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LINGUISTIC AND ONTOLOGICAL MEASURES FOR COMPARING
THE INCONSISTENT PARTS OF MODELS∗

DIDERIK BATENS

Abstract
Adaptive logics depend essentially on measures for the degree of
abnormality of models. The linguistic approach to such measures
compares the sets of abnormal, e.g., inconsistent wffs verified by
the models. The ontological approach compares models in terms of
‘structural’ properties that do not depend on the way in which the
language is interpreted in the model.

While the linguistic approach has not been questioned up to now,
present proposals for an ontological approach are affected by several
weaknesses. The present paper argues for the attractiveness of an
ontological approach and elaborates on the challenge to adequately
define it. The final outcome is rather negative: the only sensible
definition attained leads to a logic that does not seem to have any
suitable application contexts.

1. Aim of This Paper

Several types of logics require that abnormalities of some sort are minimized.
In inconsistency-adaptive logics, the feature appears in its purest form: the
abnormalities to be minimized are inconsistencies.

From a semantic point of view, inconsistencies are minimized by selecting
the models that interpret the premises as consistently as possible. There are
several strategies to realize this effect —see Section 2. The most natural one
(from a semantic point of view) is the minimal abnormality strategy.

∗The research for this paper was financed by the Fund for Scientific Research – Flanders,
and by the Flemish Minister responsible for Science and Technology (contract BIL98/37). I
am indebted to Graham Priest for electronic as well as oral discussions on the topic of this
paper and for his comments on a former draft. Several ideas of his are used in this paper,
usually in slightly transformed form. Where I am certain that he still adheres to them, I
explicitly credit him for them. I am indebted to Marek Nasieniewski and especially to Liza
Verhoeven for comments on a former draft.
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6 DIDERIK BATENS

There are two kinds of approaches to the minimal abnormality strategy.
The first, originated by me (in [3] and [2] for the propositional case, and
in [5] for the full logics) will be called the linguistic approach. It selects
models of the premises by comparing the abnormalities they verify. The
second approach, originated by Graham Priest in [25], will be called the
ontological approach. It compares models of the premises with respect to
‘the inconsistencies of the model’, say of its structure (see Section 4). Unlike
what is the case for the linguistic definition, present ontological definitions
are affected by several problems.

From the fact that I originated the linguistic approach, one should not con-
clude that I favour it. I consider both approaches as sensible in principle,
and think it is essential to elaborate both and to delineate their respective
domains of application. Apart from a brief comparison between both ap-
proaches, to make the underlying ideas and effects more perspicuous, the
present paper mainly aims at defining a sensible ontological definition of
minimal abnormality.

The (perhaps provisional) conclusion of the present paper will be that an
ontological definition is either not sensible, or lacks appropriate application
contexts. Nevertheless, it seems most instructive to clearly state the problem,
to offer a scrutinized description of the reasons for the present failure, and to
list the problems as well as attempted solutions on our way to the provisional
conclusion. All this will certainly be useful to find an adequate ontological
definition, if there is one, or to show that the ontological approach is not
sensible, if it is not. The insights gained support the latter conclusion.

The interest of the problems discussed in this paper is not restricted to
minimally abnormal models. Those problems are related to the nature and
scope of semantic systems. The underlying issue is this: is a semantics
merely a device to interpret a given language, or is it possible to distinguish
between an ontological and a linguistic component of a semantics.

2. Adaptive Logics

Inconsistency-adaptive logics —see [9] for a survey— interpret a set of
premises ‘as consistently as possible’, and hence define a consequence set
that is (except for a border case) much richer than paraconsistent logics. If
the premises are consistent, all now existing inconsistency-adaptive logics1

deliver the same consequence set as Classical Logic —henceforth CL.

1 I shall show in Section 6.1 that this fails for the original formulation of LP
m . However,

Graham Priest changed the system in view of this.
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MEASURES FOR COMPARING THE INCONSISTENT PARTS OF MODELS 7

Semantically, they do so by selecting a set of paraconsistent models of
the premises (see [2] and [5]). Inconsistency-adaptive logics also have a
dynamic proof theory —see [1], [3] (the oldest paper), and [5]— and this is
their most striking and innovative feature. As the present paper deals with
a problem that exclusively concerns the selection of the models, the proof
theory will not be discussed.

The intended domains of application of inconsistency-adaptive logics are,
first and foremost, scientific theories and scientific knowledge systems that
were intended as consistent but turned out inconsistent. Other applications
concern possibly inconsistent databases and possibly inconsistent everyday
knowledge. The aim of the logics is not to resolve the inconsistencies. The
replacement of inconsistent theories (etc.) by consistent alternatives is not
a task for logic alone, but should depend on non-logical preferences (deter-
mined by the reliability of data, by methodological considerations, and so
on) —see already [28, p. 37]. The adaptive logics considered in the present
paper rely solely on logical considerations. They enable one to analyse the
theory or database in its present state, to act on it (if we must), and to devise
experiments and other ways to gain new relevant information.2

The strength of inconsistency-adaptive logics is also illustrated by the fact
that all flat Rescher–Manor consequence relations (Free, Strong, Argued, C-
Based, and Weak consequences —see [16]) were shown (in [11]) to be char-
acterized by an inconsistency-adaptive logic. Similar results are forthcoming
about prioritized such consequence relations (as described in [17]). It also
was shown (in [4] and [20]) that several popular ‘non-monotonic logics’ are
characterized by an adaptive logic combined with (non-logical) preferences.

Inconsistency-adaptive logics and other corrective adaptive logics3 deliver
consequence sets that are subsets of the CL-consequence set if the latter is
trivial. Ampliative adaptive logics (compatibility, abduction, . . . ) deliver
consequence sets that are supersets of the CL-consequence set, but still are
not trivial (and are determined by some normality suppositions) —see [12]
and forthcoming papers. In the present paper, I concentrate on inconsistency-
adaptive logics. However, the problem discussed here arises just as well with
respect to those other adaptive logics.

2 So, the aim of adaptive logics is drastically different from the non-monotonic systems
discussed, for example, in [21].

3 Other corrective adaptive logics interpret premises as normally as possible with respect
to logical abnormalities that are not inconsistencies —for example, gaps with respect to nega-
tion (negation-incompleteness), gluts with respect to conjunction (A ∧ B true while some
conjunct is false), etc., including combinations (see, e.g., [6]). Some corrective adaptive log-
ics interpret premises as normally as possible with respect to ambiguities in the non-logical
constants (see [29], [30] and [10]).
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8 DIDERIK BATENS

The phrase “as consistently as possible” is not unambiguous, and this leads
to a multiplicity of inconsistency-adaptive logics. An inconsistency-adaptive
logic is characterized by (i) a lower limit logic, (ii) an upper limit logic, and
(iii) a strategy —see [9] for further possible variation. The upper limit logic
is usually (and in this paper is always) CL. The lower limit logic is some
paraconsistent logic. My preferred system for this purpose is CLuN —see,
e.g., [5]— Graham Priest’s preferred system is his LP —see, e.g., [24]—
others still prefer other systems (Joke Meheus prefers her AN from [22]).
Let us use LLL as a variable name for the lower limit logic, and AL as
a variable name for the adaptive logic obtained from LLL by the chosen
strategy.

As I remarked before, the strategy determines which LLL-models of Γ
are AL-models of Γ. A peculiarity has to be pointed out from the outset.
“M is a CL-model” and “M is a LLL-model” are meaningful phrases —the
CL-models of Γ being the CL-models that verify Γ, and similarly for the
LLL-models. But “M is an AL-model” is not a meaningful phrase, whereas
“M is an AL-model of Γ” is. Indeed, the AL-models of Γ are the LLL-
models of Γ that are selected by the strategy in view of properties of all
LLL-models of Γ.

For inconsistency-adaptive logics, the models are selected on the basis of
their ‘degree of inconsistency’, or their ‘inconsistent part’. Let me clarify
this by briefly discussing some strategies. For any LLL-model M , we de-
fine the abnormal part of M , Ab(M) —specific definitions are considered
below. The minimal abnormality strategy refers, as expected, to minimally
abnormal models of Γ, viz. LLL-models M of Γ for which it holds that

no LLL-model M ′ of Γ is such that Ab(M ′) ⊂ Ab(M)

Where AL is defined from LLL by the minimal abnormality strategy, Γ |=AL

A iff A is verified by all minimally abnormal LLL-models of Γ.
In other strategies Ab(M) plays an equally central role. The subsequent

paragraphs of the present section illustrate this, and may be skipped (as the
rest of the paper concentrates on the minimal abnormality strategy).

