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Abstract

Adaptive logics depend essentially on measures for the degree of ab-
normality of models. The linguistic approach to such measures compares
the sets of abnormal, e.g., inconsistent wffs verified by the models. The
ontological approach compares models in terms of ‘structural’ properties
that do not depend on the way in which the language is interpreted in the
model.

While the linguistic approach has not been questioned up to now,
present proposals for an ontological approach are affected by several weak-
nesses. The present paper argues for the attractiveness of an ontological
approach and elaborates on the challenge to adequately define it. The fi-
nal outcome is rather negative: the only sensible definition attained leads
to a logic that does not seem to have any suitable application contexts.

1 Aim of This Paper

Several types of logics require that abnormalities of some sort are minimized.
In inconsistency-adaptive logics, the feature appears in its purest form: the
abnormalities to be minimized are inconsistencies.

From a semantic point of view, inconsistencies are minimized by selecting
the models that interpret the premises as consistently as possible. There are
several strategies to realize this effect—see Section 2. The most natural one
(from a semantic point of view) is the minimal abnormality strategy.

There are two kinds of approaches to the minimal abnormality strategy. The
first, originated by me (in [3] and [2] for the propositional case, and in [5] for the
full logics) will be called the linguistic approach. It selects models of the premises
by comparing the abnormalities they verify. The second approach, originated

∗The research for this paper was financed by the Fund for Scientific Research – Flanders,
and by the Flemish Minister responsible for Science and Technology (contract BIL98/37). I
am indebted to Graham Priest for electronic as well as oral discussions on the topic of this
paper and for his comments on a former draft. Several ideas of his are used in this paper,
usually in slightly transformed form. Where I am certain that he still adheres to them, I
explicitly credit him for them. I am indebted to Marek Nasieniewski and especially to Liza
Verhoeven for comments on a former draft.
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by Graham Priest in [25], will be called the ontological approach. It compares
models of the premises with respect to ‘the inconsistencies of the model’, say of
its structure (see Section 4). Unlike what is the case for the linguistic definition,
present ontological definitions are affected by several problems.

From the fact that I originated the linguistic approach, one should not con-
clude that I favour it. I consider both approaches as sensible in principle, and
think it is essential to elaborate both and to delineate their respective domains of
application. Apart from a brief comparison between both approaches, to make
the underlying ideas and effects more perspicuous, the present paper mainly
aims at defining a sensible ontological definition of minimal abnormality.

The (perhaps provisional) conclusion of the present paper will be that an
ontological definition is either not sensible, or lacks appropriate application con-
texts. Nevertheless, it seems most instructive to clearly state the problem, to
offer a scrutinized description of the reasons for the present failure, and to list
the problems as well as attempted solutions on our way to the provisional conclu-
sion. All this will certainly be useful to find an adequate ontological definition,
if there is one, or to show that the ontological approach is not sensible, if it is
not. The insights gained support the latter conclusion.

The interest of the problems discussed in this paper is not restricted to
minimally abnormal models. Those problems are related to the nature and
scope of semantic systems. The underlying issue is this: is a semantics merely
a device to interpret a given language, or is it possible to distinguish between
an ontological and a linguistic component of a semantics.

2 Adaptive Logics

Inconsistency-adaptive logics—see [9] for a survey—interpret a set of premises
‘as consistently as possible’, and hence define a consequence set that is (ex-
cept for a border case) much richer than paraconsistent logics. If the premises
are consistent, all now existing inconsistency-adaptive logics1 deliver the same
consequence set as Classical Logic—henceforth CL.

Semantically, they do so by selecting a set of paraconsistent models of the
premises (see [2] and [5]). Inconsistency-adaptive logics also have a dynamic
proof theory—see [1], [3] (the oldest paper), and [5]—and this is their most
striking and innovative feature. As the present paper deals with a problem that
exclusively concerns the selection of the models, the proof theory will not be
discussed.

The intended domains of application of inconsistency-adaptive logics are,
first and foremost, scientific theories and scientific knowledge systems that were
intended as consistent but turned out inconsistent. Other applications concern
possibly inconsistent databases and possibly inconsistent everyday knowledge.
The aim of the logics is not to resolve the inconsistencies. The replacement
of inconsistent theories (etc.) by consistent alternatives is not a task for logic
alone, but should depend on non-logical preferences (determined by the relia-
bility of data, by methodological considerations, and so on)—see already [28, p.
37]. The adaptive logics considered in the present paper rely solely on logical
considerations. They enable one to analyse the theory or database in its present

1I shall show in Section 6.1 that this fails for the original formulation of LPm . However,
Graham Priest changed the system in view of this.

2



state, to act on it (if we must), and to devise experiments and other ways to
gain new relevant information.2

The strength of inconsistency-adaptive logics is also illustrated by the fact
that all flat Rescher–Manor consequence relations (Free, Strong, Argued, C-
Based, and Weak consequences—see [16]) were shown (in [11]) to be character-
ized by an inconsistency-adaptive logic. Similar results are forthcoming about
prioritized such consequence relations (as described in [17]). It also was shown
(in [4] and [20]) that several popular ‘non-monotonic logics’ are characterized
by an adaptive logic combined with (non-logical) preferences.

Inconsistency-adaptive logics and other corrective adaptive logics3 deliver
consequence sets that are subsets of the CL-consequence set if the latter is
trivial. Ampliative adaptive logics (compatibility, abduction, . . . ) deliver con-
sequence sets that are supersets of the CL-consequence set, but still are not
trivial (and are determined by some normality suppositions)—see [12] and forth-
coming papers. In the present paper, I concentrate on inconsistency-adaptive
logics. However, the problem discussed here arises just as well with respect to
those other adaptive logics.

The phrase “as consistently as possible” is not unambiguous, and this leads
to a multiplicity of inconsistency-adaptive logics. An inconsistency-adaptive
logic is characterized by (i) a lower limit logic, (ii) an upper limit logic, and (iii)
a strategy—see [9] for further possible variation. The upper limit logic is usually
(and in this paper is always) CL. The lower limit logic is some paraconsistent
logic. My preferred system for this purpose is CLuN—see, e.g., [5]—Graham
Priest’s preferred system is his LP—see, e.g., [24]—others still prefer other
systems (Joke Meheus prefers her AN from [22]). Let us use LLL as a variable
name for the lower limit logic, and AL as a variable name for the adaptive logic
obtained from LLL by the chosen strategy.

As I remarked before, the strategy determines which LLL-models of Γ are
AL-models of Γ. A peculiarity has to be pointed out from the outset. “M is a
CL-model” and “M is a LLL-model” are meaningful phrases—the CL-models
of Γ being the CL-models that verify Γ, and similarly for the LLL-models. But
“M is a AL-model” is not a meaningful phrase, whereas “M is a AL-model of
Γ” is. Indeed, the AL-models of Γ are the LLL-models of Γ that are selected
by the strategy in view of properties of all LLL-models of Γ.

For inconsistency-adaptive logics, the models are selected on the basis of
their ‘degree of inconsistency’, or their ‘inconsistent part’. Let me clarify this
by briefly discussing some strategies. For any LLL-model M , we define the
abnormal part of M , Ab(M)—specific definitions are considered below. The
minimal abnormality strategy refers, as expected, to minimally abnormal models
of Γ, viz. LLL-models M of Γ for which it holds that

no LLL-model M ′ of Γ is such that Ab(M ′) ⊂ Ab(M)

2So, the aim of adaptive logics is drastically different from the non-monotonic systems
discussed, for example, in [21].

3Other corrective adaptive logics interpret premises as normally as possible with respect to
logical abnormalities that are not inconsistencies—for example, gaps with respect to negation
(negation-incompleteness), gluts with respect to conjunction (A∧B true while some conjunct
is false), etc., including combinations (see, e.g., [6]). Some corrective adaptive logics interpret
premises as normally as possible with respect to ambiguities in the non-logical constants (see
[29], [30] and [10]).
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Where AL is defined from LLL by the minimal abnormality strategy, Γ |=AL A
iff A is verified by all minimally abnormal LLL-models of Γ.

