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NAIVE SET THEORY, PARACONSISTENCY AND
INDETERMINACY: PART I

Alan WEIR

This is the first part of a two-part paper in which I try to provide a logical
foundation for a coherent naive set theory, one somewhat different from
those existing foundations provided by logicians in the paraconsistent and
relevant logic traditions. Part I is in three sections, plus an Appendix.

In this part of the paper I outline a revision of classical logic motivated
by a desire to retain naive set theory, notwithstanding the antinomies which
show it to be trivial even in quite weak logics (such as, R and E!). I follow
here a common paraconsistent approach by separating naive set theory into
three components: i) the proper set-theoretic axioms or rules, ii) the opera-
tional rules for the logical constants and iii) the structural rules for the
logical constants. The idea is then to retain naive set theory by modifying
only the latter so as to generate a substructural logic.2 However the current
approach differs from the usual paraconsistent ones by laying down struc-
tural constraints on Cut, or generalised transitivity of entailment, in such a
way that the resulting system straddles the paraconsistent/non-paraconsis-
tent boundary as it is usually drawn.

In §I Tillustrate the main ideas of the ‘neo-classical’ framework, as I will
somewhat pompously term it, with respect to the simplified case of gappy
semantics, developing a neo-classical account of entailment. The second
section develops this further by looking at how the notion of indeterminacy
can be used to lay down non-classical structural constraints which yield a
logic suitable for paradox-inducing discourses such as set theory. The final
section applies these ideas to set theory and shows how to develop naive
set theory, and more generally all mathematics representable in standard set
theory, in the neo-classical framework. It is argued that the ‘classical

ISee T.K. Slaney, ‘RWX is not Curry Paraconsistent’ in Brady and Routley (eds.)
Paraconsistent Logic: Essays on the Inconsistent. (Miinchen: Philosophia Verlag, 1989)
pp- 472-480.

2Reasons why one should not follow orthodoxy in rejecting naive set theory are given in
my ‘Naive Set Theory is Innocent!’, Mind 107, (1998) pp. 763-798.
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recapture’ of standard mathematics is achieved more smoothly in this
framework than in the framework of dialetheic naive set theory.

All of this on the assumption of the soundness of the neo-classical frame-
work, something which cannot be demonstrated classically but which must
be demonstrated within the naive set theory itself. The sequel paper con-
cerns itself mainly with the issues of soundness and completeness for the
neo-classical system.

§I: Neo-classical logic

In order to illustrate the main ideas of the amendments to the structural
rules I am proposing I will use the simple framework of Lukasiewiczian,
(or strong Kleene)? semantics for conjunction, disjunction and negation,
i.e. all these operators are classical over {True, False} but negations of
‘gappy’ sentences are gappy —I represent gap by ‘@’— and conjunctions
are false if at least one conjunct is false, otherwise gappy; as usual, disjunc-
tion is the dual of conjunction:

Q Q
P&Q | T & F PyQ|T @ F
T |T @ F T |T T %
P O |@ @ F P O |T @ O
F |F F F F |T @ F
P |-~P
T[T
g\
F|F

The idea here is not that indeterminacy in naive set theory can be
represented by truth value gaps, as in the Lukasiewiczian semantics, for
that way lies only ‘super-paradox’ in the shape of set-theoretic variants of

3CF. J. Lukasiewicz ‘O logice trdjwartosciowej’, Ruch Filozoficzny, (Lwow) 5, (1920)
pp. 169-171, some results of which are presented in Lukasiewicz and Tarski,
‘Untersuchungen iiber den Aussagenkalkiil’, Comptes Rendus des séances de la Société des
Sciences et des Lettres de Varsovie 23, (1930) pp. 30-50; S. Kleene Introduction to
Metamathematics. (Amsterdam: North Holland, 1952) p. 334; (the Lukasiewicz and strong
Kleene three-valued systems diverge over the conditionals).
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the strengthened liar. Indeterminacy in set theory, if not elsewhere, is not
best accommodated within a classical metatheory with extra values (gaps
in the Kleene/Lukasiewicz semantics behave algebraically much like third
values). Rather one ought to work with just the usual values but within the
framework of a non-classical logic in the semantic metatheory. But which
logic? The point of starting from gappy semantics in a classical metatheory
is to get an approximation to the right logic, a fallible guide to the non-
classical logic which should be used in a more adequate non-gappy seman-
tics. If the guide turns out to be faulty, one can always return to the gappy
semantics and try again to achieve a better approximation.

The semantic theory for this part, then, will be of the above gappy type.
But what is of particular interest here, and is not fixed simply by the valua-
tion scheme, is the question of which account of entailment one should
adopt. Take the two standard classical model-theoretic accounts of entail-
ment for multiple conclusion systems:

X = | Y iff there is no valuation in which all wffs in X are true and all in
Y false.

X E 2 Y iff in every valuation in which all wffs in X are true, one in Y is
true.

Equivalent in classical semantics, these come apart when indeterminacy is
taken into consideration,® especially if there are sentences which are inde-
terminate in every admissible model.5 Thus let P be true and U be a neces-
sarily gappy sentence; then {P} entails; {U} but does not entails it. The
first account of entailment does not exclude failure of truth-preservation
and can surely be set aside for that reason. The second, however, is also too
strong as an account of consequence since {U} entails, P, for P false, U as
before, so that falsity is not preserved upwards.

This is a defect if one thinks that there is no logical asymmetry between
downward truth-preservation and upwards falsity preservation: arguments
with unfalse premisses and false conclusions are as bad as arguments with
true premisses and untrue conclusions. Here I take the middle value to be

40One common response to the failure of bivalence is to define entailment in terms of
preservation, from premisses to conclusions, not of truth but rather of membership in some
set of designated values. However it is arguable that this approach does not take the failure
of bivalence seriously, restoring it at the level of designated versus undesignated value.

5Examples which have been suggested for necessarily gappy sentences include atomic
predications of necessarily empty terms such as ‘the greatest prime number’ and certain
types of liar sentence.



222 ALAN WEIR

unfalse. One upshot of this view is that Priest’s dialetheic logic LP, formal-
ly speaking the strong Kleene logic with {T,F} as the middle (also desig-
nated) value cannot be a genuine logic.% If one takes {T,F} to be a value
which is neither true nor false then LP allows inferences which are not
truth preserving (from T premisses to {T,F} conclusions). Suppose, on the
other hand, one accepts with the dialetheist that in the middle case there is
both truth and falsity. In that case if one accepts inferences from T to {T,F}
notwithstanding their failure of upwards-falsity preservation then one
should accept inferences from {T,F} to F, notwithstanding their failure of
truth-preservation because they preserve falsity upwards. To maintain this
symmetry would result, of course, in trivialisation yet Priest recognises (In
Contradiction pp. 104-105) that falsity preservation upwards is as essential
to entailment as truth-preservation downwards. He is forced, then, into a
counter-intuitive failure to link entailment with validity by means of the
usual equivalence = A - Biff A= B, (- a conditional encapsulating
the entailment relation).

