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QUANTUM EXPERIMENTS AND THE LATTICE OF
ORTHOMODULAR LOGICS∗

JACEK MALINOWSKI

1. Introduction

In [36] Birkhoff and von Neumann construct a logical system able to avoid
inconsistences coming from paradoxes of quantum mechanics. Due to its
philosophical roots all of quantum deductive systems should be considered
a paraconsistent logic. The aim of this paper is to show how to construct an
algebraic semantics for classical and quantum propositional logics starting
from some physical experiments and to then investigate the obtained systems
in a purely algebraic way. The notions and results presented in the first part
of this paper come from C. Piron [64], [77], (see also M. Majewski [78]).
In the remaining parts we present some properties of logical systems deter-
mined by experiments of linear polarization of light. In particular, in the
second part we present some advanced algebraic results describing proper-
ties of modular ortholattices determined by the lattices MOn (see the pic-
ture 2). This part of the paper forms a base for the last section, where we
show some logical and philosophical consequences of the algebraic results.

The third part of the paper contains some basic notions and results of the
theory of logical consequence. From the point of view of our considerations,
most important among them is the notion of the lattice of strengthenings of
a given logic (logics stronger than a given logic). Our main aim here is to
link technically sophisticated results from the second paragraph with philo-
sophical notions important for logic. Theorem 2 links the algebraic notion
of quasivariety with, very important from the logical point of view, binary
relation determining a deductive strength of a given logical system. The
results presented here are known in mathematics. There is an extensive lit-
erature about their generalizations and consequences (see for example Blok,
Font, Pigozzi [2000]). However their philosophical consequences still re-
main underestimated. The fourth part is more philosophical. It is devoted
to a detailed presentation of the logical and philosophical consequences of

∗The work on this paper has been supported by the Flemish Minister responsible for
Science and Technology (contract BIL98/37).
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36 JACEK MALINOWSKI

results from the second part. We make use there of the result on duality
between universal algebras and operations of logical consequences.

2. Physics: quantum experiments

Let’s take after C. Piron [77] the realistic point of view:

We take the realistic point of view. The system is and it is what it is.
It has different properties and whether these properties are known or
not by somebody does not change anything to the reality itself. We
have to describe these properties and not to explain how the physi-
cist can increase his information about the system. In fact when
the physicist believes that the system possesses a certain property
he checks up by performing an experiment. If he obtains what he
expects he is reinforced in his beliefs but if he obtains something
else he must admit his error and change his belief. We shall define
a property by the corresponding test.

A physicist investigates a physical system. The properties of the system
don’t depend on the fact that they are known for someone or not —they are
real. By performing experiments physicists try to enlarge their knowledge
of the system. Experiment brings new information about the properties of
the system. We will consider exclusively experiments which confirm or re-
ject some hypothesis posed in advance. As a matter of fact they could be
considered as a questions posed to Nature, questions which admit only two
possible answers —“yes” and “no”. Any experiment of this form will be
called after Piron a question. We will say that a question is true, if its result
(as experiment) is positive and false, if it is negative.

Let 1 and 0 denote constant questions, which should be answered respec-
tively “yes” and “no”. Let’s assume moreover that for any questions α and
β, α ≤ β if and only if the question β has the answer “yes”, when α has an
answer “yes”. The question α and β are called equivalent α ≡ β if an only if
α ≤ β and β ≤ α. As one can easily observe, equivalent questions have the
same answers. The relation ≡ is a congruence on the set of all questions. Its
equivalence classes a = [α] = {β : α ≡ β}, will be called propositions. A
proposition is true, if some (or equivalently any) question corresponding to
it is true. Otherwise it is false. Propositions which are true in a given system
correspond to the actual properties of the system, other proposition describe
potential properties of the system. By a negation of the question α we will
mean a question ¬α such that ¬α is true if an only if α is false. By negation
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QUANTUM EXPERIMENTS AND THE LATTICE OF ORTHOMODULAR LOGICS 37

of a proposition a = [α] we mean a proposition a′ = [¬α].

Theorem 1. (Piron [78]) The relation ≤ determines on the set of all propo-
sitions a structure of complete lattice L. We will call it a lattice of system.
Let ∧ and ∨ denote respectively the greatest lower bound and the last lower
bound. Then:
a) a ∧ b is true if an only if a is true and b is true.
b) a ∨ b is true if a is true or b is true.
c) The distributivity of L is the necessary and sufficient condition to satisfy
the following: a ∨ b is true if and only if a is true or b is true.
d) If for any a a is true or a′ is true then L is complete and atomic Boolean
algebra.