The other strategies require some preparatory steps. For example, for the
reliability strategy we proceed as follows. Let ∃A abbreviate A preceded
by (in some preferred order) an existential quantifier over each variable free
in A. Where ∆ = {A1, . . . , An}, let Dab(∆) and Dab{A1, . . . , An} ab-
breviate ∃(A1 ∧ ∼A1) ∨ . . . ∨ ∃(An ∧ ∼An). We call Dab(∆) a minimal-
Dab-consequence of Γ iff Γ |=LLL Dab(∆) and, for all Θ ⊂ ∆, Γ 6|=LLL

Dab(Θ). U(Γ), the set of formulas that are unreliable with respect to Γ, is
defined as the set of A such that A ∈ ∆ for some minimal Dab-consequence
Dab(∆) of Γ. Finally, where AL is defined from LLL by the reliability
strategy, Γ |=AL A iff A is verified by all LLL-models M of Γ for which
Ab(M) ⊂ U(Γ).
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MEASURES FOR COMPARING THE INCONSISTENT PARTS OF MODELS 9

The simple strategy is only well-defined for some specific lower limit log-
ics, for example AN from [22]. Where AL is defined from LLL by the
simple strategy, Γ |=AL A iff A is verified by all LLL-models M of Γ for
which Ab(M) = {B | Γ |=LLL ∃(B ∧ ∼B)}.

From now on, I shall only deal with the minimal abnormality strategy.

3. The Problem

In [2], which only dealt with the propositional case, the abnormal part of a
model was defined by

Ab(M) =df {A | vM (A ∧ ∼A) = 1}

In [5], this is generalized to the predicative case:
Ab(M) =df {A | vM (∃(A ∧ ∼A) = 1}.

This definition is ‘linguistic’ in that it does not refer to properties of ‘the
model itself’, but only to wffs verified by the model. Models that are ele-
mentary equivalent (verify the same wffs) have identical inconsistent parts.

Meanwhile, Graham Priest had generalized the first definition differently
to the predicative case (in [25]). He defines the abnormal part of a model
in terms of properties of ‘the model itself’, hence in an ‘ontological’ way.
A simple way to explain the matter is as follows. Let the pseudo-language
L↑ be obtained by replacing the set of constants in L by a set of pseudo-
constants, viz. one for each member of D —I shall use the members of D as
names for themselves. The inconsistent part of M is then defined by:4

Ab
o(M) =df {A | vM (A ∧ ∼A) = 1; A is a primitive wff of L↑}

The important difference with the linguistic definition is that A is a wff of
L↑. Unlike L, L↑ enables one to fully describe the model. Whence I call the
definition ontological.

In [25], Priest moreover introduces the Domain Restriction to the defini-
tion of minimal abnormal models:

A model M of Γ is minimally abnormal iff no model M ′ of Γ that
has the same domain as M is such that Ab

o(M ′) ⊂ Ab
o(M).

The effect of the Domain Restriction may be illustrated by the following
example.

4 The superscript in Ab
o(M) refers to “ontological”. The reference to primitive wffs in

the definition depends merely on properties of Priest’s lower limit logic. The same restriction
is required if the linguistic definition is applied to that or a similar logic —see below.
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10 DIDERIK BATENS

Example 3.1. Premise: (∀x)(Px∧∼Px). For any model M of this formula,
{Pa | a ∈ D} ⊆ Ab

o(M). So, where the domain of M is not a singleton,
there is a model M ′ with a singleton domain {a} such that Ab

o(M ′) ⊂
Ab

o(M). Hence, if the Domain Restriction were not imposed, all minimally
abnormal models of the premise would have a singleton domain and hence

(∃x)(∀y)y = x

would be a consequence of the premise.

Both definitions lead to very different results, as I shall illustrate in Section
5. Moreover, the above ontological definition is inadequate, as we shall see
in Section 6. But this does not entail that no sound ontological definition is
possible. Moreover, there are at least two good reasons to look for one.

There clearly is a coherent notion behind the idea of an ontological mea-
sure. There is a clear sense in which a model itself (that is, its ‘structure’)
may be inconsistent. Even if two models are elementary equivalent, they
may in themselves have a different degree of inconsistency. So, a sound
ontological definition seems at least possible.

The second reason is philosophically deeper. In view of present-day his-
torical insights, we should be aware of the fact that our knowledge may be,
and presumably forever will be, quite remote from the real structure of the
world. This often forces one to reason about the world in ways that are partly
independent of our present knowledge (and present languages). We not only
do so, at least since Kant, in epistemological contexts. In a sense, this form
of reasoning is present in many creative processes in the sciences. The idea
of measuring the inconsistent part of a model in an ontological way —that
is, from structural properties of the model rather than from properties of the
set of wffs verified by the model— seems attractive from that point of view.

Let me put the matter in slightly different terms. Suppose that some of our
theories is inconsistent, and that we are interested in interpreting it as con-
sistently as possible. The linguistic approach will at best offer a minimally
inconsistent interpretation of the theory within the bounds of our present con-
ceptual system. If a sensible ontological definition may be found, it might
transcend such bounds.

In the present paper, I discuss several proposals for an ontological defini-
tion. To avoid complications, I shall concentrate on the minimal abnormality
strategy and moreover on lower limit logics in which all inconsistencies are
reduced to the inconsistent behaviour of primitive formulas. The effect of
the latter restriction is that the abnormal part of a model will be measured in
terms of primitive formulas.5 These logics will be CLuNs and (its fragment)

5 See, however, Section 8.4 for open problems concerning the ontological definition for
logics that isolate inconsistencies.
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MEASURES FOR COMPARING THE INCONSISTENT PARTS OF MODELS 11

LP . In order to avoid confusion that might arise from reasoning in terms of
the pseudo-language, I characterize (in Section 4) those logics in terms of
a model-theoretic type of semantics: the inconsistencies in the models are
measured without referring to the way in which the language L is connected
to the ‘structure’ that underlies the model.

4. A Semantics for CLuNs and LP

A model6 will consist of two clearly separated elements: a structure that
does not contain any references to L, and an interpretation that connects L
to the structure.

A structure is a couple. Its first element, D, is a non-empty set. Its second
element, {Ri, i ∈ I}, is a set of paraconsistent ‘relations’ on D, where I is a
set of indices. For each i ∈ I , Ri has a certain adicity: 0, 1, 2, . . .. A relation
of adicity 0 corresponds to a ‘fact’; it may serve as the interpretation of a
sentential letter. A ‘relation’ of adicity n > 0 may serve as the interpretation
of a predicate of adicity n.

A paraconsistent ‘relation’ Ri on D is a couple 〈E, A〉, where (i) if the
adicity of Ri is 0, E, A ∈ {0, 1} with the restriction that 1 ∈ {E, A}, (ii)
if the adicity of Ri is 1, E, A ∈ ℘(D) (where ℘(D) is the power set of D),
with the restriction that E ∪ A = D, (iii) if the adicity of Ri is n > 1,
E, A ∈ ℘(Dn) (where Dn is the n-the cartesian product of D), with the
restriction that E ∪ A = Dn. Intuitively, E and A are the extension and the
anti-extension of the sentential letter or predicate corresponding to Ri. These
may overlap —thus causing inconsistency— and need to be exhaustive —
thus avoiding negation-incompleteness.

We stipulate that R0 = 〈E, A〉 is a relation of adicity 2 such that (i)
E = {〈a, a〉 | a ∈ D}, and (ii) 〈a, b〉 ∈ A whenever a and b are differ-
ent elements of D.7 R0 will serve as the interpretation of identity. The
requirement assures that α = β is true in a model whenever α and β have
the same interpretation in it.8

A structure of this type is appropriate for a first order language, L, with a
set of sentential letters and predicates πj , j ∈ J iff, for any j ∈ J there is an

6 This part of the paper is inspired by a note by Graham Priest (electronic discussion).

7 It is not excluded that 〈a, a〉 ∈ A for some a ∈ D. Precisely this will cause inconsistent
identities, for example a = b ∧ ∼a = b.