In other strategies Ab(M) plays an equally central role. The subsequent
paragraphs of the present section illustrate this, and may be skipped (as the
rest of the paper concentrates on the minimal abnormality strategy).

The other strategies require some preparatory steps. For example, for the
reliability strategy we proceed as follows. Let ∃A abbreviate A preceded by
(in some preferred order) an existential quantifier over each variable free in
A. Where ∆ = {A1, . . . , An}, let Dab(∆) and Dab{A1, . . . , An} abbreviate
∃(A1 ∧∼A1)∨ . . .∨∃(An ∧∼An). We call Dab(∆) a minimal-Dab-consequence
of Γ iff Γ |=LLL Dab(∆) and, for all Θ ⊂ ∆, Γ 6|=LLL Dab(Θ). U(Γ), the set of
formulas that are unreliable with respect to Γ, is defined as the set of A such
that A ∈ ∆ for some minimal Dab-consequence Dab(∆) of Γ. Finally, where
AL is defined from LLL by the reliability strategy, Γ |=AL A iff A is verified
by all LLL-models M of Γ for which Ab(M) ⊂ U(Γ).

The simple strategy is only well-defined for some specific lower limit logics,
for example AN from [22]. Where AL is defined from LLL by the simple
strategy, Γ |=AL A iff A is verified by all LLL-models M of Γ for which Ab(M) =
{B | Γ |=LLL ∃(B ∧ ∼B)}.

From now on, I shall only deal with the minimal abnormality strategy.

3 The Problem

In [2], which only dealt with the propositional case, the abnormal part of a
model was defined by

Ab(M) =df {A | vM (A ∧ ∼A) = 1}

In [5], this is generalized to the predicative case:

Ab(M) =df {A | vM (∃(A ∧ ∼A) = 1}.

This definition is ‘linguistic’ in that it does not refer to properties of ‘the model
itself’, but only to wffs verified by the model. Models that are elementary
equivalent (verify the same wffs) have identical inconsistent parts.

Meanwhile, Graham Priest had generalized the first definition differently to
the predicative case (in [25]). He defines the abnormal part of a model in terms
of properties of ‘the model itself’, hence in an ‘ontological’ way. A simple way
to explain the matter is as follows. Let the pseudo-language L↑ be obtained by
replacing the set of constants in L by a set of pseudo-constants, viz. one for
each member of D—I shall use the members of D as names for themselves. The
inconsistent part of M is then defined by:4

Abo(M) =df {A | vM (A ∧ ∼A) = 1; A is a primitive wff of L↑}

The important difference with the linguistic definition is that A is a wff of
L↑. Unlike L, L↑ enables one to fully describe the model. Whence I call the
definition ontological.

4The superscript in Abo(M) refers to “ontological”. The reference to primitive wffs in the
definition depends merely on properties of Priest’s lower limit logic. The same restriction is
required if the linguistic definition is applied to that or a similar logic—see below.
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In [25], Priest moreover introduces the Domain Restriction to the definition
of minimal abnormal models:

A model M of Γ is minimally abnormal iff no model M ′ of Γ that has
the same domain as M is such that Abo(M ′) ⊂ Abo(M).

The effect of the Domain Restriction may be illustrated by the following exam-
ple.

Example 3.1. Premise: (∀x)(Px ∧ ∼Px). For any model M of this formula,
{Pa | a ∈ D} ⊆ Abo(M). So, where the domain of M is not a singleton, there is
a model M ′ with a singleton domain {a} such that Abo(M ′) ⊂ Abo(M). Hence,
if the Domain Restriction were not imposed, all minimally abnormal models of
the premise would have a singleton domain and hence

(∃x)(∀y)y = x

would be a consequence of the premise.

Both definitions lead to very different results, as I shall illustrate in Section
5. Moreover, the above ontological definition is inadequate, as we shall see
in Section 6. But this does not entail that no sound ontological definition is
possible. Moreover, there are at least two good reasons to look for one.

There clearly is a coherent notion behind the idea of an ontological measure.
There is a clear sense in which a model itself (that is, its ‘structure’) may
be inconsistent. Even if two models are elementary equivalent, they may in
themselves have a different degree of inconsistency. So, a sound ontological
definition seems at least possible.

The second reason is philosophically deeper. In view of present-day histor-
ical insights, we should be aware of the fact that our knowledge may be, and
presumably forever will be, quite remote from the real structure of the world.
This often forces one to reason about the world in ways that are partly indepen-
dent of our present knowledge (and present languages). We not only do so, at
least since Kant, in epistemological contexts. In a sense, this form of reasoning
is present in many creative processes in the sciences. The idea of measuring
the inconsistent part of a model in an ontological way—that is, from structural
properties of the model rather than from properties of the set of wffs verified
by the model—seems attractive from that point of view.

Let me put the matter in slightly different terms. Suppose that some of our
theories is inconsistent, and that we are interested in interpreting it as consis-
tently as possible. The linguistic approach will at best offer a minimally incon-
sistent interpretation of the theory within the bounds of our present conceptual
system. If a sensible ontological definition may be found, it might transcend
such bounds.

In the present paper, I discuss several proposals for an ontological definition.
To avoid complications, I shall concentrate on the minimal abnormality strategy
and moreover on lower limit logics in which all inconsistencies are reduced to the
inconsistent behaviour of primitive formulas. The effect of the latter restriction
is that the abnormal part of a model will be measured in terms of primitive
formulas.5 These logics will be CLuNs and (its fragment) LP. In order to

5See, however, Section 8.4 for open problems concerning the ontological definition for logics
that isolate inconsistencies.
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avoid confusion that might arise from reasoning in terms of the pseudo-language,
I characterize (in Section 4) those logics in terms of a model-theoretic type of
semantics: the inconsistencies in the models are measured without referring to
the way in which the language L is connected to the ‘structure’ that underlies
the model.

4 A Semantics for CLuNs and LP

A model6 will consist of two clearly separated elements: a structure that does
not contain any references to L, and an interpretation that connects L to the
structure.

A structure is a couple. Its first element, D, is a non-empty set. Its second
element, {Ri, i ∈ I}, is a set of paraconsistent ‘relations’ on D, where I is a
set of indices. For each i ∈ I, Ri has a certain adicity: 0, 1, 2, . . .. A relation of
adicity 0 corresponds to a ‘fact’; it may serve as the interpretation of a sentential
letter. A ‘relation’ of adicity n > 0 may serve as the interpretation of a predicate
of adicity n.

A paraconsistent ‘relation’ Ri on D is a couple 〈E,A〉, where (i) if the adicity
of Ri is 0, E,A ∈ {0, 1} with the restriction that 1 ∈ {E,A}, (ii) if the adicity of
Ri is 1, E,A ∈ ℘(D) (where ℘(D) is the power set of D), with the restriction that
E∪A = D, (iii) if the adicity of Ri is n > 1, E,A ∈ ℘(Dn) (where Dn is the n-the
cartesian product of D), with the restriction that E∪A = Dn. Intuitively, E and
A are the extension and the anti-extension of the sentential letter or predicate
corresponding to Ri. These may overlap—thus causing inconsistency—and need
to be exhaustive—thus avoiding negation-incompleteness.