If both accounts are wrong, what can the right notion of entailment be?
My approach here will be to abandon the rather conservative (in its holding
to a form of bivalence) designated/undesignated dichotomy and look to
analogies with how one ought to pattern acceptances and rejectings of
components of inferences. Consider the following ‘neo-classical’ definition
of soundness for a schematic inference rule:

Inference rule R is sound just when for any instance I of the rule:

For any conclusion C and premiss P of instance I, (a) any valuation in
which all premisses of I are true and all conclusions but C are false is
one in which C is true and (b) any valuation in which all conclusions
are false and all premisses but P are true is one in which P is false.

Similarly a sequent X = Y is sound just when it satisfies the above clause
with members of X classed as premisses, members of Y conclusions.” This
deviant account is still a model-theoretic one and I will focus mainly on
entailment construed model-theoretically, in this part of the paper. An

05ee G. Priest, In Contradiction. (Dordrecht: Nijhoff, 1987) especially Chapter Five.
Some of the trouble here is caused by Priest’s attachment to the bivalent
designated/undesignated dichotomy: as indicated, he cannot leave the middle or glut value
undesignated on pain of validating ex falso quodlibet, contrary to his paraconsistent
principles.

I one dislikes multiple conclusion logic then one can amend clause (a) to the standard
truth preservation clause —when all premisses are true the conclusion is.



NAIVE SET THEORY, PARACONSISTENCY AND INDETERMINACY: PART 1223

alternative account, deriving from Bolzano, is to define entailment in terms
of truth-preservation of arbitrary substitution instances. Truth is either
taken as primitive or defined in terms of some distinguished model or
valuation. Arguably this perspective makes better sense with respective to
the non-contingent language of mathematics where there is no variation of
truth value across ‘possible worlds’ —represented by models— but I will
leave this account aside till Part I1.

The neo-classical account is motivated by the idea that in, for example,
multiple conclusion \VvE —from A \/ B conclude A,B— it is perfectly
legitimate to accept A \/ B (‘“The baby will be a boy, or a girl’, say) whilst
accepting neither disjunct but not acceptable, while accepting the premiss,
to reject one disjunct unless one accepts the other. Similarly for &I, one
may reject the conclusion (“The baby will be a boy and a girl’, for exam-
ple) without rejecting either conjunct premiss; but it would be wrong, if
one rejected the conclusion, to accept one premiss unless one rejected the
other.

However there is a problem with this account of soundness. For logic
consists in more than one-step inferences: we need structural rules telling
us how to put operational rules together to form extended proofs. But
consider now an sentence P which is gappy in some valuation v. Since I
have eschewed a supervaluational approach in favour of Lukasiewiczian
connectives, P & ~P is also gappy so the entailment P & ~P = | fails
neo-classically, where L is some necessarily false absurdity constant. As
there are no multiple premisses or conclusions, the neo-classical truth of
the claim that P & ~P entails L requires in the upwards falsity-preservation
direction that if L is false in valuation v, which of course it is, then so is
P & ~P; but this fails since P & ~P is gappy. (Similarly P \/ ~P fails to be a
neo-classical logical truth.) But despite the neo-classical falsehood of
P& ~P = L there are proofs of P& ~P L in which every step is neo-
classically correct, e.g. the following in a Gentzen-style natural deduction
system:

P& ~P P& ~P

1

&E preserves truth downwards and falsity upwards and so is clearly neo-
classically correct, but so too is the natural deduction ~E rule: from P,~P
conclude C, for any C (including the absurdity constant L ). The truth-
preservation direction is trivial (at least if one is already predisposed to
accept ~E) —there is no valuation which makes both premisses true—
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whilst in other direction neo-classical correctness requires that if L is false,
which it is in every valuation, then if P is true, ~P is false and if ~P is true
P is false. But this does indeed hold in every valuation by the Lukasie-
wiczian rules for ~. So to preserve neo-classical soundness globally we
have to amend the classical structural rules which permit us to chain to-
gether the &E and ~E inferences in the above fashion.

The problem here is that firstly the simple ~E inference, though neo-
classically correct, is ‘minimax’ unsound: —that is the minimum premiss
value can be greater than the maximum conclusion value, on the natural
ordering True > (J > False— (this can occur in classically sound rules only
in Kleene models in which some wffs in the inference take the gappy
value); and secondly, chaining together minimax unsound but neo-classi-
cally correct inferences can generate, as we have just seen, derivations of
conclusions which do not even neo-classically follow from the overall
premisses, never mind follow in ‘minimax’ logic. This problem arises for
disjunctive syllogism and standard natural deduction \/E as well as ~E.

How, then, should we amend the structural rules to accommodate the
neo-classical perspective on entailment? One response, along the lines of
contraction-free or linear logic systems, would be to use a sequent system
in which sequences rather than sets of wffs function as antecedents and
succeedents and blame the problem on multiple occurrences of the trouble-
some wff P & ~P in the above. The definition of soundness I just gave,
after all, is ambiguous between reading premisses and conclusions as sets
of wifs, or as occurrences of wffs in something more structured, say
sequences of wff occurrences. If one took the latter course, one might
restrict contraction of multiple occurrences to certain syntactically speci-
fiable contexts, perhaps by distinguishing, as some relevantists, do different
modes of combination of wffs in sequents —e.g. extensional union versus
intensional combination.8 Although there may be pragmatic reasons for
doing so, especially where non-extensional operators are concerned, the
procedure has no intuitive basis —it is hard to see what the rational signifi-
cance is in the number of times one makes an assumption. It could be
justified solely as a novel amendment to our standard practices motivated
by overall considerations of coherence, or some such.

I want to suggest a rather different amendment to our standard practices
though one which I think has a little more intuitive basis, for example in
the light of the way classical logic seems to break down in such cases as
the Sorites paradox. The idea is that we place global restrictions on proofs
which block the general transitivity of entailment yielding a non-transitive
notion of entailment in which transitivity fails in a controlled fashion yet

8Sf:e, e.g. Stephen Read Relevant Logic. (Oxford: Blackwell, 1988) Chapter Four.
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holds widely enough to permit that chaining together of proofs which is
essential in order to derive the standard results of classical mathematics.?

If one looks at the problematic proof above, it is noteworthy that a
‘dodgy” wff, P & ~P, occurred in the overall assumptions on which both
premisses for ~E were based. My suggestion (at a first approximation) is
that we rule this out, at least for minimax unsound rules, so that we require
wifs which occur in the antecedent of more than one premiss of a sequent
system inference rule, not to be ‘dodgy’. And since it was gappiness that
allows neo-classically correct minimax unsound rules to chain together in
such a way as to lose the property of neo-classical correctness, the obvious
way to interpret ‘dodginess’ is by failure to take one of the determinate
truth values True or False. Formalising the determinateness of a wff, for
the moment, as Det P, this suggests the following sequent ~E rule:

X (HP Given

Y (2) ~P Given

Ziiel (3.i) Det Q Given,VQEXNY
XY, | Jz, (3)C 1,2, [3.,i €1], ~E

el
Here " X,Y abbreviates X U Y,  X,P" abbreviates X U {P} and it is

required that UZ[. N (XU Y)=. In general I will omit the index set I
iel

where it is clear from the context what it is and bracket the determinacy

premiss consequents by ‘[* and ‘]” as above.