Example 1. Classical system —weighting. We weight the objects to classify
them into one of three categories, light (less than 1 kg.), middle, weight
(heavier than 10 kg.) Let’s consider following question-experiments:
α1: Is a given object light? α2: Is it middle? α3: Is it heavy?

Let’s observe that propositions determined by the question above satisfy
the following conditions:

a1∧a2∧a3 ≡ 0, a1∨a2∨a3 ≡ 1, (a1∧a2)
′ ≡ a3.

The lattice of this system is the eight-element Boolean algebra (see pic-
ture 1). As a consequence of theorem 1 (a, c, d) the lattice operation of the
least upper bound and the greatest lower bound correspond to the classical
connectives of conjunction and disjunction. The complementation corre-
spond to classical negation. Hence a ∧ β has an answer “yes” if and only if
both α and β have an answer “yes”. α ∨ β has an answer “yes” if an only if
at least one of propositions α, β has an answer “yes”.
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Example 2. Quantum system —linear polarization of light. We send a stream
of photons in direction of the polarizator inclined with the gradient α with
respect to the polarization plane. Dependently on the gradient α, a given
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38 JACEK MALINOWSKI

photon get through the polarizator or not. Z ⊆ [0, π) denotes the set of
all admissible gradients. Hence, Z can denote the set of all numbers of the
interval [0, π) or any of its subsets (also finite subset). The questions for this
system are:
αφ: Did a photon get through the polarizator inclined with the gradient φ,
(φ ∈ Z).

The experiment allows us to set it up so that it is impossible to get a se-
ries of photons which get through a polarizator inclined with the gradient
φ as well as through a polarizator inclined with another gradient. By the
theorem 1b) for φ 6= ψ we have αφ ∧ αψ = 0. It is also easy to show that
¬αφ = αφ+ π

2

In the lattice of the system an operation of complementation is defined as
α′

φ = αφ+ π

2

. The final form of the lattice depends on the cardinal of the set
Z. If it is two-element, the lattice of the system is the lattice MO2 depicted
below. If it has n elements it determines a lattice MO2n (for n=3 it is a
lattice MO3 from the picture below). If Z contains all the numbers from the
interval [0, π) the lattice of the system contains continuously many atoms
which are coatoms at the same time.

Let’s observe that all those lattices are not distributive. As a consequence
an operation of the least upper bound doesn’t correspond to the classical
alternative. We have here only one-sided implication (theorem 1b,c). Also
the operation of complementation doesn’t correspond to classical negation
(by theorem 1d).

pic. 2

MO2

@
@@

�
��

HHHHH

�����

�
��

@
@@

�����

HHHHH

1

0

a b b′ a′

p

p

p p p p

MO3

@
@@

�
��

HHHHH

�����

PPPPPPP

�������

�������

PPPPPPP
�

��
@

@@

�����

HHHHH

1

0

a b c c′ b′ a′pp

p

p

p p p p

3. Algebra: orthomodular lattices

An algebra A = (A,∨,∧,′ ) with two binary operations ∨ and ∧ and one
unary operation ′ will be called an ortholattice if and only if (A,∨,∧) is a
bounded lattice (i.e. a lattice with the smallest element 0 and the greatest
one 1), and ′ is anti-monotonic operator on A (i.e. an operator satisfying the
condition a ≤ b if and only if b′ ≤ a′. This condition is equivalent to any of
the de Morgan laws:

(a ∧ b)′ = a′ ∨ b′

(a ∨ b)′ = a′ ∧ b′
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QUANTUM EXPERIMENTS AND THE LATTICE OF ORTHOMODULAR LOGICS 39

An ortholattice satisfying the identity x ∨ (x′ ∧ (x ∨ y)) = x ∨ y will
be called an orthomodular lattice. The family of all orthomodular lattices is
definable by means of a set of identities hence it is a variety. For the basic
notions and results about varieties we refer to any monograph in Universal
Algebra see for example S. Burris R. Shankapanavar [81]. For the aims
of this paper it is only important that varieties are some special classes of
algebras connected with logical notions by the results presented in the next
paragraph. The variety of all orthomodular lattices will be denoted byOML.

A lattice is modular if and only if it satisfies the following identity: x ≤ y,
x ∨ (y ∧ z) = y ∧ (x ∨ z). It is easy to show that any modular ortholattice
satisfies the law of orthomodularity and hence it is an orthomodular lattice.
The class of all modular ortholattices will be denoted my MOL. Thus any
Boolean algebra is a modular ortholattice and any modular ortholattice is an
orthomodular lattice.