We stipulate that R0 = 〈E,A〉 is a relation of adicity 2 such that (i) E =
{〈a, a〉 | a ∈ D}, and (ii) 〈a, b〉 ∈ A whenever a and b are different elements
of D.7 R0 will serve as the interpretation of identity. The requirement assures
that α = β is true in a model whenever α and β have the same interpretation
in it.8

A structure of this type is appropriate for a first order language, L, with a
set of sentential letters and predicates πj , j ∈ J iff, for any j ∈ J there is an
i ∈ I such that the adicity of πj is the same as that of Ri. An interpretation
or assignment v of this language with respect to the structure, is such that
v(πj) = Ri, where Ri is a relation that has the same adicity as πj , and v(α) ∈ D
for all individual constants α.9

Where the interpretation of some schematic letter is a couple, it is handier
to consider it as composed of two functions, v+ and v−, such that v(. . .) =
〈v+(. . .), v−(. . .)〉. Similarly, the valuation vM determined by the model M will
be considered as composed of the functions, v+

M and v−M , such that vM (. . .) =

6This part of the paper is inspired by a note by Graham Priest (electronic discussion).
7It is not excluded that 〈a, a〉 ∈ A for some a ∈ D. Precisely this will cause inconsistent

identities, for example a = b ∧ ∼a = b.
8The stipulation is asymmetric in that all inconsistencies with respect to identity are caused

by the anti-extension of identity. This may be eliminated if one slightly changes the clause
for v+

M (πiα1 . . . αn) = 1 and v−M (πiα1 . . . αn) = 1 below.
9In other words, the structure is sufficiently rich to accommodate L, but it may be much

richer than L and several predicates from L may receive the same interpretation. Any other
decision would undermine the ontological character of the ontological definition of a minimally
abnormal model.
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〈v+
M (. . .), v−M (. . .)〉. To extend the interpretation to a valuation determined by

the model M , we first stipulate, as expected:

• if the adicity of πj is 0, then vM (πj) = v(πj)

• if the adicity of πi is n > 0, then v+
M (πiα1 . . . αn) = 1 iff 〈v(α1) . . . v(αn)〉 ∈

v+(πi)

• if the adicity of πi is n > 0, then v−M (πiα1 . . . αn) = 1 iff 〈v(α1) . . . v(αn)〉 ∈
v−(πi)

As v(=) = R0, the above handles identity in the suitable (paraconsistent) way.
Extending the interpretation to the propositional connectives is straightforward:

• v+
M (∼A) = v−M (A)

• v−M (∼A) = v+
M (A)

• v+
M (A ∧B) = min(v+

M (A), v+
M (B))

• v−M (A ∧B) = max (v−M (A), v−M (B))

• v+
M (A ∨B) = max (v+

M (A), v+
M (B))

• v−M (A ∨B) = min(v−M (A), v−M (B))

• v+
M (A ⊃ B) = max (1− v+

M (A), v+
M (B))

• v−M (A ⊃ B) = min(v+
M (A), v−M (B))

There seems no reason not to introduce the sentential constant ⊥, defined
syntactically by ⊥ ⊃ A. Its semantic definition is:

• v+
M (⊥) = 0

• v−M (⊥) = 1

This allows us to explicitly define classical negation, henceforth written as
¬, as follows:

¬A =df A ⊃ ⊥

We leave it for the reader to check that, on this definition,10

• v+
M (¬A) = 1− v+

M (A)

• v−M (¬A) = v+
M (A)

Quantified formulas may be handled in terms of variant interpretations vMa
o

as defined in Chapter 9 of [18]:

• v+
M ((∀α)A) = min(vMβ

o

+(Aαβ))

• v−M ((∀α)A) = max (vMβ
o

−(Aαβ))

10Remark that vM (¬A) = 〈0, 1〉 if vM (A) = 〈1, 0〉 or vM (A) = 〈1, 1〉, whereas vM (¬A) =
〈1, 0〉 if vM (A) = 〈0, 1〉.
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• v+
M ((∃α)A) = max (v+

Mβ
o

(Aαβ))

• v−M ((∃α)A) = min(v−
Mβ

o

(Aαβ))

This completes the semantics of CLuNs. The semantics of LP is obtained
by removing the clauses for material implication and defining it by

A ⊃ B =df ∼A ∨B

As a result, material implication is not detachable in LP, and ¬ cannot be
defined in it.11

The linguistic definition for the abnormal part of a model reads:

Ab(M) =df {A | vM (∃(A ∧ ∼A)) = 1; A is a primitive formula of L}.

in which “formula” should be read as: open or closed formula.
The aim of the above construction obviously was to clearly spell out the

ontological definition. For any relation Ri = 〈E,A〉, i ∈ I, the inconsistent part
of Ri is Xi = E ∩ A. As we have to compare models, I write XM

i to refer to
the sets Xi as determined by the model M . In agreement with Section 3,12 the
abnormal part of model M is defined in terms of properties of its structure as
follows:

Abo(M) =df {〈XM
i , i〉 | i ∈ I}

Two models M and M ′ will be said to be of the same type iff they share D
and, for all i ∈ I, the adicity of Ri is the same in both models. Let Abo(M) <
Abo(M ′) denote that, for some i ∈ I, XM

i ⊂ XM ′

i , whereas, for all i ∈ I,
XM

i ⊆ XM ′

i . A model M of a set Γ will be said to be a minimally abnormal
model of Γ iff no model M ′ of Γ is such that M ′ is of the same type as M ,
and Abo(M ′) < Abo(M). As desired, this definition of “minimally abnormal
model of Γ” refers to the structure only, not to the interpretation.13 Remark
that the Domain Restriction was replaced by (what I shall call) the Same Type
Restriction.

Where v(P ) = Ri, I shall often write XM
P instead of XM

i .

5 Comparing the two Definitions

Let us consider some examples that illustrate the difference between both defi-
nitions.

Example 5.1. Premise: Pa ∧ ∼Pa. The ontological approach selects the
models in which XM

P is a singleton. The linguistic approach selects the models
that verify only inconsistencies, ∃(A∧∼A), that are verified by all paraconsistent

11The above definition of ¬ makes the latter identical to ∼ in LP.
12In one respect, the following definition diverges from the one in Section 3—see Subsection

6.5 for the justification of this.
13However, the weight to be attached to this statement depends on a presupposition about

the structure of the world. As is show in the Appendix, the logic LP is not only characterized
by the semantics listed above in the text, but also by a semantics compounded from consistent
structures and ambiguous interpretations.
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models of the premise—that is, Pa∧∼Pa and all formulas of the form (∃α)(Pα∧
∼Pα).

So, according to the linguistic definition

(Pb ∧ ∼Pb) ⊃ ⊥

and, equivalently,
¬(Pb ∧ ∼Pb)

are consequences of the premise.14

The ontological definition does not lead to the above consequences. As it
selects models in which XM

P is a singleton, it results in the consequence

(∀x)((Px ∧ ∼Px) ⊃ x = a)

The linguistic approach does not care whether XM
P is a singleton, provided a is

the only individual constant that is interpreted by a member of this set.

Example 5.2. Premises: Pa∧∼Pa, Qa. On both approaches, these have the
consequence

(Pb ∧ ∼Pb) ⊃ Qb

However, the reasons for this are rather different. On the ontological approach,
XM

P is a singleton. Hence, if v(b) ∈ XM
P , then v(a) = v(b), and hence Qb. On

the linguistic approach, all minimally abnormal models of the premises verify
¬(Pb ∧ ∼Pb), and hence (Pb ∧ ∼Pb) ⊃ Qb.15

Example 5.3. Premises: Pa∧∼Pa, Pb∧∼Pb. These have models in which
a and b denote the same element of D, say a, and models in which they denote
different elements, say a and b. On the ontological definition, all minimally
abnormal models of the premises are amongst the former, and no model of the
second sort is minimally abnormal. Hence, on the ontological definition,

a = b

is a consequence of the premises. On the linguistic definition, the minimally
abnormal models have {Pa, Pb} as their abnormal part, irrespective of the in-
terpretation of a and b. So, a = b is not a consequence of the premises (but, for
example ¬(Pc ∧ ∼Pc) is).

Example 5.4. Premises: Pa ∧ ∼Pa, Pb ∧ ∼Pb, ∼a = b. On the ontological
definition, there are minimally inconsistent models of the premises in which
v(a) and v(b) are different, and others in which they are identical, and hence
〈v(a), v(b)〉 ∈ X=. In the former models, XP contains two elements, in the
latter, both XP and X= contain one element. On the linguistic definition, the
models of the second kind are not minimally inconsistent. Indeed, they have at
least {Pa, Pb, a = b} as their abnormal part, whereas the minimal inconsistent
models of the first kind have {Pa, Pb} as their abnormal part.