8 The stipulation is asymmetric in that all inconsistencies with respect to identity are
caused by the anti-extension of identity. This may be eliminated if one slightly changes the
clause for v+

M (πiα1 . . . αn) = 1 and v−

M (πiα1 . . . αn) = 1 below.
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12 DIDERIK BATENS

i ∈ I such that the adicity of πj is the same as that of Ri. An interpretation
or assignment v of this language with respect to the structure, is such that
v(πj) = Ri, where Ri is a relation that has the same adicity as πj , and
v(α) ∈ D for all individual constants α.9

Where the interpretation of some schematic letter is a couple, it is handier
to consider it as composed of two functions, v+ and v−, such that v(. . .) =
〈v+(. . .), v−(. . .)〉. Similarly, the valuation vM determined by the model
M will be considered as composed of the functions, v+

M and v−M , such that
vM (. . .) = 〈v+

M (. . .), v−M (. . .)〉. To extend the interpretation to a valuation
determined by the model M , we first stipulate, as expected:

• if the adicity of πj is 0, then vM (πj) = v(πj)
• if the adicity of πi is n > 0, then v+

M (πiα1 . . . αn) = 1 iff 〈v(α1) . . .

v(αn)〉 ∈ v+(πi)
• if the adicity of πi is n > 0, then v−M (πiα1 . . . αn) = 1 iff 〈v(α1) . . .

v(αn)〉 ∈ v−(πi)

As v(=) = R0, the above handles identity in the suitable (paraconsistent)
way. Extending the interpretation to the propositional connectives is straight-
forward:

• v+

M (∼A) = v−M (A)

• v−M (∼A) = v+

M (A)

• v+

M (A ∧ B) = min(v+

M (A), v+

M (B))

• v−M (A ∧ B) = max (v−M (A), v−M (B))

• v+

M (A ∨ B) = max (v+

M (A), v+

M (B))

• v−M (A ∨ B) = min(v−M (A), v−M (B))

• v+

M (A ⊃ B) = max (1 − v+

M (A), v+

M (B))

• v−M (A ⊃ B) = min(v+

M (A), v−M (B))

There seems no reason not to introduce the sentential constant ⊥, defined
syntactically by ⊥ ⊃ A. Its semantic definition is:

• v+

M (⊥) = 0

• v−M (⊥) = 1

This allows us to explicitly define classical negation, henceforth written as
¬, as follows:

¬A =df A ⊃ ⊥

9 In other words, the structure is sufficiently rich to accommodate L, but it may be much
richer than L and several predicates from L may receive the same interpretation. Any other
decision would undermine the ontological character of the ontological definition of a mini-
mally abnormal model.
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MEASURES FOR COMPARING THE INCONSISTENT PARTS OF MODELS 13

We leave it for the reader to check that, on this definition,10

• v+

M (¬A) = 1 − v+

M (A)

• v−M (¬A) = v+

M (A)

Quantified formulas may be handled in terms of variant interpretations
vMa

o
as defined in Chapter 9 of [18]:
• v+

M ((∀α)A) = min(v
M

β
o

+(Aαβ))

• v−M ((∀α)A) = max (v
M

β
o

−(Aαβ))

• v+

M ((∃α)A) = max (v+

M
β
o

(Aαβ))

• v−M ((∃α)A) = min(v−
M

β
o

(Aαβ))

This completes the semantics of CLuNs . The semantics of LP is obtained
by removing the clauses for material implication and defining it by

A ⊃ B =df ∼A ∨ B

As a result, material implication is not detachable in LP , and ¬ cannot be
defined in it.11

The linguistic definition for the abnormal part of a model reads:
Ab(M)

=df {A | vM (∃(A ∧ ∼A)) = 1; A is a primitive formula of L}.
in which “formula” should be read as: open or closed formula.
The aim of the above construction obviously was to clearly spell out the

ontological definition. For any relation Ri = 〈E, A〉, i ∈ I , the inconsistent
part of Ri is Xi = E ∩ A. As we have to compare models, I write XM

i
to refer to the sets Xi as determined by the model M . In agreement with
Section 3,12 the abnormal part of model M is defined in terms of properties
of its structure as follows:

Ab
o(M) =df {〈XM

i , i〉 | i ∈ I}

Two models M and M ′ will be said to be of the same type iff they share
D and, for all i ∈ I , the adicity of Ri is the same in both models. Let
Ab

o(M) < Ab
o(M ′) denote that, for some i ∈ I , XM

i ⊂ XM ′

i , whereas,
for all i ∈ I , XM

i ⊆ XM ′

i . A model M of a set Γ will be said to be a
minimally abnormal model of Γ iff no model M ′ of Γ is such that M ′ is of

10 Remark that vM (¬A) = 〈0, 1〉 if vM (A) = 〈1, 0〉 or vM (A) = 〈1, 1〉, whereas
vM (¬A) = 〈1, 0〉 if vM (A) = 〈0, 1〉.

11 The above definition of ¬ makes the latter identical to ∼ in LP .

12 In one respect, the following definition diverges from the one in Section 3 —see Sub-
section 6.5 for the justification of this.
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14 DIDERIK BATENS

the same type as M , and Ab
o(M ′) < Ab

o(M). As desired, this definition
of “minimally abnormal model of Γ” refers to the structure only, not to the
interpretation.13 Remark that the Domain Restriction was replaced by (what
I shall call) the Same Type Restriction.

Where v(P ) = Ri, I shall often write XM
P instead of XM

i .

5. Comparing the two Definitions

Let us consider some examples that illustrate the difference between both
definitions.
Example 5.1. Premise: Pa ∧ ∼Pa. The ontological approach selects the
models in which XM

P is a singleton. The linguistic approach selects the
models that verify only inconsistencies, ∃(A ∧ ∼A), that are verified by all
paraconsistent models of the premise —that is, Pa ∧ ∼Pa and all formulas
of the form (∃α)(Pα ∧ ∼Pα).

So, according to the linguistic definition
(Pb ∧ ∼Pb) ⊃ ⊥

and, equivalently,
¬(Pb ∧ ∼Pb)

are consequences of the premise.14

The ontological definition does not lead to the above consequences. As it
selects models in which XM

P is a singleton, it results in the consequence

(∀x)((Px ∧ ∼Px) ⊃ x = a)

The linguistic approach does not care whether XM
P is a singleton, provided

a is the only individual constant that is interpreted by a member of this set.
Example 5.2. Premises: Pa ∧ ∼Pa, Qa. On both approaches, these have
the consequence

(Pb ∧ ∼Pb) ⊃ Qb

However, the reasons for this are rather different. On the ontological ap-
proach, XM

P is a singleton. Hence, if v(b) ∈ XM
P , then v(a) = v(b), and

13 However, the weight to be attached to this statement depends on a presupposition about
the structure of the world. As is show in the Appendix, the logic LP is not only characterized
by the semantics listed above in the text, but also by a semantics compounded from consistent
structures and ambiguous interpretations.