Where X N'Y = (J we get the basic operational form of the ~E rule, with
no determinacy restriction. Thus the classical proof of an arbitrary sentence
Q from P & ~P is invalid and transitivity fails since we have P & ~P I P,
P& ~P I ~Pand P, ~P F Q but not P & ~P + Q. We do, though, have a
restricted form of ex falso quodlibet in which we can conclude anything we

90ther logicians who have mooted or advocated curtailments on transitivity include Neil
Tennant, Anti-Realism and Logic. (Oxford: Clarendon, 1987) Chapter 17 and T. Smiley,
‘Entailment and Deducibility’, Proceedings of the Aristotelian Society (1959) pp. 233-254
especially pp. 233-234 and §2 (following on from work by Geach and von Wright).
Dummett considers but rejects abandonment of transitivity of entailment in ‘Wang’s
Paradox’, Truth and Other Enigmas. (London: Duckworth, 1978) p. 252.
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like from a contradiction, in conjunctive form, if we know that the conjunc-
tion P is determinate, that is we do have Det(P & ~P), P & ~P - Q.10

What, then, does determinacy amount to? In a semantics permitting truth
value gaps, the obvious interpretation of the Det operator is one which
maps true to true, false to true and gap to false. A problem with this
account is that it follows that all sentences of the form Det P are them-
selves determinate whereas we will see when turning to naive set theory
that we need to allow for higher-order indeterminacy. One could model
higher-order indeterminacy either by generalising from three values to a
multi-valued semantics or by introducing a modal account of determinacy,
but neither approach is entirely adequate for naive set theory. As remarked
at the outset, the problem ultimately arises because we are working within
a framework of non-bivalent semantics with a classical metalanguage in
which we assume excluded middle for semantic pronouncements such as
"Pis gappy . This has the effect of representing indeterminacy in too de-
terminate a fashion, as it were: —as the determinate absence of a certain
type of value. A more adequate treatment of indeterminacy will be outlined
in part II in which one works only with two values but does so within a
semantically closed theory, with no metalanguage/object language distinc-
tion and in which excluded middle is not forthcoming. For the present,
when considering a gappy approximation, I will stick to the above crude bi-
valent account of determinacy.

However there is another problem with this account. Thus far I have
treated every Kleene valuation as admissible. Since the degenerate valua-
tion in which every atom is gappy is therefore admissible, no wift of the
form Det P, where P contains no occurrences of Det, is ever true in all
admissible models since all such wffs are gappy in the degenerate valua-
tion. Hence any such Det P sentence has the same status as any contingent
‘empirical’ sentence. This is arguably counterintuitive: if ‘the table in the
room next door is brown or not brown’ fails to take a determinate truth
value, through reference failure or vagueness for example, then on many
(though not all) accounts of the matter, this failure is of a very different
type from the failure of ‘the table is brown’ to be true, when the table is
painted blue. The failure of determinacy in the former case is more a
‘linguistic’ matter of the terms of the sentence failing to connect properly
with objects and properties than the factual matter of the objects and
properties referred to failing to combine in the world in the required way. If
this way of thinking is right, it seems reasonable that some, at least, true

mlntui[ively we would want to have Det P + Det (P&~P), a result which follows from the
analysis of the notion of determinacy given below.
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Det P sentences should be given a status at least in between ordinary
empirical non-logical sentences and logical truths.

One way to effect this in formal terms is to single out a subset A of the
atoms which are to have fixed determinacy status together with a valuation
@ to play the role of the actual world; our interest will be in valuations @
in which a healthy number of A atoms take a non-gappy truth value and
also a few A atoms are gappy. Say that a valuation v is admissible iff every
atom in A which has a truth value in @ has a truth value in v (perhaps the
opposite one) and every A atom which is gappy in @ is gappy in v. The set
A and valuation @ generate a set AXDET (which thus has to be thought of
as taking A and @ as parameters) such that AXDET is the set of all those
wifs of the form Det P or ~Det Q which are true in all admissible models.

The upshot of this is that our definition of neo-classical entailment is
parallel to that of neo-classical soundness but relativised to A and @ as
parameter: —a set of wffs X neo-classically entails a set Y (written X =
Y) iff:

a) For any wif Cin Y, in any admissible valuation v in which all wffs
in X are true but all in Y but C are false, C is true in v.
b) For any wff P in X, in any admissible valuation v in which all wffs
in Y are false but all in X but P are true, P is false at v.

Likewise X = Y is a neo-classically correct sequent just when X neo-
classically entails Y. In what follows, though, I will stick to single con-
clusion logics. If we wish to develop a proof theory which is complete with
respect to = so defined, we shall have to similarly relativise F so that it
includes not only the ‘logical’ rules but also includes, as axiomatic princi-
ples regarding determinacy, the wffs of the AXDET set generated by the
particular A and @ in terms of which = is defined.

What logic, then, is sound with respect to such an entailment notion?
Well, any ‘minimax’ sequent rule is sound for every AXDET. That is, if we
take (single conclusion) sequent rules to have the schematic form:

X, =P, Ky =3Py v X, =P

n n

then a minimax sequent rule is one in which Py, ... P, minimax entails C:
—it is not possible (under the Kleene scheme) for the minimum P; value in
a valuation to be greater than the value of C in that valuation. Such rules

preserve neo-classical correctness. For if all of UX,. are true in valuation

O<i<n
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v then so are all the P;, since all the premiss sequents are neo-classically
correct; hence so is C by the minimax entailment. Whilst if C is false in v

but all of the wifs in UX,. but A are true in v then since the P; minimax
0<i<n
entail C, at least one of the premiss succeedents is false, say Py, in which
case by the neo-classical correctness of X; = Pr, A € X and is false in v.
Minimax soundness is a mechanically decidable principle, for finite
sequent rules, but we are interested in a proof system which we can take to
naive set theory having passed the test of soundness with respect to a
system admitting indeterminacies, albeit in the cruder gappy form of
Kleene valuations. One set of rules we can use are the minimax sequent
rules whose general form is:

X (e Given
X (2) ¢[P/Q] 1 MM

where ¢[P/Q] results from ¢ by uniform substitution of a sub-formula P by
Q and where

Pis A and Qis ~~A

orPis ~~A and Qis A

or Pis A&B andQis B&A

orPis AvyB andQis By A

orPis A&B and Qis ~(~A\v/ ~B)

or Pis ~(~A v ~B) andQis A&B

or Pis AvB and Qis ~(~A & ~B)

orPis ~(~A & ~B) andQis AvB

or Pis (A& (B &C)) andQis ((A&B)&CQC)
orPis ((A&B)&CQ) andQis (A& B & Q)

or Pis (A (Byv Q) andQis ((AvwvB)v Q)
orPis (AvB)yvO and Qis (Av (Bv Q)
orPis (A& BvQO) and Qis ((A & B)\v (A& Q)
orPis ((A&B)yv(A&C) andQis (A& By Q)

or Pis (Av (B & Q) andQis (AvB)&(Av(QO)

orPis (AvB)& (Av(C) andQis (Av (B &Q)

In addition standard sequent form natural deduction \/I, &E and &I rules
(without any determinacy restriction on overlapping assumptions in both
premiss antecedents) are minimax sound as is the Mingle rule:
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X (DA & ~A Given
X (2) By ~B 1 Mipgle

which is a derived rule of the logic RM which extends relevant logic R by
addition of the Mingle axiom scheme.!! This rule will not please a rele-
vantist, just as the double negation elimination principle above will not
please the intuitionist but the rules do preserve minimax soundness. So too,
in a slightly more degenerate way, do the following reductio rules:

X,A Jd X,~A el
X ~A X A

(Here I class both intuitionist and classical reductio ad absurdum rules as ~I
rules though strictly the classical rule is a form of negation elimination.)
These ~I rules are redundant in the context of the others where X,A C L, L
a language lacking Det and 1 : —the degenerate Kleene assignment shows
that for any set of wffs there is a Kleene evaluation in which no members
of the set take the value false so that no sequent of the form X, A = 1 is
ever minimax correct.