14Given the way in which material implication is defined in LP, (Pb ∧ ∼Pb) ⊃ ⊥ is an
LP-theorem, viz. LP-equivalent to ∼(Pb ∧ ∼Pb) ∨ ⊥, to ∼(Pb ∧ ∼Pb) and to ∼Pb ∨ Pb.

15The example is not very illustrative for LP because (Pb∧∼Pb) ⊃ Qb is an LP-theorem.

9



Example 5.5. Premises: Pa ∧ ∼Pa, Pb ∧ ∼Pb, ∼a = b, a = b ∨ Qc. The
difference that surfaced in the previous example shows more clearly here. Only
on the linguistic definition, Qc is a consequence of the premises.

Example 5.6. Premises: Pa ∧ ∼Pa, Pb ∧ ∼Pb, Ra, ∼Rb. From these
premises,

a = b

is not derivable on either definition. Even on the ontological definition, there
are minimally abnormal models that identify v(a) and v(b)—in these, XP and
XR are singletons—and others that don’t—in these, XP contains two elements
of the domain whereas XR is empty.

The differences remain if, in the above examples, the premises are added in
conjunction and existential generalization is applied for all constants. Let us
apply this to Example 5.5.

Example 5.7. Premise: (∃x)(∃y)(∃z)((Px ∧ ∼Px) ∧ (Py ∧ ∼Py) ∧ ∼x = y
∧ (x = y ∨ Qz)). By precisely the same reasoning as in the previous example,
(∃x)Qx is derivable on the linguistic definition but not on the ontological one.

6 Problems with the Original Ontological Defi-
nition

Up to now, no objections were raised against the linguistic definition, whereas
there are some serious problems with the above ontological definition. As there
are nevertheless very good reasons to search for a sound ontological definition, I
list the problems as systematically as possible. This will facilitate the discussion
of attempted emendations of the definition.

6.1 Failure of the Classical Recapture

The least one might expect from a logic that pretends to interpret a set of
premises as consistently as possible, is that it interprets consistent premises as
consistent. For all logics considered in this paper, this is fulfilled iff the adaptive
consequences of a consistent set of premises are its CL-consequences. In [3], it
is proved that this obtains for (what is now called) the propositional fragment
of ACLuN1. In [5], the proof is extended to the inconsistency-adaptive log-
ics, ACLuN1 and ACLuN2, defined from the lower limit logic CLuN. In
a forthcoming paper, the same is proved for two inconsistency-adaptive logics
defined from the lower limit logic CLuNs, and for two inconsistency-adaptive
logics defined from the lower limit logic LP. In [25], the same is stated (without
proof) for LPm , viz. as Fact 3. However, this statement is mistaken, as I now
show.
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Example 6.1. Premise: (∃x)(∃y)∼x = y. This consistent premise has models
with a singleton domain, say {a}. Where M is such a model, M is necessarily
inconsistent in that 〈a, a〉 ∈ XM

0 . Moreover, if XM
0 = {〈a, a〉} and XM

i = ∅
whenever i 6= 0, then M is minimally inconsistent in view of the Same Type
requirement (the premise has no consistent models of the same type). So, the
definition fails to select the CL-models of the premise. Such examples are easily
multiplied as appears from the next one.

Example 6.2. Let Γ contain all formulas (where n ∈ {2, 3, . . .})

(∀x)(Px ∧ ∼Px) ∨ (∃x1)(∃x2) . . . (∃xn)(∼x1 = x2 ∧ . . . ∧ ∼x1 = xn∧
∼x2 = x3 ∧ . . . ∧ ∼x2 = xn ∧ . . . ∧ ∼xn−1 = xn)

Γ is a consistent set of premises. Nevertheless, Γ has infinitely many finite
models all of which are minimally abnormal and verify (∀x)(Px ∧ ∼Px).

Example 6.3. Premise: (∃x)(∀y)x = y∨ (∃x)(Px∧∼Px). All its CL-models
have a singleton domain. The premise has LP-models with larger domains, and
all of these are inconsistent. According to the ontological definition, there are
minimally abnormal models of the premise among the latter, viz. all those in
which XP is a singleton. So, in view of the Same Type Restriction, some LPm -
models of the wff are not CL-models. This example illustrates that Priest’s
definition sometimes fails to eliminate inconsistent models that have a larger
domain than the consistent models of the premises.

Example 6.4. Premises: (∃x)Px, (∃x)∼Px.16 All singleton models of the
premises are inconsistent (in that the only object both has and has not property
P ) and some of them are minimally abnormal (viz. those in which this is the
only inconsistency). Hence, even in the absence of identity, LPm does not select
the right models for consistent premises.

The failure of the Classical Recapture obviously results from the Same Type
Restriction (the Domain Restriction), and there is no doubt that it has to go.
Incidentally, the Same Type Restriction has other unwanted consequences as
well. One of them is that the premises (∀x)(x = a ∨ x = b ∨ x = c), Pa ∧
∼Pa, Pb ∧ ∼Pb, a = b ∨ (∀x)(Qx ∧ ∼Qx) fail to lead to the sound conclusion
a = b. Indeed, some models of the premises have a three element domain, and
the least inconsistent ones among these falsify a = b.

Although I have now shown that the original ontological definition is inade-
quate, it is worth pointing out some further independent difficulties. These will
be helpful for finding a better ontological definition, if there is one.

6.2 Failure of Strong Reassurance

Strong Reassurance holds for an adaptive logic AL iff, for all sets of formulas Γ,
if a LLL-model M of Γ is not an AL-model of Γ, then some AL-model M ′ of Γ is
such that Abo(M ′) < Abo(M)—Ab(M ′) ⊂ Ab(M) for the linguistic definition.17

16Graham Priest produced this nice example (personal correspondence) after I send him
the previous ones.

17See the next to last paragraph of Section 4 for the definition of “<”.
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Strong Reassurance is intuitive appealing: if a LLL-model M of Γ is ‘defeated’,
then it should be defeated by a model of Γ that is itself non-defeated (that is
minimally abnormal).18

If Strong Reassurance fails, some non-selected models are not selected be-
cause they belong to an infinite sequence(s) no member of which is minimally
abnormal. In other words, every model in the sequence is defeated by a less
abnormal one, but no model of the sequence is minimally abnormal.

It is shown in [7] that the linguistic measure warrants Strong Reassurance,
but that Strong Reassurance fails for Priest’s LPm . The example in that paper
is the following.

Example 6.5. Let Γ contain the formulas (where n ∈ {2, 3, . . .})

(∃x1)(∃x2) . . . (∃xn)((Px1 ∧ ∼Px1) ∧ . . . ∧ (Pxn ∧ ∼Pxn) ∧ ∼x1 = x2∧
. . . ∧ ∼x1 = xn ∧ ∼x2 = x3 ∧ . . . ∧ ∼x2 = xn ∧ . . . ∧ ∼xn−1 = xn)

Γ has very simple minimally abnormal models; for example the one in which
D = {a, b} = v+(P ), v−(P ) = a, and 〈a, a〉 ∈ v−(=). However, as was proved in
[7], for some (actually, infinitely many) LP-models M of this Γ, no LPm -model
M ′ of Γ is such that Abo(M ′) < Abo(M), and hence Strong Reassurance fails
for LPm .

This example illustrates the price to pay for the absence of Strong Reas-
surance. Γ has two kinds of LP-models: those in which (∃x)∼x = x is true
and those in which it is false. All models of the second kind have an infinite
domain, at least a denumerable subset of the domain consists of elements that
both have and have not property P . No model of the second kind is minimally
abnormal. Some models of the first kind are minimally abnormal, viz. those
in which exactly one object is different from itself and both has and has not
property P . So, the transition from LP to LPm simply wipes out all models
of the second kind.