14 Given the way in which material implication is defined in LP , (Pb ∧ ∼Pb) ⊃ ⊥ is an
LP -theorem, viz. LP -equivalent to ∼(Pb∧∼Pb)∨⊥, to ∼(Pb∧∼Pb) and to ∼Pb∨Pb.
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MEASURES FOR COMPARING THE INCONSISTENT PARTS OF MODELS 15

hence Qb. On the linguistic approach, all minimally abnormal models of the
premises verify ¬(Pb ∧ ∼Pb), and hence (Pb ∧ ∼Pb) ⊃ Qb.15

Example 5.3. Premises: Pa ∧ ∼Pa, Pb ∧ ∼Pb. These have models in
which a and b denote the same element of D, say a, and models in which
they denote different elements, say a and b. On the ontological definition, all
minimally abnormal models of the premises are amongst the former, and no
model of the second sort is minimally abnormal. Hence, on the ontological
definition,

a = b

is a consequence of the premises. On the linguistic definition, the minimally
abnormal models have {Pa, Pb} as their abnormal part, irrespective of the
interpretation of a and b. So, a = b is not a consequence of the premises
(but, for example ¬(Pc ∧ ∼Pc) is).
Example 5.4. Premises: Pa∧∼Pa, Pb∧∼Pb, ∼a = b. On the ontological
definition, there are minimally inconsistent models of the premises in which
v(a) and v(b) are different, and others in which they are identical, and hence
〈v(a), v(b)〉 ∈ X=. In the former models, XP contains two elements, in the
latter, both XP and X= contain one element. On the linguistic definition,
the models of the second kind are not minimally inconsistent. Indeed, they
have at least {Pa, Pb, a = b} as their abnormal part, whereas the minimal
inconsistent models of the first kind have {Pa, Pb} as their abnormal part.
Example 5.5. Premises: Pa ∧∼Pa, Pb ∧∼Pb, ∼a = b, a = b ∨Qc. The
difference that surfaced in the previous example shows more clearly here.
Only on the linguistic definition, Qc is a consequence of the premises.
Example 5.6. Premises: Pa ∧ ∼Pa, Pb ∧ ∼Pb, Ra, ∼Rb. From these
premises,

a = b

is not derivable on either definition. Even on the ontological definition, there
are minimally abnormal models that identify v(a) and v(b) —in these, XP

and XR are singletons— and others that don’t —in these, XP contains two
elements of the domain whereas XR is empty.

The differences remain if, in the above examples, the premises are added
in conjunction and existential generalization is applied for all constants. Let
us apply this to Example 5.5.

15 The example is not very illustrative for LP because (Pb ∧ ∼Pb) ⊃ Qb is an LP -
theorem.
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16 DIDERIK BATENS

Example 5.7. Premise: (∃x)(∃y)(∃z)((Px∧∼Px)∧(Py∧∼Py)∧∼x = y
∧(x = y∨Qz)). By precisely the same reasoning as in the previous example,
(∃x)Qx is derivable on the linguistic definition but not on the ontological
one.

6. Problems with the Original Ontological Definition

Up to now, no objections were raised against the linguistic definition, where-
as there are some serious problems with the above ontological definition. As
there are nevertheless very good reasons to search for a sound ontological
definition, I list the problems as systematically as possible. This will facili-
tate the discussion of attempted emendations of the definition.

6.1. Failure of the Classical Recapture

The least one might expect from a logic that pretends to interpret a set of
premises as consistently as possible, is that it interprets consistent premises
as consistent. For all logics considered in this paper, this is fulfilled iff the
adaptive consequences of a consistent set of premises are its CL-consequen-
ces. In [3], it is proved that this obtains for (what is now called) the proposi-
tional fragment of ACLuN1 . In [5], the proof is extended to the inconsisten-
cy-adaptive logics, ACLuN1 and ACLuN2 , defined from the lower limit
logic CLuN . In a forthcoming paper, the same is proved for two inconsisten-
cy-adaptive logics defined from the lower limit logic CLuNs , and for two
inconsistency-adaptive logics defined from the lower limit logic LP . In [25],
the same is stated (without proof) for LPm , viz. as FACT 3. However, this
statement is mistaken, as I now show.
Example 6.1. Premise: (∃x)(∃y)∼x = y. This consistent premise has mod-
els with a singleton domain, say {a}. Where M is such a model, M is
necessarily inconsistent in that 〈a, a〉 ∈ XM

0 . Moreover, if XM
0 = {〈a, a〉}

and XM
i = ∅ whenever i 6= 0, then M is minimally inconsistent in view

of the Same Type requirement (the premise has no consistent models of the
same type). So, the definition fails to select the CL-models of the premise.
Such examples are easily multiplied as appears from the next one.
Example 6.2. Let Γ contain all formulas (where n ∈ {2, 3, . . .})

(∀x)(Px ∧ ∼Px) ∨ (∃x1)(∃x2) . . . (∃xn)(∼x1 = x2 ∧ . . . ∧ ∼x1 = xn

∧∼x2 = x3 ∧ . . . ∧ ∼x2 = xn ∧ . . . ∧ ∼xn−1 = xn)

Γ is a consistent set of premises. Nevertheless, Γ has infinitely many finite
models all of which are minimally abnormal and verify (∀x)(Px ∧ ∼Px).
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Example 6.3. Premise: (∃x)(∀y)x = y ∨ (∃x)(Px ∧ ∼Px). All its CL-
models have a singleton domain. The premise has LP -models with larger
domains, and all of these are inconsistent. According to the ontological
definition, there are minimally abnormal models of the premise among the
latter, viz. all those in which XP is a singleton. So, in view of the Same Type
Restriction, some LPm -models of the wff are not CL-models. This example
illustrates that Priest’s definition sometimes fails to eliminate inconsistent
models that have a larger domain than the consistent models of the premises.
Example 6.4. Premises: (∃x)Px, (∃x)∼Px.16 All singleton models of the
premises are inconsistent (in that the only object both has and has not prop-
erty P ) and some of them are minimally abnormal (viz. those in which this
is the only inconsistency). Hence, even in the absence of identity, LPm does
not select the right models for consistent premises.

The failure of the Classical Recapture obviously results from the Same
Type Restriction (the Domain Restriction), and there is no doubt that it has
to go. Incidentally, the Same Type Restriction has other unwanted conse-
quences as well. One of them is that the premises (∀x)(x = a∨x = b∨x =
c), Pa ∧ ∼Pa, Pb ∧ ∼Pb, a = b ∨ (∀x)(Qx ∧ ∼Qx) fail to lead to the
sound conclusion a = b. Indeed, some models of the premises have a three
element domain, and the least inconsistent ones among these falsify a = b.

Although I have now shown that the original ontological definition is inad-
equate, it is worth pointing out some further independent difficulties. These
will be helpful for finding a better ontological definition, if there is one.

6.2. Failure of Strong Reassurance

Strong Reassurance holds for an adaptive logic AL iff, for all sets of for-
mulas Γ, if a LLL-model M of Γ is not an AL-model of Γ, then some AL-
model M ′ of Γ is such that Ab

o(M ′) < Ab
o(M) —Ab(M ′) ⊂ Ab(M)

for the linguistic definition.17 Strong Reassurance is intuitive appealing: if a
LLL-model M of Γ is ‘defeated’, then it should be defeated by a model of
Γ that is itself non-defeated (that is minimally abnormal).18

16 Graham Priest produced this nice example (personal correspondence) after I send him
the previous ones.

17 See the next to last paragraph of Section 4 for the definition of “<”.

18 Strong Reassurance is obviously closely related to the Smoothness Condition as de-
fined, for example, in Definition 3.12 of [21].
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18 DIDERIK BATENS

If Strong Reassurance fails, some non-selected models are not selected
because they belong to an infinite sequence(s) no member of which is mini-
mally abnormal. In other words, every model in the sequence is defeated by
a less abnormal one, but no model of the sequence is minimally abnormal.

It is shown in [7] that the linguistic measure warrants Strong Reassurance,
but that Strong Reassurance fails for Priest’s LPm . The example in that
paper is the following.
Example 6.5. Let Γ contain the formulas (where n ∈ {2, 3, . . .})
(∃x1)(∃x2) . . . (∃xn)((Px1 ∧ ∼Px1) ∧ . . . ∧ (Pxn ∧ ∼Pxn) ∧ ∼x1 = x2

∧ . . . ∧ ∼x1 = xn ∧ ∼x2 = x3 ∧ . . . ∧ ∼x2 = xn ∧ . . . ∧ ∼xn−1 = xn)

Γ has very simple minimally abnormal models; for example the one in which
D = {a, b} = v+(P ), v−(P ) = a, and 〈a, a〉 ∈ v−(=). However, as was
proved in [7], for some (actually, infinitely many) LP -models M of this Γ,
no LPm -model M ′ of Γ is such that Ab

o(M ′) < Ab
o(M), and hence Strong

Reassurance fails for LPm .
This example illustrates the price to pay for the absence of Strong Reas-

surance. Γ has two kinds of LP -models: those in which (∃x)∼x = x is true
and those in which it is false. All models of the second kind have an infinite
domain, at least a denumerable subset of the domain consists of elements
that both have and have not property P . No model of the second kind is
minimally abnormal. Some models of the first kind are minimally abnormal,
viz. those in which exactly one object is different from itself and both has
and has not property P . So, the transition from LP to LPm simply wipes
out all models of the second kind.