The non-classical amendments then come in with the minimax unsound
~E, as we have seen, and also with minimax unsound \/E. For \/E, we need
to restrict the standard sequent natural deduction rule to:

X (HhPvQ Given

Y.P (2)C Given

ZQ 3C Given

W,iel (4.i)DetR  Given, VR € (X N (Y U Z))
XYz | JW, &cC 1,23 [4.4,i €T],VE

i€l

We require also that UWE NXuYuZ)=aJ.

iel

The idea behind the restriction is that for the non-minimax \/E rule we
require any wff which is both an antecedent of the major premiss and also

I1gee Anderson and Belnap, Entailment Volume I. (Princeton: Princeton University
Press, 1975) §29.5 especially the theorem ~(A —» A) - (B — B) together with theorem
RM67 (p. 397) (A = A) © (~A v A).
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an antecedent of one or other of the minor premisses to be determinate. The
rule is neo-classically sound.

Proof: 1) Truth preservation: this is much as in the classical case. Suppose

all the given input sequents are entailments and that all of X,Y,Z, UW,. .
iel

are true in admissible valuation v, Then by line 1, P/ Q is true in v, so one

or other disjunct is. Whichever is the case, line 2 or else line 3 establishes

that C is true in v.

ii) Falsity preservation (upwards): suppose that C is false in v and all of

X, Y.Z, UW!‘ are true in v but A. Since UW" NXuYuZ=U, A
iel iel

cannot be a member of a W; set else all of X,Y,Z are true contradicting, by

part i) above, the falsity of C. If A € (X n (Y U Z)) then since all of the W;

are true, by the 4./ premisses, A has a determinate truth value in v; since it

is not true, it must be false as required. If A & (X N (Y U Z)) then either

a) all of X are true in vorelse byall of Y U Z are.

Case a): —by the correctness of line (1) P \/ Q is true in v hence one of
the disjuncts is, suppose without loss of generality that it is P. By the
correctness of line (2) in the rule above, A € Y and is false.

Case b) By the correctness of lines (2) and (3) both P and Q are false in
v hence so is P y/ Q. By the correctness of line (1), A € X and is false
inv. ]

A similar, somewhat less convoluted, proof establishes the soundness of
~E.

We need, of course, a structural rule embodying the reflexivity of
derivability. One such is a rule of hypothesis:

X (I)A Hyp.

where A € X, or else we could use the special case where X = {A} to
which we must then add an expansion rule:

X (1) A Given
XY (2)A) 1Exp.

I have also assumed throughout a truth constant T true in all admissible
models and the absurdity constant L featuring in the negation rules and
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interpreted as false in all models. Theorems are wffs provable from the
empty set of antecedents!? (which I will represent by ‘—’) so that we
provide for T the axioms:

— (1) Det"T Axiom T

Here Det"T is T prefixed by any finite number (including zero) of occur-
rences of Det. Similarly we add for L the axiom:

— (1) Det"~1L  Axiom L

This gives us (where n = 0 in the T and L axioms) the ‘purely logical’
neo-classical derivability notion ky. But in line with the thought that some
determinacy claims are not contingent in the ordinary sense, we consider
this notion always to be augmented, in interesting cases, by a non-trivial set
of determinacy axioms AXDET which take the form:

— (1) DetP Det P € AXDET
— (1) ~Det P ~Det P € AXDET

The effect of the determinacy axioms, therefore, is that determinacy con-
straints in non-minimax rules such as ~E and \/E do not bite with respect to
wifs in AXDET. The following principles are also sound for our Det
operator under the given interpretation:

i) If = Pthen = DetP; (as special cases: if = Det P then =
Det(Det P), if = ~(Det P) then = Det(~Det(P)) };

ii) IfE DetPandFE DetQthen= Det(P & Q);

iii) If = Det(P & Q) then not both = ~Det P and = ~Det Q;

iv) If= DetPand k= Det Qthen = Det(P\/ Q);

V) If= ~DetPand= ~Det Qthen= ~Det(P\/ Q);

vi) = DetPiff = Det~P;= ~DetPiff = ~Det~P;

vii) DetPE= P\/~P.

In the mathematical case, these principles will be derived rules but for the
gappy semantics it will follow, from the definition of = in terms of
admissible models and of AXDET in terms of A and @, that all AXDET
sets are closed under the corresponding rules. Thus corresponding to the
second part of i) we have:

1201 we could have defined the theorems as the set of wffs derivable from any wff or
alternatively as the set of wffs derivable from T alone, and altered matters accordingly.
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— (1) DetP Given
— (2)DetDetP 1 DET (i)

If Det P is a theorem it must be true in every admissible valuation hence
Det Det P € AXDET. Note that we will not want, in the set-theoretic case,
the principle Det P + Det Det P since there can be higher-order indeter-
minacy and so it might be possible for Det P to be determinately indetermi-
nate so that the principle goes from an indeterminate premiss to a false
conclusion. The situation parallels that of the rule of necessitation in modal
logic. We have, for any wff P, if F P then - [ P but it is not the case that
for any wff P, P (] P. Corresponding to part v) we have DET v):

— (1) ~Det P Given
— (2) ~Det Q Given
— (3)~Det(P\vQ) 1,2DETv)

From lines (1) and (2) we have it that P and Q are gappy in all admissible
models, hence ~Det(P \/ Q) € AXDET.

The usual sort of inductive proof establishes, from the soundness of the
various operational and structural rules, that the system as a whole is neo-
classically sound. Moreover it can readily be seen to be equivalent to a
standard sequent form of classical natural deduction, in the special case in
which AXDET = {Det P: P € L} for the effect is then that the determinacy
constraints are dropped.

More generally, we can distinguish three important categories of AXDET
sets of determinacy axioms: consistent sets, that is sets which are such that
it is not the case that AXDET F L; secondly complete sets, that is sets for
which Det P or ~Det P belongs to AXDET for every P in the language (or
sublanguage). And finally, classical AXDET sets, that is sets such that
Det P € AXDET, for every P in the language. In the Appendix, complete-
ness is proved in the following form:

If X is finite and X,Q C L, where L is a complete subsector of the
language, then if X = Q then X F Q.