This example moreover shows that the LPm -consequence relation is coun-
terintuitive: both

(∃x)(x = x ∧ ∼x = x)

and
(∃x)(∀y)(∼(Py ∧ ∼Py) ∨ y = x)

are LPm -consequences of Γ. Γ states that infinitely many different objects both
have and have not property P .19 According to LPm , it follows from this that
some object is different from itself and that precisely one object both has and
has not property P .20

6.3 Not Constant with Respect to Isomorphic Models

On the ontological definition, Abo(M) is not constant with respect to isomorphic
models, and hence some models are defeated by isomorphic models. In this

18Strong Reassurance is obviously closely related to the Smoothness Condition as defined,
for example, in Definition 3.12 of [21].

19Γ states so on its ‘normal’ reading. It also states so on Priest’s reading, even in view of
the models.

20The conclusion should be qualified: the second formula is a theorem of LP.
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sense, the original ontological definition of “inconsistent part of a model” is
incoherent. The following is shown in [7]. Let M be a LP-model of the premise
from Example 6.5 in which XM

P as well as D − XM
P are infinite. By simply

moving objects from one set to the other, one obtains isomorphic models that
are more inconsistent than M , less inconsistent than M , or incommensurable
with M .

6.4 Failure of Reassurance

Reassurance obtains for an adaptive logic AL iff any set Γ that has LLL-models
also has AL-models—see [25]. The import of Reassurance is enormous. Where
it is absent, the adaptive move involves the transition from a non-trivial LLL-
consequence set to a trivial AL-consequence set, which would render the move
inappropriate (if not nonsensical).

Reassurance is proven for LPm in [25]. However, it is not difficult to see that
it fails for CLuNs, and would fail for LP if this system would contain a boolean
negation. Here is an example:

Example 6.6. Let Γ contain the formulas (where n ∈ {2, 3, . . .}),

(∃x1)(∃x2) . . . (∃xn)((Px1 ∧ ∼Px1) ∧ . . . ∧ (Pxn ∧ ∼Pxn) ∧ ¬x1 = x2∧
. . . ∧ ¬x1 = xn ∧ ¬x2 = x3 ∧ . . . ∧ ¬x2 = xn ∧ . . . ∧ ¬xn−1 = xn)

This set has plenty of LP-models (supposing that LP is extended with “¬”), but
has no models in which XP is finite, and hence has no minimally inconsistent
models. The same result is obviously obtained by adding ¬(∃x)∼x = x to the
premises of Example 6.5.

The conclusion is that LPm is saved from drowning by lack of water. I do
not mean the absence of classical negation (which Priest seems to consider as
nonsensical). I mean that LPm is only defined with respect to a fragment of
Priest’s ‘true logic’—he believes that there is such an animal. Priest recognizes
the need for a detachable (but not truth-functional) implication as well as for
bottom—see for example [26]. So, Example 6 is all right for him if expressions
of the form ¬xi = xj are replaced by xi = xj → ⊥, in which the implication is
detachable.21 Even with this replacement, the premises have only models that
either have an infinite domain or are trivial. As none of the former is minimally
abnormal, all minimally abnormal models of the premises are trivial.22 So
Reassurance fails if the ontological definition is extended to the Priest’s full
logic: the above set (with the replacement) has non-trivial LP-models but no
non-trivial LPm -models.23 Moreover, the example shows that Reassurance even
fails if the Same Type Restriction is dropped.

21Boolean negation, ¬A, cannot be defined by A → ⊥, for example because A ∨ (A → ⊥)
is not a theorem if the implication is relevant or modal. However, A, A → ⊥ |= ⊥ obviously
holds.

22Priest stresses that his semantics comprises the trivial model.
23Incidentally, the Collapsing Lemma cannot be proved in the presence of a detachable

implication and of bottom.
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6.5 Failure to Identify Inconsistent Predicates

In Section 4, I did not exclude that two different predicates of a first order
language L have the same interpretation in a structure that is appropriate for L
(and I justified the choice in a footnote). Priest’s original ontological definition
in [25] follows a different path. Phrased in terms of the semantics in Section 4,
he requires that different predicates are mapped on different relations. So, each
of the following sound inferences fail for the original definition.

Example 6.7. Premises: Pa∧∼Pa, Qa∧∼Qa. On the ontological definition,
the only minimally abnormal models of these premises verify v(P ) = v(Q),
whence

(∀x)(Px ≡ Qx)

is a consequence of the premises. As this reduces to a rather weak claim in
LPm , due to the lack of a detachable implication, let me present a stronger
example.

Example 6.8. Premises: Pa ∧ ∼Pa, Qb ∧ ∼Qb, Ra. On the ontological
definition, the only minimally abnormal models of these premises still verify
v(P ) = v(Q), whence

a = b

and hence
Rb

are consequences of the premises.

Such inferences may seem paradoxical. However, as soon as one grasps the
idea behind the inconsistent models, their paradoxical flavour disappears. Just
as the inconsistency of the structure is minimized by identifying v(a) and v(b)
in Example 5.3, the inconsistency of the structure is minimized by identifying
the interpretations of inconsistent predicates. It would be severely incoherent
to allow for the one and not allow for the other. If the degree of inconsistency
of a structure is independent of the names mapped to objects of the structure,
then there can be no reason to make it dependent on the names mapped to the
relations of the structure.

As this point is rather central in the sequel, let me briefly expand on it.
Nothing prevents that the same element of the domain is named by different
names. Similarly, nothing prevents that the same relation on the domain is
named by different names. If two individual constants, a and b, name the same
element of the domain, we have a standard logical operator to express this:
identity. We have no standard logical operator to express that two predicates,
P and Q, name the same relation. Of course, we can write (supposing that
the adicity of the predicates is 1) (∀x)(Px ≡ Qx) ∧ (∀x)(∼Px ≡ ∼Qx). This
warrants that v(P ) = v(Q), which means that P and Q are interpreted by the
same relation.24

24The argument presupposes the standard extensional view. However, precisely this view
underlies Priest’s original semantics as well as the semantics from Section 4. Nearly everyone
agrees today that P and Q may have a different meaning even if their extensions are identical.
But a and b may just as well have a different meaning, even if they denote the same element
of the domain. Typically, both sorts of non-extensional differences may be explicated by a
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Let us return for a moment to Examples 5.3 and 5.6. In the latter example,
some minimally abnormal models did not identify v(a) and v(b) because of the
supplementary information provided about a and b, viz. Ra and ∼Rb. It is
obviously be possible to obtain the same effect in Examples 6.7 and 6.8 by
providing supplementary information on P and Q (or on a and b in Example
6.8). In both examples, there are minimally abnormal models (on the ontological
definition) in which v(P ) is different from v(Q) if one adds to the premises, for
example, Pc∧∼Pc and ¬(Qc∧∼Qc). Alternatively, one may add Pc, Qd, and
∼a = c in Example 6.7, and Sac and ∼Sbc in Example 6.8.25

6.6 Failure to Identify Inconsistent Sentential Letters

The weakness mentioned in Section 6.5 obviously extends to sentential letters.
Indeed, there are at most three relations of adicity 0 in the structure, viz. 〈1, 0〉,
〈0, 1〉 and 〈1, 1〉. Hence, the inconsistent part of a model should only depend
on the question whether the relation 〈1, 1〉 occurs in it, not on the number of
sentential letters that are mapped on that relation.26

7 Some New Proposals for an Ontological Defi-
nition

We have seen that, on the ontological definitions discussed so far, two isomorphic
models may have different inconsistent parts. A proposal that came up during
the electronic discussion with Graham Priest was to stipulate that a model
cannot be ‘defeated’ by an isomorphic model. The ontological definition of
the abnormal part of a model remains as in Section 4, and so does Abo(M) <
Abo(M ′). The change comes here: a model M of a set Γ is a minimally abnormal
model of Γ iff no model M ′ of Γ is such that (i) M ′ is of the same type as M ,
(ii) M ′ is not isomorphic to M , and (iii) Abo(M ′) < Abo(M). Let us call the
restriction in (ii) the NI-Restriction (non-isomorphic).