This example moreover shows that the LPm -consequence relation is coun-
terintuitive: both

(∃x)(x = x ∧ ∼x = x)

and
(∃x)(∀y)(∼(Py ∧ ∼Py) ∨ y = x)

are LPm -consequences of Γ. Γ states that infinitely many different objects
both have and have not property P .19 According to LPm , it follows from
this that some object is different from itself and that precisely one object
both has and has not property P .20

19 Γ states so on its ‘normal’ reading. It also states so on Priest’s reading, even in view of
the models.

20 The conclusion should be qualified: the second formula is a theorem of LP .
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6.3. Not Constant with Respect to Isomorphic Models

On the ontological definition, Ab
o(M) is not constant with respect to iso-

morphic models, and hence some models are defeated by isomorphic mod-
els. In this sense, the original ontological definition of “inconsistent part of
a model” is incoherent. The following is shown in [7]. Let M be a LP -
model of the premise from Example 6.5 in which XM

P as well as D − XM
P

are infinite. By simply moving objects from one set to the other, one obtains
isomorphic models that are more inconsistent than M , less inconsistent than
M , or incommensurable with M .

6.4. Failure of Reassurance

Reassurance obtains for an adaptive logic AL iff any set Γ that has LLL-
models also has AL-models —see [25]. The import of Reassurance is enor-
mous. Where it is absent, the adaptive move involves the transition from
a non-trivial LLL-consequence set to a trivial AL-consequence set, which
would render the move inappropriate (if not nonsensical).

Reassurance is proven for LPm in [25]. However, it is not difficult to see
that it fails for CLuNs , and would fail for LP if this system would contain
a boolean negation. Here is an example:
Example 6.6. Let Γ contain the formulas (where n ∈ {2, 3, . . .}),
(∃x1)(∃x2) . . . (∃xn)((Px1 ∧ ∼Px1) ∧ . . . ∧ (Pxn ∧ ∼Pxn) ∧ ¬x1 = x2

∧ . . . ∧ ¬x1 = xn ∧ ¬x2 = x3 ∧ . . . ∧ ¬x2 = xn ∧ . . . ∧ ¬xn−1 = xn)

This set has plenty of LP -models (supposing that LP is extended with “¬”),
but has no models in which XP is finite, and hence has no minimally incon-
sistent models. The same result is obviously obtained by adding ¬(∃x)∼x =
x to the premises of Example 6.5.

The conclusion is that LPm is saved from drowning by lack of water. I do
not mean the absence of classical negation (which Priest seems to consider
as nonsensical). I mean that LPm is only defined with respect to a fragment
of Priest’s ‘true logic’ —he believes that there is such an animal. Priest
recognizes the need for a detachable (but not truth-functional) implication as
well as for bottom —see for example [26]. So, Example 6 is all right for him
if expressions of the form ¬xi = xj are replaced by xi = xj → ⊥, in which
the implication is detachable.21 Even with this replacement, the premises
have only models that either have an infinite domain or are trivial. As none

21 Boolean negation, ¬A, cannot be defined by A → ⊥, for example because A ∨ (A →
⊥) is not a theorem if the implication is relevant or modal. However, A, A → ⊥ |= ⊥
obviously holds.
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20 DIDERIK BATENS

of the former is minimally abnormal, all minimally abnormal models of the
premises are trivial.22 So Reassurance fails if the ontological definition is
extended to Priest’s full logic: the above set (with the replacement) has non-
trivial LP -models but no non-trivial LPm -models.23 Moreover, the example
shows that Reassurance even fails if the Same Type Restriction is dropped.

6.5. Failure to Identify Inconsistent Predicates

In Section 4, I did not exclude that two different predicates of a first order
language L have the same interpretation in a structure that is appropriate
for L (and I justified the choice in a footnote). Priest’s original ontological
definition in [25] follows a different path. Phrased in terms of the semantics
in Section 4, he requires that different predicates are mapped on different
relations. So, each of the following sound inferences fails for the original
definition.
Example 6.7. Premises: Pa ∧ ∼Pa, Qa ∧ ∼Qa. On the ontological defini-
tion, the only minimally abnormal models of these premises verify v(P ) =
v(Q), whence

(∀x)(Px ≡ Qx)

is a consequence of the premises. As this reduces to a rather weak claim in
LPm , due to the lack of a detachable implication, let me present a stronger
example.
Example 6.8. Premises: Pa ∧ ∼Pa, Qb ∧ ∼Qb, Ra. On the ontological
definition, the only minimally abnormal models of these premises still verify
v(P ) = v(Q), whence

a = b

and hence
Rb

are consequences of the premises.

Such inferences may seem paradoxical. However, as soon as one grasps
the idea behind the inconsistent models, their paradoxical flavour disappears.
Just as the inconsistency of the structure is minimized by identifying v(a)
and v(b) in Example 5.3, the inconsistency of the structure is minimized
by identifying the interpretations of inconsistent predicates. It would be se-
verely incoherent to allow for the one and not allow for the other. If the

22 Priest stresses that his semantics comprises the trivial model.

23 Incidentally, the Collapsing Lemma cannot be proved in the presence of a detachable
implication and of bottom.
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degree of inconsistency of a structure is independent of the names mapped
to objects of the structure, then there can be no reason to make it dependent
on the names mapped to the relations of the structure.

As this point is rather central in the sequel, let me briefly expand on it.
Nothing prevents that the same element of the domain is named by different
names. Similarly, nothing prevents that the same relation on the domain is
named by different names. If two individual constants, a and b, name the
same element of the domain, we have a standard logical operator to express
this: identity. We have no standard logical operator to express that two predi-
cates, P and Q, name the same relation. Of course, we can write (supposing
that the adicity of the predicates is 1) (∀x)(Px ≡ Qx) ∧ (∀x)(∼Px ≡
∼Qx). This warrants that v(P ) = v(Q), which means that P and Q are
interpreted by the same relation.24

Let us return for a moment to Examples 5.3 and 5.6. In the latter example,
some minimally abnormal models did not identify v(a) and v(b) because of
the supplementary information provided about a and b, viz. Ra and ∼Rb.
It is obviously be possible to obtain the same effect in Examples 6.7 and
6.8 by providing supplementary information on P and Q (or on a and b in
Example 6.8). In both examples, there are minimally abnormal models (on
the ontological definition) in which v(P ) is different from v(Q) if one adds
to the premises, for example, Pc ∧ ∼Pc and ¬(Qc ∧ ∼Qc). Alternatively,
one may add Pc, Qd, and ∼a = c in Example 6.7, and Sac and ∼Sbc in
Example 6.8.25

6.6. Failure to Identify Inconsistent Sentential Letters

The weakness mentioned in Section 6.5 obviously extends to sentential let-
ters. Indeed, there are at most three relations of adicity 0 in the structure,
viz. 〈1, 0〉, 〈0, 1〉 and 〈1, 1〉. Hence, the inconsistent part of a model should

24 The argument presupposes the standard extensional view. However, precisely this view
underlies Priest’s original semantics as well as the semantics from Section 4. Nearly everyone
agrees today that P and Q may have a different meaning even if their extensions are identical.
But a and b may just as well have a different meaning, even if they denote the same element
of the domain. Typically, both sorts of non-extensional differences may be explicated by a
worlds semantics, in which extensional identity is represented by identity at world w0 (the
real world), and intensional identity by identity at all worlds.