These results give us a fairly attractive form of ‘classical recapture’. In
particular, for classical subsectors —but only in such subsectors— of the
language, classical reasoning is unrestrictedly licit. From this perspective,
classical ‘logic’ is an amalgam of logic properly so-called, the neo-classical
rules minus AXDET axioms on the one hand with, on the other, an
‘impure’ element, namely the very special case of AXDET axioms in
which AXDET consists in Det P for all P in the language. This special case
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is appropriate for the very important but idealised and simplified cases
initially studied by logicians: languages in which there is no reference
failure, vagueness, paradoxicality and so forth. That should not blind us to
the fact that it is a special case and classical ‘logic’, its structural rules such
as generalised transitivity or Cut in particular, do not extend beyond that
special case.

Note, though, that the \/E rule gives us as a derived rule, via a degenerate
case with the major premiss taking the form P/ P, a fairly broad, though
not completely generalised, form of transitivity or Cut:

X ()P Given
YP (2)C Given
XY 3OC 1.2Cut

if Det Q € AXDET, for Q € X n Y. In particular, we have neo-classically
that if A ) B and B k) C then A F| C, so that this simple form of transitivity
holds regardless of the determinacy axioms.

Is the resultant logic paraconsistent? Well, we have P,~P +| Q and P,~P
= Q that is neo-classical logic is ‘explosive’, in Priest and Routley’s ter-
minology!3 and so also non-paraconsistent in the first of their usages of the
term. But we do not have in general, as we have seen, P & ~PE Q, hence
do not have P & ~P 1 Q only Det(P & ~P), P & ~P k| Q hence only P & ~P
F Q for those P such that Det(P & ~P) € AXDET. Neo-classical logic is
thus paraconsistent in Priest and Routley’s second sense —the existence of
classically inconsistent but non-trivial theories— so that their assertion
(ibid.) that the first sense entails the second fails for the neo-classical case.

§1L: Determinacy Constraints and the Conditional

The effect of moving to the broader derivability notion F in terms of some
AXDET set is, for particular choices of AXDET, to give some instances of
a theorem schema of classical logic neo-classical theorematic status but
withhold it from others. Suppose, for example, that for some atomic P and
Q, Det P and ~Det Q both belong to AXDET. Then F P/ ~P from, for
example, DET vii):

13‘Sysl:ems of Paraconsistent Logic’, Chapter V of Paraconsistent Logic: Essays on the
Inconsistent p. 151.
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— (I)DetP  AXDET
— (2)Py~P  1DET vii)

though + Q \/ ~Q must fail since ~Det Q € AXDET so that there is an
admissible valuation v in which Q is gappy and so Q \/ ~Q is gappy, hence
by soundness, we do not have - Q \v ~Q. How can this difference between
wifs which are in formal terms indistinguishable be legitimated?

It is instructive to compare the case of free logic here: most contempo-
rary philosophers are suspicious of the ‘Anselmian’ idea that one can prove
existence claims in a wholly a priori fashion. But classically one can prove
existential theorems such as 3x x = x, Ix(Fx v ~Fx). One common
response here is to say that these formulae are not genuine theorems, that
‘unfree’ classical predicate logic is not strictly correct and must be
amended by some free logic restrictions on e.g. 31 and VE. However the
resultant proof theory is messy, the response continues, and granted that we
know for sure that something does exist and granted further that, for some
languages, we know that all its terms are denoting, classical logic, applied
to these languages, will not lead us into untruth from truth or from non-
falsity into falsity. This strikes me as a reasonable attitude; I will suggest
that we adopt a similar attitude to the use of classical logic in mathematics:
it is entirely legitimate to use it for sub-languages —that of arithmetic and
analysis say— where one is confident there is no danger of paradoxicality;
but one should not, cannot, extend this unfettered use of classical to the full
language of mathematics.

But as with the case of free logic, it still holds true that notwithstanding
the harmlessness and indeed utility of appealing to classical logic in ‘safe’
sublanguages such as arithmetic, the truth of particular instances of classi-
cal theorems cannot be totally a priori. ‘The table in the room next door is
either square or not’ cannot be known to be true without knowing that there
is a table in the room next door. In the example above even though we have
F P/ ~P but not - Q \/ ~Q the first theorem cannot be known true in a
totally a priori fashion, its truth is not a purely formal matter else it would
indeed not be distinguishable in status from Q \/ ~Q. On the other hand, no
such classical theorem can be false in any admissible valuation (similarly
no anti-theorem can be true). To be sure, if R is everywhere gappy then
R & ~R cannot be false in any valuation either, similarly R \/ ~R cannot be
true. But in the case of classical theorems (in the ‘extensional’ language Lg
of &, v/, ~, T and 1) and classical theorems alone, we can have purely
logical knowledge which reveals that if every component of the wff is
determinate, then it is true: only indeterminacy stands in the way of its
truth, as it were. For every wff ¢ is minimax interderivable with a conjunc-
tive normal form CNF[¢] where CNF[¢] is a conjunction each of whose
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conjuncts is a basic disjunction, that is a disjunct each of whose disjuncts is
either an atom or the negation of an atom. (Similarly each wff is minimax
interderivable with a disjunctive normal form DNF[¢], a disjunction of
basic conjunctions.) If ¢ is a classical theorem, it is interderivable with a
CNF[¢] which is such that each disjunction contains at least one atom
together with its negation. We have, then,

[Det A: A < ¢} | ¢

where the premisses are the ‘determinations’ of each atom which is a sub-
formula of ¢, writing (x < y) for x is a sub-formula of y. The proof is by
DET vii) then \/I then &I yielding CNF[¢] to which we then apply mini-
max transformations.

This suggests a tripartite division of inferential relations into the analvtic,
the semi-analytic and the synthetic, particularly if one rejects the idea of
indeterminacy de re. Where A + B, the inferential relation between the two
is an analytic relation whereas, e.g. if A is merely empirical evidence for B
the relation is synthetic; if B follows from A classically but not A +| B, for
example if B is a classical theorem and A any sentence, the relation is
semi-analytic (whether or not A + B). In particular, if F A\/ ~A, A € Lg
then the truth of A cannot be known fully formally. This does not tell
against the neo-classical notion of entailment and proof: it is not in the least
evident that the proofs which occur in the real mathematical reasoning of
number or set-theorists, or proof-theorists for that matter, are purely formal
entities. In fact, the fallacy of equivocation and the existence of fallacies of
context-shift strongly indicates that there is a non-formal aspect to proof.

Putting the matter more positively, if we accept, pace dialetheists, that
indeterminacy is always a matter of some pathological malfunction in the
relation between words and the world, then we know a priori that ‘nothing
in the world’, as it were, prevents classical theorems being true. Knowl-
edge of its truth, though a posteriori, is in a fairly clear sense linguistic
rather than empirical. For instance, when we know that the table in the
room next door is either square or not, our knowledge here is knowledge
that the phrase ‘table in the room next door’ links to the world in the
normal way. And perhaps a similar story —of some sort of malfunctioning
of the word:world link— can be told for other cases in which classical
theorems fail.

Sometimes this is put by saying that whilst classical logic is the correct
logic of propositions not all classical theorems are correct, for they may fail
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to express propositions.!4 But this can be a rather unfruitful way to put
things: —virtually any deviant logic could be rendered ‘classical’ by this
move of writing off sentences it classifies differently from classical logic as
non-expressive of ‘propositions’. We need a clear sense of proposition
here: after all in the reference failure and vagueness cases the sentences are
built up from meaningful units in the same ways as non-malfunctioning
sentences. A fairly externalist notion of proposition or perhaps a meta-
physics of states of affairs would seem to be presupposed by this picture.