For the complete study of the subject we refer to Beran [84] and Kalmbach
[83]. Let’s here recall the mathematical origins of the notions defined above.
The measurable properties (observables) of the physical system closely cor-
respond to closed subspaces of a Hilbert space. This is why the structure of
closed subspaces of a Hilbert space is crucial for the description of a physical
system. They form a lattice with respect to set-theoretic meet as the greatest
lower bound and the closed subspace spanned on the given closed subspaces
as the least upper bound. It is easy to show that for one or two dimensional
Hilbert space the lattice of closed subspace forms a Boolean algebra (two el-
ement one and four-element one respectively). For higher (but still finitely)
dimensional Hilbert space, the lattice of all closed subspace is not distribu-
tive but it still forms a modular ortholattice. For an infinitely dimensional
Hilbert space the set of all closed subspaces is not modular, however it still
satisfies the law of orthomodularity as far as the Hilbert space is separable.
For nonseparable Hilbert spaces the lattice of closed subspaces is not ortho-
modular but it still always forms an ortholattice.

All the lattices of the system of linear polarization of light described in
the first paragraph are modular ortholattices. They appear to be especially
important from point of view of algebraic investigations. Let’s recall: MOn
for n ∈ ω and MOω denotes respectively modular ortholattices with 2n
(respectively ω- infinitely countably many) pairwise incomparable elements
with added zero and unit elements.

Gudrun Kalmbach in [74] has proved that any nontrivial (i.e. larger than
the class of Boolean algebras) variety of orthomodular lattices contains the
lattice MO2 ×MO1 (see picture 3). Greechie has proved (see Kalmbach
[83]), that no variety lies between the variety of Boolean algebras and the
variety determined by MO2.
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MO2 × 2
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In [86] Roddy proved that the varieties determined by ortholattices MOn
for n ∈ {0, 1, ..., ω} form an initial chain in the lattice of varieties of ortho-
modular lattices. A stronger result is presented in J. Malinowski [90] where
a full description of the lattice of sub-quasivarieties of MOω is given. It
appears that its structure is relatively clear. And all of its elements are gen-
erated by the Cartesian product of two different lattices of the form MOn.
For the sake of completeness this lattice is depicted below. For clarity’s sake
some shorthand has been introduced there. Single numbers 0, 1, 2, ... denote
quasivarieties determined by respective lattices: 0 denotes the quasivariety
determined by MO0 —the one-element lattice. 1 denotes the quasivariety
determined by MO1 —four-element Boolean algebra. It is just a class of all
Boolean algebras. 2 denotes quasivariety determined by the latticeMO2 and
so on. Generally in the whole picture, the higher is a given quasivariety lo-
cated, the larger (in the sense of inclusion) is a given quasivariety. Let’s pay
attention that the quasivarieties described by Roddy [86] are just 0, 1, 2, ....
The lattice contains however many more other quasivarieties which are de-
noted with pairs n,m of numbers. Each of them is determined by the Carte-
sian product of the latticesMOn andMOm (a lattice from picture 3 shows a
Cartesian product of lattices MO2 and MO1. The description below allows
us to tell how big this lattice is. For example the lattice of quasivarieties of
containing in quasivariety determined byMOn has exactly n(n+1)

2 elements.

4. Logic: consequence operation

The approach to logic and the results presented in this section form an im-
portant part of the heritage of Polish School of Logic. They come from many
authors. Due to lack of space we are going to present here neither the full his-
tory of them nor all the references. For them we refer to the most complete
monograph on the subject —the book Wójcicki [87]. The most important of
the results presented below comes from J. Czelakowski [81] (see also J. Ma-
linowski [89]). Let L denotes a sentential language with connectives ∨, ∧,
′ and sentential variables p, q, r,.... Algebraically oriented logicians often
define a sentential language as an absolutely free algebra. This is not just
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a sophisticated manner of expressing relatively simple notion. As a conse-
quence of such a definition we can properly describe some very important
properties of the language. Most important of them is that by defining a sen-
tential language as an absolutely free algebra we can easily prove that two
sentences are identical just if they are identical as a sequences of symbols.
This way the very technical notion of free algebra could be intuitively under-
stood as an algebra which is “free” from any irrelevant connections between
its elements. Other definitions of the sentential language, although often
used in the literature don’t explicitly guarantee this property of the language.
There are also other important consequences of such a definition of the lan-
guage. Such an approach to the language allows us to define the valuation as
the unique extension of a given function defined on the set of sentential vari-
ables. Having in mind all the restrictions above, for the sake of simplicity
we will consider a language just as a set of well formed sentences.