25 The matter requires some attention. Adding Pc and ∼Qc in Example 6.7 would simply
result in v(c) = v(a); adding Ra and ∼Rb in Example 6.8, would simply result in v(R) =
v(P ) = v(Q).
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22 DIDERIK BATENS

only depend on the question whether the relation 〈1, 1〉 occurs in it, not on
the number of sentential letters that are mapped on that relation.26

7. Some New Proposals for an Ontological Definition

We have seen that, on the ontological definitions discussed so far, two iso-
morphic models may have different inconsistent parts. A proposal that came
up during the electronic discussion with Graham Priest was to stipulate that
a model cannot be ‘defeated’ by an isomorphic model. The ontological def-
inition of the abnormal part of a model remains as in Section 4, and so does
Ab

o(M) < Ab
o(M ′). The change comes here: a model M of a set Γ is

a minimally abnormal model of Γ iff no model M ′ of Γ is such that (i)
M ′ is of the same type as M , (ii) M ′ is not isomorphic to M , and (iii)
Ab

o(M ′) < Ab
o(M). Let us call the restriction in (ii) the NI-Restriction

(non-isomorphic).
Alas, this does not work. Suppose that M and M ′ are models of the same

set of premises, and that, for both M and M ′, D = {a, b1, c1, b2, c2, . . .},
v+(P ) = {a, b1, b2, . . .}, and v−(P ) = {a, b1, c1, b2, c2, . . .}, and that
Xi = ∅ whenever Ri 6= v(P ). Let M differ from M ′ in that v+(Q) = {a}
and v−(Q) = ∅ in M , whereas v+(Q) = ∅ and v−(Q) = {a} in M ′. Let
Σ be the set of models that are obtained from M by moving finitely many ci

from v−(P ) to v+(P ). Similarly, let Σ′ be the set of models that are obtained
from M ′ by moving finitely many ci from v−(P ) to v+(P ). All members of
Σ are isomorphic, and so are all members of Σ′. It is easily seen that (i) for
any M ′′ ∈ Σ, some M ′′′ ∈ Σ′ is such that Ab

o(M ′′′) < Ab
o(M ′′), and

(ii) for any M ′′′ ∈ Σ′, some M ′′ ∈ Σ is such that Ab
o(M ′′) < Ab

o(M ′′′).
It follows that the NI-Restriction fails to warrant Strong Reassurance.

In [7], I presented a crude but effective means to warrant Strong Reas-
surance. Instead of identifying the adaptive models of a set of premises (in
the case of the minimal abnormality strategy) with the minimally abnormal
models of the premises, one defines them as follows:
AD A LLL-model M of Γ is an AL-model of Γ iff there is no minimally

abnormal LLL-model M ′ of Γ such that Ab
o(M ′) < Ab

o(M).
This definition warrants Strong Reassurance by brute force: a model is se-
lected unless some minimally inconsistent model ‘defeats’ it. Let us call the
italicized restriction the AD-Restriction. It warrants that all models of an
infinitely descending sequence are adaptive models.

26 When writing [25], Graham Priest apparently did not recognize the linguistic character
of my solution for the propositional case —he refers to [2]— and generalized it to a halfway
house between the linguistic and the ontological approach.
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The AD-Restriction solves the problem from Subsections 6.3 and 6.2, and
hence also the one from Subsection 6.4. It does not solve the other problems,
the most central of which concerns the Classical Recapture (Subsection 6.1).

The former version of this paper contained a definition I had cooked up
in an attempt to remove the Domain Restriction (in terms of Section 4: the
Same Type Restriction) while still avoiding the effects that the Domain Re-
striction was intended to avoid. I shall not present the definition here because
I now think there are some problems with it. However, the underlying idea
might be useful for other people attempting to find an adequate ontological
definition. This idea was not only to compare the inconsistent part of mod-
els, but also their consistent part. This move seems a natural one: the loss
in inconsistency should be matched by a gain in consistency (rather than by
a decrease in the domain). Where XM

i denotes the inconsistent part of Ri

in M , CM
i will denote the consistent part of Ri in M and will be defined as

follows: where the adicity of Ri is n, CM
i = Dn − XM

i .
Recently, Graham Priest told me that, in the galley proofs of [27], he mod-

ified his original definition by simply dropping the Domain Restriction. I
shall call this the Handbook Definition. This definition warrants the Classi-
cal Recapture. Indeed, by dropping the Domain Restriction, only consistent
models are minimally abnormal models of a consistent set of premises. At
this moment, Graham is convinced that the argument for the Domain Re-
striction, illustrated in Example 3.1, does not hold water. Writes he: “But if
[(∀x)(Px∧∼Px)] is all the information we have, and inconsistencies are to
be minimized, perhaps it is correct to infer that there is just one thing.” (last
footnote to Section 7 of [27]).

And perhaps he is right. There is a clear idea behind selecting the mini-
mally abnormal models in this sense. The results may sound counterintuitive
at first sight, but intuitions in such matters are not very reliable.

Of course, four other problems remain. Those from Subsections 6.2, 6.3
and 6.4 are solved by the AD-Restriction. The problem from Subsection 6.5
may be solved as in Section 4, viz. by not requiring that different predicates
are interpreted by different relations.

Apparently, then, we have found an unobjectionable ontological definition:
Priest’s Handbook Definition with two emendations. Unfortunately, we are
not home yet. The definition seems technically unobjectionable but, as is
shown in the next section, it has very weird properties and seems to lack any
sensible application contexts.
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8. Problems with the Emended Handbook Definition

8.1. Collapsing Predicates

I already quoted from a footnote of [27]: “But if [(∀x)(Px ∧ ∼Px)] is all
the information we have, and inconsistencies are to be minimized, perhaps
it is correct to infer that there is just one thing.” Priest continues, “Note that
[{(∀x)Px ∧ ∼Px, (∃x)Qx ∧ (∃x)∼Qx} 6|= (∃x)(∀y)x = y].” and next
gives an example of a minimally abnormal model M of the premises that
falsifies (∃x)(∀y)x = y. However, M is only a minimally abnormal model
of the premises because Priest presupposes that P and Q are bound to name
different relations. As I showed in Subsection 6.5, this presupposition cannot
be justified. So let us see what happens if the presupposition is dropped.
Example 8.1. Premises: (∀x)Px ∧ ∼Px, (∃x)Qx, (∃x)∼Qx. Let M be
a model with domain {a, b}, and let v(P ) = R1 = 〈{a, b}, {a, b}〉 and
v(Q) = R2 = 〈{a}, {b}〉. Let all other relations Ri be such that Xi = ∅.
Hence:

Ab
o(M) = {〈∅, 0〉, 〈{a, b}, 1〉, 〈∅, 2〉, 〈∅, 3〉, . . .}

This is a least inconsistent model with a two-element domain, and actually
the model described in the footnote in [27].

Let M ′ be a model with domain {a}, and let v(P ) = v(Q) = R1 =
〈{a}, {a}〉. Let all other relations Ri be such that Xi = ∅. Hence:

Ab
o(M ′) = {〈∅, 0〉, 〈{a}, 1〉, 〈∅, 2〉, 〈∅, 3〉, . . .}

As Ab
o(M ′) < Ab

o(M), M is not minimally abnormal. Any model with
a non-singleton domain is similarly ‘defeated’ by a model with a singleton
domain. Hence,

(∃x)(∀y)x = y (8.1.1)
is still a consequence of the premises. In other words, the ‘supplementary
information’, (∃x)Qx, (∃x)∼Qx, fails to prevent that only singleton models
are minimally abnormal.

Of course, Priest might have presented an example in which the supple-
mentary information concerns a predicate of an adicity larger than 1, in
which case (8.1.1) would not have been a consequence of the premises. This
is not much consolation, as I shall show after presenting two further instruc-
tive examples.
Example 8.2. Premises: Pa ∧ ∼Pa, Qb ∧ ∼Qb, Sa, ∼Sb. The minimally
abnormal structures are those in which v(P ) = v(Q) = v(S) and XP is a
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singleton (viz. v(a) = v(b)). So, each of the following are consequences:
a = b, (∀x)(Px ≡ Qx), (∀x)(Px ≡ Sx), a = b, ∼Sa, Sb.27

Example 8.3. Premises: Pa∧∼Pa, Qb∧∼Qb, Pc∧∼Pc, ∼(Qc∧∼Qc).
As ∼(Qc ∧∼Qc) is an LPm -theorem, its presence has no effect. The mini-
mally abnormal structures are those in which v(P ) = v(Q) and XP is a sin-
gleton (viz. v(a) = v(b) = v(c)). Each of the following are consequences:
a = b, a = c, b = c, (∀x)(Px ≡ Qx).