However that may be, I assume the legitimacy of taking there to be some
determinacy assumptions, in the language of mathematics, which can be
treated as having a special axiomatic status though not themselves logical
truths or sentences whose truth is determined by their form. The idea will
then be that the antinomies show not the falsehood of naive set theory but
the indeterminacy of certain sentences, such as the Russell sentence.

It would be awkward, however, if one had to introduce into the language
of mathematics an operator ‘Det’ foreign to mathematics as hitherto prac-
tised. This will not prove necessary, however, as determinacy in mathe-
matics can be analysed in terms of a modal conditional — . Of course the
same objection can now be raised: it may be claimed that modal and
intensional notions are alien to contemporary mathematical practice, so that
this manoeuvre is radically revisionary. To be sure, this Quinean doctrine
of the extensionality of mathematics is controversial with many arguing
that modal notions —of possibilities of construction say— are not archaic
ones, confined to the history of ancient Greek geometry, for example, but
are in fact part and parcel of contemporary mathematics.!S However the
use I will make of a modal conditional will be very limited. The main need
for such an operator arises from the goal of arriving at a semantically
closed theory: —it is natural to represent the entailment relation in the
object language as an iterable operator —. Moreover it is arguable that one
use of ‘if ... then’ in natural languages is as a sort of heavily context-
dependent entailment conditional. The intuition (albeit not universally
shared, as remarked) that mathematics is a cleanly extensional discipline
can be explained by saying that mathematical sentences are non-contingent
so that the intensional conditional collapses into the extensional.

t4Kripke, ‘Outline of a Theory of Truth’, in R. Martin ed. Recent Essays on Truth and
the Liar Paradox. (Oxford: Clarendon, 1984) pp. 53-82, footnote 18, p. 65.

I5¢f, Stewart Shapiro (ed.) Intensional Mathematics. (Amsterdam: North Holland,
1985), Charles Chihara, Constructibility and Mathematical Existence. (Oxford: Clarendon,
1990), Hilary Putnam, ‘Mathematics without Foundations’, Journal of Philosophy 64,
(1967) pp. 5-22, Geoffrey Hellman, Mathematics without Numbers. (Oxford: Clarendon,
1989).
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This is the picture I will propose but starting, of course, from a multi-
valued conditional in our Lukasiewicz/Kleene approximation to the
indeterminacies of set theory. Kleene and Lukasiewicz, in fact, diverged in
their treatment of the three-valued conditional Lukasiewicz favouring this
extensional one:

-u
1 =|U
- ===
RN [N
- Q|

whereas Kleene’s connective has gap (here represented by ) as the output
value in the middle case of & D (ZJ. The Kleene connective, however,
cannot be a good representative of neo-classical entailment since the sin-
gular inference from an everywhere gappy premiss to an everywhere gappy
conclusion is neo-classically sound, trivially preserving truth ‘downwards’
and falsity upwards. The obvious modal generalisation of Lukasiewicz’
conditional is:

(I) P - Q is true at a world w just in case if P is true at w*, w*
accessible from w, so is Q and if Q is false there so is P.

(2) P — Q is false iff there is a world w* accessible from w with P true
and Q false at w*.

(3) In all other cases (i.e. (1) and (2) fail but P is true at an accessible
world at which Q is gappy, or P is gappy at one at which Q is false) P
- Qis gappy at w.

However this conditional is also not quite right as an object language
surrogate for model-theoretic entailment since a singular argument from a
true premiss to a gappy and thus untrue conclusion, or from a gappy,
unfalse premiss to false conclusion is determinately incorrect neo-classi-
cally. So instead I will use a simpler semantics:

P — Qs true at a world w just in case if P is true at w*, w* accessible
from w, so is Q and if Q is false so is P; in all other cases, P » Q is
false.

To be sure this means that the gappy semantics cannot accommodate
higher-order indeterminacy of conditionals since they all have a determi-
nate truth value in each valuation and we shall see in the case of naive set
theory that an ineluctable higher-order indeterminacy in conditionals will
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always be with us (the Curry paradox shows this, for one thing). As
remarked in connection with the primitive Det operator, however, the only
adequate way to handle higher-order indeterminacy is to work with a non-
classical logic in the semantic metatheory (expressed, ideally, in the object
language itself), something which is postponed to Part II.

The intended interpretation of -, moreover, is as a special type of
intensional conditional, namely one which represents logical entailment.
Hence the standard interpretation will be one in which each model is just
the set of all admissible valuations, models differing solely over which is
the actual one, and in which the S5 semantics pertains so that each world is
accessible from every other one. It follows from this that A — B is true in
valuation v in model M iff it is true at all valuations in all models.

What, next, of the proof theory for — ? Intensional conditionals can be
incorporated proof-theoretically without disturbing (too much) the opera-
tional rules by dint of the relevantists’ distinction between intensional and
extensional combination of wffs in sequents. But for those who think that
the number of times a hypothesis is assumed is rationally irrelevant, a more
set-theoretic architecture is possible if we think of antecedents sets as sets
of wffs indexed by some initial set of the ordinals, that is as sets whose
members take the form (P, n) for P in some set X of wffs and n < k for
some finite ordinal k and such that for every i < k there is some Q € X with
(Q, n) € X*. For details, see the Appendix.

However | have suggested that in the case of the non-contingent
language of mathematics, the intensional conditional is equivalent to the
extensional. Working on that assumption, I will dispense with the ordinal
tagging in uses of the conditional in set theory and hence use the usual
sequent natural deduction —1 and - E rules; subject however to neo-classi-
cal constraints as follows. The —1I rule is:

X,P (HQ Given
Y; (2.i)DetR;  Given, VR; € X

X, | Jv. BHP->Q 1[2i]~>1

iel

subject to the usual sort of condition, namely that X n UYj =J. So the
iel

idea is that given a proof of Q from P together with some determinate as-

sumptions X, we can conclude on the basis of X and the distinct set of as-

sumptions which generate determinacy of X, that P - Q. The - E rule is:
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X (HLP->Q Given

Y 2)P Given

Z; (3.0)) Det R; VR, eXnNnY
X Y.[Jz @Q 1,2 [3.i] »E

iel

We have here a similar sort of restriction to the one in place for ~E: we
require determinacy of the assumptions which occur in both premiss
sequent antecedents. Similarly we lay down also the disjointness condition:

UZ, N (X UY)=. See the Appendix for soundness proofs for —,
iel

which I give for the general intensional case and not just the special case of
interest in which — is interpreted as entailment and subject to S5 seman-
tics.

