see that a three-element model M = {a, b, c} will do the job. R is
interpreted as {<a,b>}. (a)+ and (c)+ present no problem, and note for (b)+,
that if x = a, then pick y = b and, if x = b, then pick y = c. At first sight,
the only thing that is happening here is to take the infinite model and to look
at a finite part of it through the introduction of an unnamed element in the
domain —c in the above case— and to use this element as “the rest of the
infinite domain reduced to one element”.

There is, however, more to it. The simple translation technique guarantees
that if A(x1, x2, ..., xn) holds in the classical model, then A+(x1, x2, ..., xn),
i.e., the formula A after all quantifiers have been replaced as above, holds
as well. So no “truths” are lost. Quite to the contrary, additional truths will
be found. E.g., the sentence (∃x)xRx does not hold in the classical infinite
model, but after rewriting, this becomes (∃x)(((x = a) ∨ (x = b)) ⊃ xRx).

22 Under the given interpretation (∀x)A(x) ≡ ∼(∃x)∼A(x) reduces to (∃x)A(x) ≡ ∼(∃x)
∼A(x). Take for ‘A(x)’ x = a, then it says that (∃x)(x = a) ≡ ∼(∃x)(x 6= a). This says there
can only be one element in the domain. In the given case, such a model is inconsistent, as (a)
says that R does not hold between a and itself, whereas (b) says that it does as both x and y
are interpreted as a.

23 If I abbreviate (x = a) ∨ (x = b) by S(x), then (b) is first rewritten as (∀x)(S(x) ⊃
(∃y)xRy) and then rewritten as (∀x)(S(x) ⊃ (∃y)(S(y) ⊃ xRy)). Bring out the quantifier and
relying on classical logic, namely that A ⊃ (B ⊃ C) is equivalent with (A & B) ⊃ C), (b)+ is
obtained. The same holds for (c)+.
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Take c for x and the formula is true. This is the reason why the term quasi-
model seems more appropriate. Do note that, if we are interested above all
in truths, then nothing is lost.

It is an entirely different matter if the additional requirement is that some
falsehoods should also remain (exclusive) falsehoods in the quasi-model.
E.g., if the requirement is that for no element of the domain xRx is to hold,
then we have a problem with the above quasi-model. It is perhaps not an
ideal strategy to suggest that (∀x)∼xRx should also hold in the quasi-model,
thus that it is true that there is no x such that ∼(∀x)∼xRx, i.e., (∃x)xRx
holds, as required.

Some comments:
In the first place, a classical mathematician or logician will surely remark
that, however clever this procedure might be, it still implies a reinterpretation
of the universal quantifier. “For all x, ...” does not have its classical meaning,
for, in all cases, we are supposed to read “For all x ≤ K, ...”. But what
if the classical interpretation is required? I wish to be rather brief about
this problem. One ends up in exactly the same situation as when discussing
discrete versus continuous time (and similarly discrete versus continuous
space). Namely, if time is discrete, then if two consecutive time moments are
taken, it does not make sense to ask what is in between, as, if time is discrete,
there is no in between. Asking what is in between carries the presupposition
that it makes sense to ask what is in between and precisely that does not
make sense. In the very same way, if one asks for a standard interpretation
of the universal quantifier, then one presupposes the possibility of an infinite
domain, hence one can never have such an interpretation in a finite domain.
This may seem a rather crude way of solving a problem, but occasionally it
just so happens that the solution is that straightforward.

In the second place, related to the first point, an argument based on com-
pactness does not apply either. Suppose we have a quasi-model for every K.
Does it then not follow that we can put together all these finite quasi-models
into one model that will necessarily be infinite? For that is precisely what
compactness tells us. The argument is the same: the expression “for every
K” presupposes a classical reading of the universal quantifier. Hence, “for
every K” has to be thought in terms of “for every K ≤ L”, where L is some
finite number determined by the particular circumstances one is considering.

In the third place, the kind of interpretation presented here is just one of a
quite extended set of possibilities. In the above example, I have replaced the
infinite domain by a finite partition, consisting of two elements a and b and
a special name c for the (infinite) remaining part of the domain. It is easy to
see that any finite partition of the domain will do. This actually turns out to
be a very powerful technique indeed. Do note that some connections can be
made with other types of logics than the ones that have been discussed so far
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in this paper, i.e., classical and intuitionistic logic. If we restrict ourselves to
the translated sentences and define two new quantifiers ∀∗ and ∃∗ as an ab-
breviation, then we get pretty close in the neighbourhood of paraconsistency,
for then both (∀∗x)∼xRx and (∃∗)xRx hold in the model. What comes out
of this has been presented and discussed in my [1994].

All these considerations justify the following claim: no matter what theory
we are dealing with, it is always possible to deal with finite (quasi-)models,
thus no infinities whatsoever are needed, even if we leave room for all the
things the human imagination can come up with, the only restriction being
that whatever the imagination has produced, it should be communicable us-
ing only a finite number of signs or labels.

6. Summary

What conclusions can be drawn from all this? The following cases can be
distinguished:
(a) Labels are used merely as labels: if the world is finite, so is the set of
labels, and it is impossible the label all “objects” in the world.
(b) Labels form a structured set. In this case the labelling process can be-
come more economical and more efficient, but it remains the case that the
set of labels stays finite.
(c) Labels form a structured set inserted in a theoretical framework.
Here two subcases can be distinguished:
(c1) There are interpretations of the theoretical framework that refer to “ob-
jects” in the world. Obviously in this case everything remains finite again on
the assumption that the world is finite.
(c2) There are no specific interpretations that refer to “objects” in the world.
It is then always possible to find finite quasi-models that are derived from
the classical infinite models of the theoretical framework. In some cases (as
shown in the example above) these quasi-models can be seen as extensions
of the classical model since it is possible to keep all classically true state-
ments true in the quasi-model. Thus in those cases no truths are lost.

The last case also applies to all labels that can be imagined by a labelling ma-
chine, if the requirement is that the labels should be communicable. Hence,
if it is representable, it is obvious that we can imagine something larger, as
we usually represent something in an environment, hence additional space is
available. What we have to imagine, is a label such that if we try to represent
it, we should fail to do so. Hence the agreement with Priest’s description
quoted at the beginning of this paper: “so large that it has no physical or
psychological significance ...”. It is paradoxical to be sure. If formulated in
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terms of questions, the problem becomes immediately obvious. The ques-
tion “What is the largest label or numeral that is not imaginable?”, should
not be answered by “The label so-and-so with properties such-and-such”,
because then it has been imagined, thereby not answering the question. The
answer must be: “Whatever it is, that label”. An alternative reply would be:
“The largest label is that label about which questions such as the question
posed cannot be asked”. It is that label that ceases to be that label as soon as
something is said about it. A conclusion that fits in nicely with the argued
for vagueness of the largest label.

Vrije Universiteit Brussel
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Universiteit Gent
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