Suppose that you hold the philosophical conviction that all relational prop-
erties are parasitic on individual properties. This means that you will popu-
late your structures with relations of adicity 1 only. Let us restrict the domain
of discourse to humans to simplify the example. Suppose that you find out
that all humans have some inconsistent property ((∀x)(Px ∧ ∼Px)). Of
course, humans have many other properties, and these vary widely to make
them all distinct: some are women while others are not, some are blue-eyed
while others are not, some are friendly while others are not, etc. Still, the
Emended Handbook Definition results in the consequence: all humans are
identical (there is only one human being) and “to be a women,” “to be blue-
eyed,” “to be friendly,” etc. all name the same inconsistent relation (as does
P ). If you cannot imagine worse, go on reading.
Example 8.4. Premises: Pa ∧ ∼Pa, Qb, ∼Qc. As there need not be any
relation between P and Q, nor between a, b and c, the sensible conclusion
seems to be that ∼b = c. Alas, this does not follow on the Emended Hand-
book Definition. Indeed, the premises have a minimally abnormal model M
in which v(a) = v(b) = v(c), and v(P ) = v(Q) = R1 = 〈{v(a)}, {v(a)}〉.
Of course, they also have minimally abnormal models in which v(b) 6= v(c).
Still, ∼b = c is not a consequence of the premises as M falsifies it.

In general, if, whenever a predicate of adicity n occurs in Γ, some pred-
icate of the same adicity behaves inconsistently on Γ, then one obtains a
minimally inconsistent model of Γ by choosing a structure with a one el-
ement domain D, by mapping any predicate of adicity n to the relation
Ri = 〈Dn, Dn〉, and by making all other relations consistent. The ensu-
ing trouble is either that all minimally abnormal models have a singleton
domain, as in Examples 8.1–3, or that some minimally abnormal models
have a singleton domain, as in Example 8.4.

27 The divergence between the ontological and the linguistic definitions is striking. The
classical negation of the last three formulas are consequences of the premises according to
the linguistic definition: ¬a = b, ¬∼Sa, ¬Sb.
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8.2. Collapsing Sentential Letters

The trouble from Section 8.1 affects also sentential letters. Here, the dra-
matic and unpalatable effects are even more clear, as appears from the fol-
lowing standard example.
Example 8.5. Premises: p,∼p, q,∼q ∨ r. From these r is not derivable be-
cause the model in which v(p) = v(q) = 〈1, 1〉 and v(r) = 〈0, 1〉 is not more
inconsistent than the one in which v(p) = 〈1, 1〉, and v(q) = v(r) = 〈1, 0〉.

Let me generalize this. If Γ is an inconsistent set of propositional formulas,
the relation (of adicity 0) 〈1, 1〉 occurs in any model of Γ. It follows that,
on the Emended Handbook Definition, all paraconsistent models of Γ are
minimally abnormal at the propositional level. Hence, on that definition,
CnAL(Γ) = CnLLL(Γ) whenever Γ is inconsistent.

8.3. Isomorphic Models and Strong Reassurance

Introducing the AD-Restriction warrants Strong Reassurance (and hence Re-
assurance). Alas, it also leads to problematic results. Reconsider for a mo-
ment the premises of Example 6.5: the formulas (where n ∈ {2, 3, . . .})
(∃x1)(∃x2) . . . (∃xn)((Px1 ∧ ∼Px1) ∧ . . . ∧ (Pxn ∧ ∼Pxn) ∧ ∼x1 = x2

∧ . . . ∧ ∼x1 = xn ∧ ∼x2 = x3 ∧ . . . ∧ ∼x2 = xn ∧ . . . ∧ ∼xn−1 = xn)

On the original ontological definition, Γ had only minimally abnormal mod-
els in which XP is a singleton. On the Emended Handbook Definition, there
also are minimally abnormal models in which XP is an infinite set. These
models are easily identified: the models in which both XP and D − XP are
infinite.

Γ states that infinitely many different objects both have and have not prop-
erty P . According to the original definition, it follows that some object is
different from itself and that precisely one object both has and has not prop-
erty P . According to the Emended Handbook Definition, it follows that
either some object is different from itself and that precisely one object both
has and has not property P , or there are infinitely many objects that behave
consistently with respect to P . That doesn’t look good either.

The AD-Restriction prevents absurd consequences by not ruling out any
member of infinitely descending sequences. Thus, part of the adaptive char-
acter of the logic is traded in. This is the price of the way out. In the presence
of adaptive logics based on the linguistic definition, the price seems too high.
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8.4. Problems For Generalizing The Proposal

CLuNs and its fragment LP reduce all inconsistencies to the level of prim-
itive wffs; many other logics do not. Examples are all of Newton da Costa’s
C i-logics —see, e.g., [19]— and my preferred lower limit logic CLuN —
see, e.g., [5]— which is defined syntactically by full positive CL, including
⊥, together with A ∨ ∼A (equivalently, (A ⊃ ∼A) ⊃ ∼A).

In such logics, some inconsistencies are isolated in that they do not derive
from primitive inconsistencies —in CLuN all inconsistencies are isolated:
no inconsistency entails an inconsistency in terms of superformulas, and an
inconsistency entails only an inconsistency in terms of subformulas iff the
latter are contained in its ‘positive part’.28 The advantage of isolating all
inconsistencies is that, as inconsistencies are not spread, more classical con-
sequences are delivered by the inconsistency-adaptive logic.

It is typical for logics that isolate inconsistencies (fully or in part) that
negations of (closed and open) formulas are to be introduced as verified di-
rectly by the interpretation or assignment. How an ontological approach
might be generalized to such logics is unknown today. This is especially
serious as there are arguments (see [3], [5], and [8]) for preferring poorer
paraconsistent logics as the lower limit logic of inconsistency-adaptive log-
ics.

A different generalization problem concerns other strategies, some of which
were mentioned at the end of Section 2. Some of these have serious advan-
tages (over the minimal abnormality strategy) from a proof theoretic point
of view (see [5, § 7]), or are suitable in specific contexts —see, for example,
[11]. What becomes of such strategies on the ontological approach is fully
unknown. It is even unclear whether the problem is sensible.29

9. A Provisional Conclusion

A fair rendering of the situation seems the following. Whatever one’s atti-
tude with respect to dialetheism —the claim that there are true inconsisten-
cies— one will try to interpret an inconsistent theory as consistently as pos-
sible —see [9]. I compared the linguistic and the ontological approach from
a semantic point of view, concentrating on the minimal abnormality strategy.

28 Thus ((p ∧ ∼p) ∧ q) ∧ ∼((p ∧ ∼p) ∧ q) `CLuN (p ∧ ∼p). However, one may prove
that, if (A ∧ ∼A) `CLuN (B ∧ ∼B), then A `CLuN (B ∧ ∼B).

29 The main reason for this is that the ontological definition has never been connected to a
proof theory or tableau method.
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The linguistic definition has not been shown to have problematic aspects
or lead to problematic results. This definition also has a number of strong
points. First and foremost, it leads to a (dynamic) proof theory (nearly any
of the quoted papers deals with it) and to a tableau method (see [13] and
[14]). Neither of these is present for logics that rely on the ontological ap-
proach. It is even doubtful whether a proof theory or tableau method for the
ontological approach are possible. The linguistic definition was shown to be
attractive for several adaptive logics that do not reduce all inconsistencies to
the level of primitive formulas. It was proved attractive for several adaptive
logics that allow for other logical abnormalities than inconsistencies, and
for logics that allow for ambiguities in the non-logical constants. It more-
over has variants (that rely on the same definition of the abnormal part of a
model) that are adequate for strategies different from minimal abnormality.
All Rescher–Manor consequence relations (see Section 2) were character-
ized by an inconsistency-adaptive logic relying on the linguistic definition.
The incorporation of ‘non-monotonic logics’ (see again Section 2) occurred
fully in terms of logics relying on the linguistic definition. None of these
results is paralleled by the ontological approach.

Especially in view of the problems spelled out in Sections 8.1 and 8.2,
one can only conclude that a sound ontological definition is not available.
The Emended Handbook Definition is both clear and coherent. However,
it is hard to see any application contexts in which the features described in
Sections 8.1 and 8.2 would be suitable. Whether an adequate ontological
definition is possible is an open question, but the available arguments sup-
port a negative answer. Apparently, any sensible approach to minimal ab-
normality should treat inconsistencies in different propositional letters and
in different predicates as different. This seems to support Priest’s halfway
house, the Handbook Definition, provided it is corrected by imposing the
AD-Restriction. If we go that linguistic, however, in counting inconsistent
sentences and predicates rather than their extensions, then there seems no
possible justification for not counting inconsistent constants rather than their
extensions. And if we do so, we obtain the linguistic definition or a variant
of it, not a definition that can sensibly be called ontological.