Although we have dropped for present purposes the modal apparatus and
restrictions as unnecessary in the mathematical case, there are still some
principles which are valid for extensional conditionals but which fail in the
neo-classical case, most notably:

i")QE P - Q;andii*)~P= P - Q

These principles fail for a neo-classical entailment conditional, even where
P and Q are non-contingent, since, if Q is gappy at v but P true there then P
= Qs false at v but Q is merely gappy, contrary to falsity preservation
upward. Gappy P and false Q provide a similar counterexample to ii*). The
usual proofs of these two principles are blocked, without appeal to the
modal apparatus, by the neo-classical determinacy restrictions:

1 (1 Q Hyp

1 &HP-Q 11
1. (1)~P Hyp

2 @pP Hyp
12" (3HQ 1,2 ~E
1 “4HP—-Q 3, —1

In each application the premiss sequent ensuring that all assumptions other
than the antecedent of the conditional are determinate (i.e. Q in the first
case, ~P in the second) is missing.
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However the neo-classical restrictions on =1 block the usual derivation
of the following transitivity principle:

X (hP->Q Given
Y (2)Q-R Given
Z; (3.)DetA; VA, EXNY

X.Y.|Jz @P->R  1.2[3.4] Trans.

iel

though it is sound neo-classically (see Appendix again) assuming an S5
semantics for. Hence I will add the above principle as a primitive rule for
—, likewise similar principles of contraposition and permutativity. The
variant rule with & in place of — is easily derived, using &I and &E but I
will often cite the variant just as an instance of Transitivity, for reasons of
brevity. '

The introduction of the conditional then allows us to define the Det
operator. The obvious definition is

DetP=T - (P\/ ~P)l6

For if P has a truth value in all valuations, (P \/ ~P) is true in all valuations
hence so is T — (P \/ ~P) as required. Conversely, if P is gappy in
valuation v then so is P\ ~P hence in any valuation w, T = (P \/ ~P) is
false since there is an accessible v (our semantics being S5) at which T is
true (it is true everywhere) but P+ ~P is untrue.

An alternative definition of indeterminacy and thereby determinacy is in
terms of what one might call the antinomicity of P, that is the obtaining of
P © ~P which requires that P be gappy in all admissible valuations.
Abbreviating P & ~P by Ant P, one strong principle which is sound with
respect to it is the following:

— (1) AntP - (AntQ - (P & Q) Maximin.

This may be seen as a sort of generalisation of our mingle rule from P & ~P
conclude Q \/ ~Q, hence the “‘Maximingle’ or ‘Maximin.’ nomenclature. If
both P and Q are everywhere gappy, as the antecedents require, then
P & Qis everywhere true.

I6Note that since — is a strict entailment conditional, T — ¢ amounts to the necessity of
¢ so that we can abbreviate this definition of determinacy as [ (¢ \/ ~¢).
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What is the relationship between antinomicity and indeterminacy? Clear-
ly if P is gappy in all valuations then Ant P is true. However suppose P is
gappy in some but not all valuations. Then Det P is false but Ant P is not
true, since in those valuations in which P is not gappy, we have each side
of the biconditional taking different values. However if we consider a
language such as mathematics in which, at least in the traditional concep-
tion, no sentence is contingent, the two notions should coincide since each
sentence takes the same value in all possible worlds. Hence, for the lan-
guage of naive set theory, we are justified in equating antinomicity and
indeterminacy, and so adding as an axiom Ant P & ~Det P:

— (1)(P e ~P) & ~(T - (Pv~P)) Ant/Det Axiom

This, together with Maximingle, extends the power of the system by
enabling us to prove, rather than take as primitive, the DET principles i) to
vii) set out earlier. For example:

i) if F P then + Det P:

— (HP Given
— (2)P\y-~P 11
— 3T - Py~P) 2-I

v) If F ~Det P and  ~Det Q then F ~Det(P \/ Q):

— (1) ~Det P Given

— (2) ~DetQ Given

— 3 (P e ~P)e~T->(Pyv-~P)  Ant/Det
— @ Qe ~Q) e ~T-=(Qv~Q) Ant/Det
— (5)P e ~P 1,3 oF
— (6)0Q & ~Q 2.4 oF
— (N (5) = ((6) » (P« Q)) Maximin.
— BPeQ 56,7 »E X2
9 OPvQ Hyp.

10 (10)P Hyp.

10 (1D Q 8,10 oF
12 (12) Q Hyp.

9 (13)Q 9,11,12 vE
9 (U4-~Q 6,13 oF
9 (15)~P as 9: 14

9 (16)~P & ~Q 14, 15 &I
9 (U7 ~PvQ) 16 MM.
— (18)(Pv Q) » ~(PvQ) 17 =1

19 (19)~(Pv Q) Hyp.
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19 (20)~P 19 MM.
19 21 P 5,20 «E
19 (22)Pv Q ‘ 21 /I

— (23)~(P v Q) = Py Q) 22, 1
— (24) Ant (P v Q) 18, 23 &I
— (25) Ant (P Q) & ~Det (P v Q) Ant/Det
— (26) ~Det (P Q)

One final rule for — flows naturally from the intended interpretation of
— as encapsulating logical entailment in the object language. Let * be
some uniform substitution of wffs for atomic wiffs. Then we ought to be
able to conclude (P - Q)* from P —» Q: if P entails Q then any
substitution instance of P entails the substitution instance, under the same
uniform substitution, of Q. More precisely, the following rule should be
sound:

X (HP->Q Hyp
X @®-=0Q%* 1 -suB

The proof of soundness is fairly simple granted the following lemma:

Substitution Lemma: If * is any substitution function and v any valuation
then there is a valuation w such for all wffs P, P has the truth status (true,
false or gappy) in w that P* has in v.

For suppose all of X are true in valuation v!7 but (P —» Q)* is not true at v.
Then there is a valuation w at which P* is true and Q¥ is not or Q* is false
and P* is not. It follows from the Substitution Lemma that there is a
valuation u such that either P is true at u but Q is not or Q is false at # but P
is not, hence, by our S5 semantics for —, P — Q is false at v contradicting
the correctness of line (1). As for falsity preservation, suppose (P = Q)* is
false at v and all of X but A are true there. Then there is a valuation w at
which P* is true and Q¥ is not or Q¥ is false and P* is not and so by the
Substitution Lemma, as before, a valuation u at which P is true and Q is not
or at which Q is false and P is not; hence P —» Q is false at v whence by the
correctness of line one, A is false at v. [

Now the Substitution Lemma is easily proven in the case of simple
Kleene semantics. Since any permutation of truth values (including gap) to
atoms is a valuation, for any valuation v we read off the value of A* in v
and assign it to A to generate valuation w. Proof by induction shows that all

17In the full modal case —see the Appendix— X will be a set of indexed wffs, not a
simple set of wffs but the argument is unaffected by the complication. ‘
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wits in w have the truth status of their images under *. But the Lemma is
blocked neo-classically since not all Kleene valuations are admissible.
However if we are careful about what counts as a legitimate substitution
function, an amended form of the Lemma, sufficient for the purposes at
hand, will go through.

Let us say that a substitution function * is admissible iff for all wffs A, if
A* # A then both Det A* and Det A belong to AXDET. In other words,
the only formula on which non-trivial substitutions may be performed are
axiomatically determinate ones and one may only substitute a similarly
determinate formula for them. Hence A*, if it is distinct from A, cannot
take a gappy value and for every admissible valuation there is an admis-
sible variant in which A takes true and one in which it takes value false,
since A is determinate. Our soundness proof goes through as before
relative to a restricted form of — gypg in which only atoms whose deter-
minations are in AXDET are substituted for.