Alas, this does not work. Suppose that M and M ′ are models of the same set
of premises, and that, for both M and M ′, D = {a, b1, c1, b2, c2, . . .}, v+(P ) =
{a, b1, b2, . . .}, and v−(P ) = {a, b1, c1, b2, c2, . . .}, and that Xi = ∅ whenever
Ri 6= v(P ). Let M differ from M ′ in that v+(Q) = {a} and v−(Q) = ∅ in M ,
whereas v+(Q) = ∅ and v−(Q) = {a} in M ′. Let Σ be the set of models that are
obtained from M by moving finitely many ci from v−(P ) to v+(P ). Similarly,
let Σ′ be the set of models that are obtained from M ′ by moving finitely many ci

from v−(P ) to v+(P ). All members of Σ are isomorphic, and so are all members
of Σ′. It is easily seen that (i) for any M ′′ ∈ Σ, some M ′′′ ∈ Σ′ is such that
Abo(M ′′′) < Abo(M ′′), and (ii) for any M ′′′ ∈ Σ′, some M ′′ ∈ Σ is such that
Abo(M ′′) < Abo(M ′′′). It follows that the NI-Restriction fails to warrant Strong
Reassurance.

worlds semantics, in which extensional identity is represented by identity at world w0 (the
real world), and intensional identity by identity at all worlds.

25The matter requires some attention. Adding Pc and ∼Qc in Example 6.7 would simply
result in v(c) = v(a); adding Ra and ∼Rb in Example 6.8, would simply result in v(R) =
v(P ) = v(Q).

26When writing [25], Graham Priest apparently did not recognize the linguistic character of
my solution for the propositional case—he refers to [2]—and generalized it to a halfway house
between the linguistic and the ontological approach.
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In [7], I presented a crude but effective means to warrant Strong Reassurance.
Instead of identifying the adaptive models of a set of premises (in the case of
the minimal abnormality strategy) with the minimally abnormal models of the
premises, one defines them as follows:

AD A LLL-model M of Γ is an AL-model of Γ iff there is no minimally ab-
normal LLL-model M ′ of Γ such that Abo(M ′) < Abo(M).

This definition warrants Strong Reassurance by brute force: a model is selected
unless some minimally inconsistent model ‘defeats’ it. Let us call the italicized
restriction the AD-Restriction. It warrants that all models of an infinitely de-
scending sequence are adaptive models.

The AD-Restriction solves the problem from Subsections 6.3 and 6.2, and
hence also the one from Subsection 6.4. It does not solve the other problems,
the most central of which concerns the Classical Recapture (Subsection 6.1).

The former version of this paper contained a definition I had cooked up in
an attempt to remove the Domain Restriction (in terms of Section 4: the Same
Type Restriction) while still avoiding the effects that the Domain Restriction
was intended to avoid. I shall not present the definition here because I now
think there are some problems with it. However, the underlying idea might be
useful for other people attempting to find an adequate ontological definition.
This idea was not only to compare the inconsistent part of models, but also
their consistent part. This move seems a natural one: the loss in inconsistency
should be matched by a gain in consistency (rather than by a decrease in the
domain). Where XM

i denotes the inconsistent part of Ri in M , CM
i will denote

the consistent part of Ri in M and will be defined as follows: where the adicity
of Ri is n, CM

i = Dn −XM
i .

Recently, Graham Priest told me that, in the galley proofs of [27], he mod-
ified his original definition by simply dropping the Domain Restriction. I shall
call this the Handbook Definition. This definition warrants the Classical Re-
capture. Indeed, by dropping the Domain Restriction, only consistent models
are minimally abnormal models of a consistent set of premises. At this moment,
Graham is convinced that the argument for the Domain Restriction, illustrated
in Example 3.1, does not hold water. Writes he: “But if [(∀x)(Px ∧ ∼Px)] is
all the information we have, and inconsistencies are to be minimized, perhaps
it is correct to infer that there is just one thing.” (last footnote to Section 7 of
[27]).

And perhaps he is right. There is a clear idea behind selecting the minimally
abnormal models in this sense. The results may sound counterintuitive at first
sight, but intuitions in such matters are not very reliable.

Of course, four other problems remain. Those from Subsections 6.2, 6.3 and
6.4 are solved by the AD-Restriction. The problem from Subsection 6.5 may
be solved as in Section 4, viz. by not requiring that different predicates are
interpreted by different relations.

Apparently, then, we have found an unobjectionable ontological definition:
Priest’s Handbook Definition with two emendations. Unfortunately, we are not
home yet. The definition seems technically unobjectionable but, as is shown
in the next section, it has very weird properties and seems to lack any sensible
application contexts.

16



8 Problems with the Emended Handbook Defi-
nition

8.1 Collapsing Predicates

I already quoted from a footnote of [27]: “But if [(∀x)(Px ∧ ∼Px)] is all the
information we have, and inconsistencies are to be minimized, perhaps it is
correct to infer that there is just one thing.” Priest continues, “Note that
[{(∀x)Px ∧ ∼Px, (∃x)Qx ∧ (∃x)∼Qx} 6|= (∃x)(∀y)x = y].” and next gives
an example of a minimally abnormal model M of the premises that falsifies
(∃x)(∀y)x = y. However, M is only a minimally abnormal model of the premises
because Priest presupposes that P and Q are bound to name different relations.
As I showed in Subsection 6.5, this presupposition cannot be justified. So let us
see what happens if the presupposition is dropped.

Example 8.1. Premises: (∀x)Px ∧ ∼Px, (∃x)Qx, (∃x)∼Qx. Let M be a
model with domain {a, b}, and let v(P ) = R1 = 〈{a, b}, {a, b}〉 and v(Q) =
R2 = 〈{a}, {b}〉. Let all other relations Ri be such that Xi = ∅. Hence:

Abo(M) = {〈∅, 0〉, 〈{a, b}, 1〉, 〈∅, 2〉, 〈∅, 3〉, . . .}

This is a least inconsistent model with a two-element domain, and actually the
model described in the footnote in [27].

Let M ′ be a model with domain {a}, and let v(P ) = v(Q) = R1 = 〈{a}, {a}〉.
Let all other relations Ri be such that Xi = ∅. Hence:

Abo(M ′) = {〈∅, 0〉, 〈{a}, 1〉, 〈∅, 2〉, 〈∅, 3〉, . . .}

As Abo(M ′) < Abo(M), M is not minimally abnormal. Any model with a non-
singleton domain is similarly ‘defeated’ by a model with a singleton domain.
Hence,

(∃x)(∀y)x = y (1)

is still a consequence of the premises. In other words, the ‘supplementary in-
formation’, (∃x)Qx, (∃x)∼Qx, fails to prevent that only singleton models are
minimally abnormal.

Of course, Priest might have presented an example in which the supple-
mentary information concerns a predicate of an adicity larger than 1, in which
case (1) would not have been a consequence of the premises. This is not much
consolation, as I shall show after presenting two further instructive examples.

Example 8.2. Premises: Pa ∧ ∼Pa, Qb ∧ ∼Qb, Sa, ∼Sb. The minimally
abnormal structures are those in which v(P ) = v(Q) = v(S) and XP is a
singleton (viz. v(a) = v(b)). So, each of the following are consequences: a = b,
(∀x)(Px ≡ Qx), (∀x)(Px ≡ Sx), a = b, ∼Sa, Sb.27

27The divergence between the ontological and the linguistic definitions is striking. The
classical negation of the last three formulas are consequences of the premises according to the
linguistic definition: ¬a = b, ¬∼Sa, ¬Sb.
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Example 8.3. Premises: Pa ∧ ∼Pa, Qb ∧ ∼Qb, Pc ∧ ∼Pc, ∼(Qc ∧ ∼Qc).
As ∼(Qc∧∼Qc) is an LPm -theorem, its presence has no effect. The minimally
abnormal structures are those in which v(P ) = v(Q) and XP is a singleton (viz.
v(a) = v(b) = v(c)). Each of the following are consequences: a = b, a = c,
b = c, (∀x)(Px ≡ Qx).