The above questions lead to a deeper one. It is obviously sensible to distin-
guish between the structure of a model and its interpretation of the language
L. The central question, however, considers the status of the distinction.
One view conceives the distinction as merely technical; models are merely
devices to interpret a language ‘from within’. This suits the Vienna Cir-
cle (primarily Rudolf Carnap, who did all the hard work): possibilities are
merely combinations of linguistic entities (state descriptions). Another view
connects the distinction to that between the structure of the world and the
realm of language. On this view, we are able to talk about ontology in a way
that is not determined by our present best scientific insights.
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There is a third possibility. Even the distinction is connected to that be-
tween the structure of the world and the realm of language, the former may
still be determined by the conceptual schemas that underly our scientific lan-
guage. Whenever one adapts the conceptual structure in terms of which the
world is approached, the structures of the models have to be adapted as well.
In other words, those structures (and the results of minimizing abnormality)
will not survive a scientific revolution.

It seems to me that this third possibility is the only sensible one. We know
that our conceptual schemas do (presumably) not coincide with the world
itself, but we have no possibility to conceive the world independently of our
present insights. The history of philosophy shows convincingly that an a-
historic ontology is beyond human reach. In view of this, presumably any
ontological definition of minimal abnormality is ill-directed.

If the inconsistency of theories derives from the fact that linguistic entities
refer ambiguously, then only a linguistic definition is sensible. What one
wants to minimize are the ambiguous interpretations, not any inconsistencies
in the world out there. Interestingly, it is impossible in principle to decide
whether an inconsistency derives from the structure of the world or from
the ambiguous interpretation (that is, from the fact that our language refers
ambiguously). Even the logic we use cannot discriminate between the two
possibilities. This is easily seen by comparing the semantics from Section
4 with the one from the Appendix. Both semantic systems characterize the
same logic, viz. CLuNs as well as LP .30

Appendix: Inconsistent Interpretations

The semantics from Section 4 presupposes that the non-logical constants of
the language unambiguously refer to objects and ‘relations’ in the world,
and hence that all inconsistencies derive from the world itself. This presup-
position is obviously wrong for inconsistencies that can be removed. In this
appendix, I devise a semantics for CLuNs , and hence for LP , in which in-
consistencies are caused by the interpretation of linguistic entities, leaving
it to the reader to spell out the mixed case.

Let a structure be defined as in Section 4, except that all relations are
classical: Xi = ∅ for all i ∈ I . As their anti-extension is a function of their
extension, it need not be mentioned separately. Also, there is no need to
reserve a relation for the interpretation of identity.

30 I spell the matter out in the Appendix, which also contains a natural variant for the
linguistic definition.
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Where α ∈ C, v(α) ⊆ D. Where π ∈ Pn (a predicate of adicity n),
v(π) ⊆ {Ri | i ∈ I; Ri has the same adicity as π}.31 To accommodate the
quantifiers, we introduce a set of pseudo-constants O (of at least the same
cardinality as the largest domain we want to consider), and stipulate that
v(α) ⊆ D for all α ∈ O.32 Here is how the valuation function handles
primitive formulas:

• if the adicity of π is 0, then
– v+

M (π) = 1 iff Ri = 1 for some Ri ∈ v(π)

– v−M (π) = 1 iff Ri = 0 for some Ri ∈ v(π)
• if the adicity of π is n > 0, then

– v+

M (π α1 . . . αn) = 1 iff 〈a1, . . . , an〉 ∈ Ri for some Ri ∈ v(π),
a1 ∈ v(α1), . . ., and an ∈ v(αn)

– v−M (π α1 . . . αn) = 1 iff 〈a1, . . . , an〉 6∈ Ri for some Ri ∈ v(π),
a1 ∈ v(α1), . . ., and an ∈ v(αn)

• for identity:
– v+

M (α = β) = 1 iff v(α) = v(β)

– v−M (α = β) = 1 iff v(α) 6= v(β), or a 6= b for some a, b ∈
v(α).

The logical constants are handled as in Section 4, except for the quantifiers.
Let A

β
α be the result of replacing any free occurrence of the individual vari-

able α by the individual constant or pseudo-constant β.
• v+

M ((∀α)A) = 1 iff v+

M (Aβ
α) = 1 for all β ∈ C ∪ O

• v−M ((∀α)A) = 1 iff v−M (Aβ
α) = 1 for some β ∈ C ∪ O

• v+

M ((∃α)A) = 1 iff v+

M (Aβ
α) = 1 for some β ∈ C ∪ O

• v−M ((∃α)A) = 1 iff v−M (Aβ
α) = 1 for all β ∈ C ∪ O

Let π be a predicate with adicity n. The consistent part of π consists of
the n-tuples that are π in all respects,

⋂
v(π), and of the n-tuples that are

π in no respect, Dn −
⋃

v(π).33 The rest of the domain,
⋃

v(π) −
⋂

v(π),
contains the inconsistent extension of π.34

31 Whenever v(α), respectively v(π) is not a singleton, α, respectively π, is interpreted
ambiguously.

32 The pseudo-constants name the values of the individual variables.

33 Remember that, where π is a predicate with adicity n, v(π) is a set of sets of n-tuples.

34 There are two relations with adicity 0, viz. 0 and 1. A set of such relations is consistent
if

⋃
v(π) −

⋂
v(π) is ∅ and inconsistent if it is {0, 1}.
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The linguistic definition distinguishes three sources of inconsistencies.
(i) A linguistic entity may be interpreted abnormally.35 (ii) The (normal
or abnormal) interpretation of a constant may overlap with an n-tuple that
belongs to the abnormal interpretation of a predicate with adicity n > 0.36

(iii) The abnormal interpretation of a constant or pseudo-constant may cause
it to relate inconsistently to the normal interpretation of a predicate.37

The present models suggest an alternative linguistic definition: the abnor-
mal part of a model is the set of linguistic entities that have an abnormal
interpretation. This is clear and sensible, appears directly applicable,38 and
does not seem to lead to any computational problems.39

The closest approximation to an ‘ontological’ definition defines the abnor-
mal part of a model as the set of abnormal interpretations (the non-singleton
sets in the domain of the interpretation function). This definition clearly does
not coincide with any of the ontological definitions from previous sections.
Although the definition is clear in itself, it is affected by the problems from
Sections 8.1 and 8.2, and moreover requires that one combines it, in an ad
hoc manner, with the AD-Restriction.40

Centre for Logic and Philosophy of Science
Universiteit Gent, Belgium

E-mail: Diderik.Batens@rug.ac.be

35 If A ∈ S and v(A) is not a singleton, then vM (A∧∼A) = 1. If v(α) is not a singleton
then vM (α = α∧∼α = α) = 1 if α ∈ C, and vM ((∃x)(x = x∧∼x = x)) = 1 if α ∈ O.
Where the adicity of π is n > 0, vM ((∃α1) . . . (∃αn)(πα1 . . . αn ∧ ∼πα1 . . . αn)) = 1
whenever v(π) is not a singleton.

36 Example: if P has adicity 2, v(a) = a, v(P ) = {R1, R2}, and 〈a, b〉 ∈ R1 −R2, then
vM (Pa ∧ ∼Pa) = 1.

37 Let v(P ) = R1 have adicity 1, v(α) = {a, b}, a ∈ R1 and b 6∈ R1. If α ∈ C, then
vM (Pα ∧ ∼Pα) = 1; if α ∈ O, then vM ((∃x)Px ∧ ∼Px) = 1.

38 At the propositional level, it coincides with the aforementioned linguistic definition.

39 In CLuNs , for example, it is easily expressed that Pa ∧ ∼Pa is equivalent to: either
a behaves abnormally and P normally, or a behaves normally and P abnormally, or both a
and P behave abnormally.

40 Most unpublished papers in the reference section (and many others) are avail-
able from the internet address http://logica.rug.ac.be/centrum/writings/
index.html.
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