An operation which correspond sets of sentences to set of sentences satis-
fying conditions:

X ⊆ C(X),
if X ⊆ Y , then C(X) ⊆ C(Y ),
CC(X) = C(X)

will be called a consequence operation. IfC satisfies moreover the following
structurality principle: e(C(X)) ⊆ C(e(X)) for any substitution e (i.e. any
homomorphizm of the language into itself.) then C is called a structural
consequence operation or a logic. A consequence operation C is finitary, if
and only if for any set of sentences X ⊆ S and sentence α if α ∈ C(X)
there exists a finite set Y of X such that α ∈ C(Y ).

The notion of logic as a structural consequence operation is one of most
important logical notions. It gives a general framework which allows to in-
vestigate the general properties of logical systems. The investigations within
of this framework belong to the heritage of the Lvov-Warsaw school of logic.
This approach allows the formulation of problems and the investigation of
subjects which seem impossible to formulate in other approaches to logic.
Let’s recall some examples of questions of this form: What could we tell
about the properties of logics in which we can define an implication con-
nective? The complete analysis of this problem is given in H. Rasiowa [74].
Other important question concern the characterization of the logics allowing
a connective of equivalence —just the equivalential logics (J. Czelakowski
[81], J. Malinowski [89]). Just this class of logic is important for considera-
tions of this paper.

A set of sentences X will be called a C-theory if and only if X = C(X).
The set of all theories C-theories will be denoted by ThC .
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It is worth here to pay attention to two competing ways of understand-
ing logic. If contemporary logic is the only concern then, historically, the
first approach was to consider logic as a set of logically valid sentences. A
paradigmatic example is here a set of classical tautologies. According to this
approach a logical system is a set of sentences closed under substitution and
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some rules of inference. A logic considered as a logical consequence opera-
tion (or relation) is presenting by the competing approach. It formalizes not
the set of logically valid sentences but just the general principles of reason-
ing. Both the approaches are not equivalent to each other. Starting from the
logical consequence we will uniquely obtain the set of logically valid sen-
tences as a set of consequence of the empty set of premises. On the other
hand starting from the set of logically valid sentences we cannot uniquely
determine the consequence operation. Usually for a given logical system
there exist a number of consequence operations having that system as a set
of consequences of the empty set. Thus logical validity doesn’t determine
rules of reasoning.

Let’s also pay some attention to the distinction between C-theory and a
logical system. In particular cases a logical system is usually defined by
means of axioms and rules of inference. The rules allow proving that some
sentences are logically true without being axioms. Similarly a structural con-
sequence operation is often defined by means of some set of axioms and rules
of inference. Given C-theory is then the set of sentences derivable from a
given set of premises. Despite superficial similarities the logical system and
C-theory have quite different status. The logical system contains exclusively
logically valid sentences, C-theory contains also contingent sentences (i.e.
such sentences which depending on interpretation can be true or false). Rules
of inference have in both cases quite different character and cannot be iden-
tified. An especially suggestive example is the rule of necessitation in the
modal consequence operation. “From α infer �α”. This rule is commonly
accepted in all normal modal systems. It allows getting logical truth from
logical truth. However it cannot be applied to contingent sentences. In such
cases it gives paradoxical consequences. For example from “It is raining”
we would get “It is necessary that it is raining” which is rather impossible to
justify.

A logic C ′ is called a strengthening of a logic C, (in symbols C ≤ C ′), if
for any set of sentences X ⊆ S, we have C(X) ⊆ C(Y ). The relation ≤
defined this way on the set of strengthenings of a given logicC is a relation of
partial order, moreover the family of all strenghtenings ofC form a complete
lattice with respect of this order we will call it a lattice of strengthenings of
the logic C. If C ≤ C ′, then we will tell that C is weaker than C ′, and C ′

is stronger than C. The stronger a given logic is, the fewer theories it has
because for any logics C1 and C2 for C1 ≤ C2 it is necessary and sufficient
that ThC2

⊆ ThC1
.

Thus a logic is stronger than another logic if and only if it allows to deduce
more from a given set of premises. Of course it happens quite often that two
logics are incomparable in this respect. As the historically first example
of investigations of the lattice of strengthenings one should recognize the
theorem on maximality of classical logic. Thus classical sentential logic has



“03malinowski”
2002/3/5
page 44

i

i

i

i

i

i

i

i

44 JACEK MALINOWSKI

the property that the only logic stronger from it is trivially inconsistent. The
lattice of strengthenings of classical logic has then just two elements. We
will present this example in more detail in the last part of this paper where
also much more complicated lattices of strengthenings will be presented.

A logical matrix is a pair: M = (A,D), where A is an algebra (with the
operations corresponding to the connectives of considered language), and D
a subset of A its elements are called designated elements. The language and
matrix are linked by means of valuation —just the homomorphisms of the
language into the algebra A.