Suppose that you hold the philosophical conviction that all relational prop-
erties are parasitic on individual properties. This means that you will populate
your structures with relations of adicity 1 only. Let us restrict the domain of
discourse to humans to simplify the example. Suppose that you find out that all
humans have some inconsistent property ((∀x)(Px∧∼Px)). Of course, humans
have many other properties, and these vary widely to make them all distinct:
some are women while others are not, some are blue-eyed while others are not,
some are friendly while others are not, etc. Still, the Emended Handbook Def-
inition results in the consequence: all humans are identical (there is only one
human being) and “to be a women,” “to be blue-eyed,” “to be friendly,” etc. all
name the same inconsistent relation (as does P ). If you cannot imagine worse,
go on reading.

Example 8.4. Premises: Pa ∧ ∼Pa, Qb, ∼Qc. As there need not be any
relation between P and Q, nor between a, b and c, the sensible conclusion
seems to be that ∼b = c. Alas, this does not follow on the Emended Handbook
Definition. Indeed, the premises have a minimally abnormal model M in which
v(a) = v(b) = v(c), and v(P ) = v(Q) = R1 = 〈{v(a)}, {v(a)}〉. Of course, they
also have minimally abnormal models in which v(b) 6= v(c). Still, ∼b = c it is
not a consequence of the premises as M falsifies it.

In general, if, whenever a predicate of adicity n occurs in Γ, some predicate
of the same adicity behaves inconsistently on Γ, then one obtains a minimally
inconsistent model of Γ by choosing a structure with a one element domain
D, by mapping any predicate of adicity n to the relation Ri = 〈Dn, Dn〉, and
by making all other relations consistent. The ensuing trouble is either that all
minimally abnormal models have a singleton domain, as in Examples 8.1–3, or
that some minimally abnormal models have a singleton domain, as in Example
8.4.

8.2 Collapsing Sentential Letters

The trouble from Section 8.1 affects also sentential letters. Here, the dramatic
and unpalatable effects are even more clear, as appears from the following stan-
dard example.

Example 8.5. Premises: p,∼p, q,∼q∨r. From these r is not derivable because
the model in which v(p) = v(q) = 〈1, 1〉 and v(r) = 〈0, 1〉 is not more inconsistent
than the one in which v(p) = 〈1, 1〉, and v(q) = v(r) = 〈1, 0〉.

Let me generalize this. If Γ is an inconsistent set of propositional formulas,
the relation (of adicity 0) 〈1, 1〉 occurs in any model of Γ. It follows that, on the
Emended Handbook Definition, all paraconsistent models of Γ are minimally
abnormal at the propositional level. Hence, on that definition, CnAL(Γ) =
CnLLL(Γ) whenever Γ is inconsistent.
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8.3 Isomorphic Models and Strong Reassurance

Introducing the AD-Restriction warrants Strong Reassurance (and hence Reas-
surance). Alas, it also leads to problematic results. Reconsider for a moment
the premises of Example 6.5: the formulas (where n ∈ {2, 3, . . .})

(∃x1)(∃x2) . . . (∃xn)((Px1 ∧ ∼Px1) ∧ . . . ∧ (Pxn ∧ ∼Pxn) ∧ ∼x1 = x2∧
. . . ∧ ∼x1 = xn ∧ ∼x2 = x3 ∧ . . . ∧ ∼x2 = xn ∧ . . . ∧ ∼xn−1 = xn)

On the original ontological definition, Γ had only minimally abnormal models
in which XP is a singleton. On the Emended Handbook Definition, there also
are minimally abnormal models in which XP is an infinite set. These models
are easily identified: the models in which both XP and D −XP are infinite.

Γ states that infinitely many different objects both have and have not prop-
erty P . According to the original definition, it follows that some object is
different from itself and that precisely one object both has and has not property
P . According to the Emended Handbook Definition, it follows that either some
object is different from itself and that precisely one object both has and has not
property P , or there are infinitely many objects that behave consistently with
respect to P . That doesn’t look good either.

The AD-Restriction prevents absurd consequences by not ruling out any
member of infinitely descending sequences. Thus, part of the adaptive character
of the logic is traded in. This is the price of the way out. In the presence of
adaptive logics based on the linguistic definition, the price seems too high.

8.4 Problems For Generalizing The Proposal

CLuNs and its fragment LP reduce all inconsistencies to the level of primitive
wffs; many other logics do not. Examples are all of Newton da Costa’s Ci-
logics—see, e.g., [19]—and my preferred lower limit logic CLuN—see, e.g.,
[5]—which is defined syntactically by full positive CL, including ⊥, together
with A ∨ ∼A (equivalently, (A ⊃ ∼A) ⊃ ∼A).

In such logics, some inconsistencies are isolated in that they do not derive
from primitive inconsistencies—in CLuN all inconsistencies are isolated: no
inconsistency entails an inconsistency in terms of superformulas, and an incon-
sistency entails only an inconsistency in terms of subformulas iff the latter are
contained in its ‘positive part’.28 The advantage of isolating all inconsisten-
cies is that, as inconsistencies are not spread, more classical consequences are
delivered by the inconsistency-adaptive logic.

It is typical for logics that isolate inconsistencies (fully or in part) that
negations of (closed and open) formulas are to be introduced as verified directly
by the interpretation or assignment. How an ontological approach might be
generalized to such logics is unknown today. This is especially serious as there
are arguments (see [3], [5], and [8]) for preferring poorer paraconsistent logics
as the lower limit logic of inconsistency-adaptive logics.

A different generalization problem concerns other strategies, some of which
were mentioned at the end of Section 2. Some of these have serious advantages
(over the minimal abnormality strategy) from a proof theoretic point of view

28Thus ((p ∧ ∼p) ∧ q) ∧ ∼((p ∧ ∼p) ∧ q) `CLuN (p ∧ ∼p). However, one may prove that, if
(A ∧ ∼A) `CLuN (B ∧ ∼B), then A `CLuN (B ∧ ∼B).
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(see [5, §7]), or are suitable in specific contexts—see, for example, [11]. What
becomes of such strategies on the ontological approach is fully unknown. It is
even unclear whether the problem is sensible.29

9 A Provisional Conclusion

A fair rendering of the situation seems the following. Whatever one’s attitude
with respect to dialetheism—the claim that there are true inconsistencies—one
will try to interpret an inconsistent theory as consistently as possible—see [9].
I compared the linguistic and the ontological approach from a semantic point
of view, concentrating on the minimal abnormality strategy.

The linguistic definition has not been shown to have problematic aspects
or lead to problematic results. This definition also has a number of strong
points. First and foremost, it leads to a (dynamic) proof theory (nearly any of
the quoted papers deals with it) and to a tableau method (see [13] and [14]).
Neither of these is present for logics that rely on the ontological approach. It
is even doubtful whether a proof theory or tableau method for the ontological
approach are possible. The linguistic definition was shown to be attractive
for several adaptive logics that do not reduce all inconsistencies to the level of
primitive formulas. It was proved attractive for several adaptive logics that allow
for other logical abnormalities than inconsistencies, and for logics that allow for
ambiguities in the non-logical constants. It moreover has variants (that rely
on the same definition of the abnormal part of a model) that are adequate for
strategies different from minimal abnormality. All Rescher–Manor consequence
relations (see Section 2) were characterized by an inconsistency-adaptive logic
relying on the linguistic definition. The incorporation of ‘non-monotonic logics’
(see again Section 2) occurred fully in terms of logics relying on the linguistic
definition. None of these results is paralleled by the ontological approach.