For any class of matrices K an operation CnK is defined in the following
way:

α ∈ CnK(X) if and only if for any matrix fromK and any
valuation if all the sentences from the setX take designated
value, then α also takes a designated value.

is a logic, i.e. structural consequence operation. One can prove that any
logic can be represented by means of some class of matrices.

Let C be a logic, a matrix M will be called C-matrix, if and only if
C ≤ CnM . A matrix M is called simple if and only if the identity rela-
tion is the only matrix congruence on it. Let C be a logic, the class of all
simple C-matrices will be denoted by Matr?(C). Any logic C is uniquely
determined by the class Matr?(C). The logic is finitely equivalential if
some finite set of sentences satisfies in this logic the natural properties of
equivalence: reflexivity, symmetry, detachment and substitution (see Mali-
nowski [1989] for details).

Theorem 2. Let C be a standard finitely equivalential logic. The lattice of
all standard strengthenings of C is dually isomorphic with the lattice of all
sub-quasivarieties of Matr?(C).

The theorem above forms a bridge between a logic and universal algebra.
It allows one to reduce an investigation of the lattice of strengthenings of
a given logic to the investigation of respective lattice of quasivarieties (and
otherwise). After reversing the order, the largest quasivariety corresponds to
the weakest logic, but the structures of both the lattices are identical. The
least upper bound of two logics corresponds to the meet of corresponding
varieties, the greatest lower bound correspond to the least upper bound of
two varieties. The facts presented above allow us to use the results of the
previous paragraph for description of the lattice of orthomodular logics.
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5. Philosophical consequences

Any orthomodular lattice, and hence any lattice of physical experiments can
be considered a logical matrix. Let’s assume that the unique designated is
1 —the greatest element of the lattice. Any class of orthomodular lattices
determines a logic in a way described in the previous paragraph. What’s
very important here, any of those logics is finitely equivalential, and hence
the assumptions of theorem 2 are satisfied. As a consequence the structure
of the lattice of quasi-varieties described above mirrors the structure of the
lattice of logics.

Let’s come back to picture 4, considering it now as a lattice of strengthen-
ings of logic determined by the lattice MOω. Its reverse order causes that
the smallest element 0 corresponds to the strongest logic —trivial logic. 1
corresponds to classical logic and the fact that there are no logics between
them expresses nothing else but the well known maximality theorem men-
tioned in the previous paragraph. As an illustration of the duality between
the lattice of logics and the lattice of quasivarieties we will pay here more
attention to this theorem.

Let Taut denote the set of all tautologies of the classical sentential cal-
culus. Let Z denote a set closed under substitution and derivation, which at
the same time is essentially larger than Taut. There exists then a sentence
α, belonging to Z without being a tautology. Thus for some valuation V
the sentence α gives logical value 0. Let α′ be a sentence appearing by a
substituting p ∧ ¬p instead of any sentential variables for which valuation v
takes value 0 and p ∨ ¬p instead of variables for which it takes value 1. It is
easy to show that the sentence α′ is a countertautology —it takes value 0 for
any valuation. Let β denote any sentence. The sentence α′ → β takes the
value 1 under any valuation, because the precedent of this implication takes
always the value 0. As a consequence α′ → β is a tautology and hence it
also belongs to Z. Applying the rule of modus ponens to α′ and α′ → β we
easily get β ∈ Z. β is by assumption any sentence, this entails that every
sentence belongs to Z. Z is then the set of all sentences.

The reasoning above has been elaborated for a classical logic considered as
a set of tautologies. It would be similar if classical logic were considered as a
structural consequence operation Cl. Assuming that a logic C is essentially
stronger than Cl one can prove that C is trivially inconsistent. The lattice
of strenghtenings of the classical logic is then quite simple. It has only two
elements: classical logics and trivially inconsistent logics. It forms an initial
fragment of the lattice under consideration.

The next (in order from weaker logics to stronger ones) is the logic deter-
mined by the lattice MO2 × 2. Here the lattice loses the linearity. Above
incomparable logics appear. For example logic determined by MO2 and
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46 JACEK MALINOWSKI

the one determined by MO3 × 2. Above them the lattice gets much more
complicated.

Which one of the logics from picture 4 properly mirrors logical principles
of quantum mechanics? This question still remains open. Possibly it lies
outside of the picture being incomparable with MOω? No logical investiga-
tions could answer those questions. However, the investigation of lattices of
concrete quantum experiments could bring us closer to an answer.

Section of Logic, Language and Action,
Institute of Philosophy and Sociology

Polish Academy of Sciences
Department of Logic

Nicolas Copernicus University
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