Especially in view of the problems spelled out in Sections 8.1 and 8.2, one can
only conclude that a sound ontological definition is not available. The Emended
Handbook Definition is both clear and coherent. However, it is hard to see any
application contexts in which the features described in Sections 8.1 and 8.2
would be suitable. Whether an adequate ontological definition is possible is an
open question, but the available arguments support a negative answer. Appar-
ently, any sensible approach to minimal abnormality should treat inconsistencies
in different propositional letters and in different predicates as different. This
seems to support Priest’s halfway house, the Handbook Definition, provided it
is corrected by imposing the AD-Restriction. If we go that linguistic, however,
in counting inconsistent sentences and predicates rather than their extensions,
then there seems no possible justification for not counting inconsistent constants
rather than their extensions. And if we do so, we obtain the linguistic definition
or a variant of it, not a definition that can sensibly be called ontological.

The above questions lead to a deeper one. It is obviously sensible to distin-
guish between the structure of a model and its interpretation of the language L.
The central question, however, considers the status of the distinction. One view
conceives the distinction as merely technical; models are merely devices to in-
terpret a language ‘from within’. This suits the Vienna Circle (primarily Rudolf

29The main reason for this is that the ontological definition has never been connected to a
proof theory or tableau method.
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Carnap, who did all the hard work): possibilities are merely combinations of
linguistic entities (state descriptions). Another view connects the distinction to
that between the structure of the world and the realm of language. On this
view, we are able to talk about ontology in a way that is not determined by our
present best scientific insights.

There is a third possibility. Even the distinction is connected to that between
the structure of the world and the realm of language, the former may still
be determined by the conceptual schemas that underly our scientific language.
Whenever one adapts the conceptual structure in terms of which the world is
approached, the structures of the models have to be adapted as well. In other
words, those structures (and the results of minimizing abnormality) will not
survive a scientific revolution.

It seems to me that this third possibility is the only sensible one. We know
that our conceptual schemas do (presumably) not coincide with the world itself,
but we have no possibility to conceive the world independently of our present in-
sights. The history of philosophy shows convincingly that an a-historic ontology
is beyond human reach. In view of this, presumably any ontological definition
of minimal abnormality is ill-directed.

If the inconsistency of theories derives from the fact that linguistic entities
refer ambiguously, then only a linguistic definition is sensible. What one wants
to minimize are the ambiguous interpretations, not any inconsistencies in the
world out there. Interestingly, it is impossible in principle to decide whether
an inconsistency derives from the structure of the world or from the ambiguous
interpretation (that is, from the fact that our language refers ambiguously).
Even the logic we use cannot discriminate between the two possibilities. This
is easily seen by comparing the semantics from Section 4 with the one from the
Appendix. Both semantic systems characterize the same logic, viz. CLuNs as
well as LP.30

Appendix: Inconsistent Interpretations

The semantics from Section 4 presupposes that the non-logical constants of
the language unambiguously refer to objects and ‘relations’ in the world, and
hence that all inconsistencies derive from the world itself. This presupposition
is obviously wrong for inconsistencies that can be removed. In this appendix,
I devise a semantics for CLuNs, and hence for LP, in which inconsistencies
are caused by the interpretation of linguistic entities, leaving it to the reader to
spell out the mixed case.

Let a structure be defined as in Section 4, except that all relations are
classical: Xi = ∅ for all i ∈ I. As their anti-extension is a function of their
extension, it need not be mentioned separately. Also, there is no need to reserve
a relation for the interpretation of identity.

Where α ∈ C, v(α) ⊆ D. Where π ∈ Pn (a predicate of adicity n), v(π) ⊆
{Ri | i ∈ I; Ri has the same adicity as π}.31 To accommodate the quantifiers,
we introduce a set of pseudo-constants O (of at least the same cardinality as

30I spell the matter out in the Appendix, which also contains a natural variant for the
linguistic definition.

31Whenever v(α), respectively v(π) is not a singleton, α, respectively π, is interpreted
ambiguously
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the largest domain we want to consider), and stipulate that v(α) ⊆ D for all
α ∈ O.32 Here is how the valuation function handles primitive formulas:

• if the adicity of π is 0, then

– v+
M (π) = 1 iff Ri = 1 for some Ri ∈ v(π)

– v−M (π) = 1 iff Ri = 0 for some Ri ∈ v(π)

• if the adicity of π is n > 0, then

– v+
M (π α1 . . . αn) = 1 iff 〈a1, . . . , an〉 ∈ Ri for some Ri ∈ v(π), a1 ∈

v(α1), . . ., and an ∈ v(αn)

– v−M (π α1 . . . αn) = 1 iff 〈a1, . . . , an〉 6∈ Ri for some Ri ∈ v(π), a1 ∈
v(α1), . . ., and an ∈ v(αn)

• for identity:

– v+
M (α = β) = 1 iff v(α) = v(β)

– v−M (α = β) = 1 iff v(α) 6= v(β), or a 6= b for some a, b ∈ v(α).

The logical constants are handled as in Section 4, except for the quantifiers. Let
Aβ

α be the result of replacing any free occurrence of the individual variable α by
the individual constant or pseudo-constant β.

• v+
M ((∀α)A) = 1 iff v+

M (Aβ
α) = 1 for all β ∈ C ∪ O

• v−M ((∀α)A) = 1 iff v−M (Aβ
α) = 1 for some β ∈ C ∪ O

• v+
M ((∃α)A) = 1 iff v+

M (Aβ
α) = 1 for some β ∈ C ∪ O

• v−M ((∃α)A) = 1 iff v−M (Aβ
α) = 1 for all β ∈ C ∪ O

Let π be a predicate with adicity n. The consistent part of π consists of the
n-tuples that are π in all respects,

⋂
v(π), and of the n-tuples that are π in no

respect, Dn −
⋃

v(π).33 The rest of the domain,
⋃

v(π)−
⋂

v(π), contains the
inconsistent extension of π.34

The linguistic definition distinguishes three sources of inconsistencies. (i) A
linguistic entity may be interpreted abnormally.35 (ii) The (normal or abnor-
mal) interpretation of a constant may overlap with an n-tuple that belongs to
the abnormal interpretation of a predicate with adicity n > 0.36 (iii) The ab-
normal interpretation of a constant or pseudo-constant may cause it to relate
inconsistently to the normal interpretation of a predicate.37

32The pseudo-constants name the values of the individual variables.
33Remember that, where π is a predicate with adicity n, v(π) is a set of sets of n-tuples.
34There are two relations with adicity 0, viz. 0 and 1. A set of such relations is consistent

if
⋃

v(π)−
⋂

v(π) is ∅ and inconsistent if it is {0, 1}.
35If A ∈ S and v(A) is not a singleton, then vM (A ∧ ∼A) = 1. If v(α) is not a singleton

then vM (α = α ∧∼α = α) = 1 if α ∈ C, and vM ((∃x)(x = x ∧∼x = x)) = 1 if α ∈ O. Where
the adicity of π is n > 0, vM ((∃α1) . . . (∃αn)(πα1 . . . αn ∧ ∼πα1 . . . αn)) = 1 whenever v(π)
is not a singleton.

36Example: if P has adicity 2, v(a) = a, v(P ) = {R1, R2}, and 〈a, b〉 ∈ R1 − R2, then
vM (Pa ∧ ∼Pa) = 1.

37Let v(P ) = R1 have adicity 1, v(α) = {a, b}, a ∈ R1 and b 6∈ R1. If α ∈ C, then
vM (Pα ∧ ∼Pα) = 1; if α ∈ O, then vM ((∃x)Px ∧ ∼Px) = 1.
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The present models suggest an alternative linguistic definition: the abnormal
part of a model is the set of linguistic entities that have an abnormal interpre-
tation. This is clear and sensible, appears directly applicable,38 and does not
seem to lead to any computational problems.39

The closest approximation to an ‘ontological’ definition defines the abnormal
part of a model as the set of abnormal interpretations (the non-singleton sets
in the domain of the interpretation function). This definition clearly does not
coincide with any of the ontological definitions from previous sections. Although
the definition is clear in itself, it is affected by the problems from Sections 8.1
and 8.2, and moreover requires that one combines it, in an ad hoc manner, with
the AD-Restriction.40
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