§$I1I: Naive Set Theory & Classical Recapture

Let us now see how these logical ideas can be applied to naive set theory.
Here, I acknowledged, gappy semantics no longer apply though neither
does the principle of bivalence since neo-classically we do not have (in
general) excluded middle in the background logic. Moreover the previous
sections have dealt solely with propositional logic and the logical frame-
work for mathematics must encompass quantificational logic or something
of similar power. Actually, I will argue in the second part of this article that
the widespread dismissal of infinitary logic as ‘of merely technical’ inter-
est, as not ‘real logic’, is mistaken and seek to broaden the logical appara-
tus by generalising the propositional logic in an infinitary direction. For
this final section of this part, however, I will assume a fairly obvious exten-
sion of the above ideas to second-order logic.

So, in line with the usual analogies (to be taken literally in Part II)
between & and V and v/ and 3, we will assume the standard VI, VE and 31
operational rules are legitimate since &I, &E and \/I are all unrestricted
neo-classically. 3E must be restricted, however, in line with the restriction
on \/E, that is, taking the first-order case as example:

X (1) Ixex Given
2 (2) gx/a Hyp.
Y2 3)C Given

Z.i 4nDetA; A,eXnY
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Xy, | Jz, @c 1,2,3 [4.i] 3E

iel

where UZ,. N (X UY) = and the usual classical restrictions apply.
iel
We need also, for full second-order logic, an axiom scheme of compre-
hension. Indeed I will use an even stronger form in order to derive the
generalised set comprehension axiom scheme, the scheme whose instances
are all wifs which result from the substitution of any open sentence for ¢ in
the following (thus y may occur in ¢):

FVx(x Ey & @x)

Granted that set-theoretic principle we can strengthen the second-order
comprehension scheme to:

A RN s Fos N B0 ARCFY, oo Py, Byeneiis) € e(F1, o Fp, x1, )

in which R may occur free in ¢. For it follows from generalised set
comprehension that for any assignment o to free variables, there is a set 3
such that for any n+m long sequence a, @ € B just in case the variant ¢’ of
o which assigns the ith term of « to the corresponding variable F; or xj(i=
m+j) satisfies @(Fy, ...F,,, X1, ...x,); this holds even where B is one of the
sets assigned to variables by o and o'. And conversely, as we shall see, we
can use the strengthened second-order comprehension scheme to generalise
a weaker naive set theory.

Since our logic is second-order we can define the identity relation by t=u
=gr. VX(Xt - Xu) and the following principles regarding identity are
derivable:

— (Hht=t =]

X (1) @xft Given

Y (2) t=u Given

Z.i (3.0) A; AeEXNnY

XY, [Jz @exu  12[34]=E

iel

where t and u are any singular terms, sz N(XUY)= and ¢x/m is the
iel
result of replacing all free occurrences of x in ¢ by the singular term m.
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Now for the non-logical part, the set theory. Naive set theory admits of
many formulations —first-order versus second-order, axiomatic versus rule
based, epsilon as primitive versus term-forming class operator as primitive
etc.— and the differences can be significant relative to variations in back-
ground logical framework. The rule form of Frege’s Axiom V is perhaps
the simplest way to present naive set theory in a framework of introduction
and elimination rules (here for the class abstraction operator) but for the
neo-classical framework we need € as primitive, not defined, and so a
slightly more complex system of joint rules for € and { }:

X ()te {x:ex} Given

X (2) gxft 1€/} E
X (1) gt 1 Given

X Ote{ixext 1€/}

From this theory we can derive not only naive set comprehension but also
the stronger generalised set version:

— (1) AFVYx(Fx & @(x,{x: Fx})) Comp.

2 Q) Vx(Fx o @x,{x: Fx})) Hyp.

2 (3) Ft & @(t,{x: Fx}) 2VE

4 (4)Ft Hyp.

4 B)tE {x: Fx} 4e/{}1
— (6) Ft » t € {x: Fx} 5 -1

7 (te {x: Fx} Hyp.

7 (8)Ft 7€/} E
— teE {x: Fx} - Ft 8, =1

— (10)t € {x: Fx} o Ft 6,9 &I

2 (1)t €E {x: Fx} & ot {x: Fx}) 3, 10 Trans.
2 (12)Vx(x € {x: Fx} & o(x,{x: Fx})) 11 VI

2 (13) PVx(x Ey & @lx,y)) 12 31

— (14) PVx(x E y & ¢(x,y)) 1,2, 13 3E

The axiom of extensionality—
ViVy(Vzz Ex & z E y) = x=y)

is taken as primitive (it can be thought of as doing no more than distin-
guishing classes from properties).

So we will assume as our background set theory the €/{} I and E rules
with strengthened second-order comprehension and extensionality. Such a
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powertul system clearly needs to be tamed by a non-classical logic. In neo-
classical logic, the usual proofs of antinomy are blocked, given that
AXDET is a consistent set of determinacy axioms,, relative to the set-
theoretic rules.!8 For instance, the usual derivation of antinomy generated
by applying naive principles to the Russell set r = {x: x & x} is defused and
transformed instead into a demonstration that the combined assumptions
that r € r and its determination are determinate are jointly inconsistent:

1 (Dhrer Hyp.

Il (2)ré&r 1 €/{} E
3 (3)Detrer Hyp.

1,3 (4) L 1,2, [3]1~E
3 Grér 4 ~1

3 ®Grer Se}]

7 (7)DetDetr&r  Hyp.
3718 L 5,6 [7]~1

By the (derivable) determinacy principle Det i): —if Det P is an axiom then
Det Det P is a theorem, we cannot have Det r € r as an axiom. But if
Det Det r € r belongs to AXDET, then ~Det r € r € AXDET is a theorem.
Note that the restriction on — 1 means that ~Det r € r, that is ~T=(rEeT
\/ 1 € 1), does not neo-classically entail ~(r Er\/ r & r) hence ~Detr E r
can be an axiom without, disastrously (even in neo-classical terms) ~(r €r
\/ T €& r) being an axiom also.

For another example, take the Curry setc = {x:x Ex » L }; the usual
proof of antinomy is blocked as follows:

1 (Hheeec Hyp.

1 (2)ceEc—> L 1€/} E

3 (3)Detc Ec Hyp.

13 @1 1,2 [3] »E
5 (5)DetDetc € ¢ Hyp.

3,5 (6)cec—-> L 415] =1

3,5 (MceEc 6e/{}l

8 (8) Det Det Detc € ¢ Hyp.

358 (9) L 674581 ~E

Here the final application of —E is not even legitimate since one of the
determinacy antecedents —Det Det ¢ € c, at line 5, is also one of the

180f course that there exists such a consistent set needs to be proven, and it is to the is-
sues involved in showing this that Part II is largely devoted.
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assumptions in other premisses for sequent - E. Even if we complicate the
rule to allow this,!? the most we can prove is line 9. Here, though, we have
a case where indeterminacy of conditionals is needed: Det ¢ € ¢ cannot be
axiomatic but ¢ € ¢ is equivalent to ¢ € ¢ — L so we have a conditional
which is indeterminate, or at least not axiomatically determinate.

More generally we can note that P & ~P | Q fails, and indeed that I P &
~P is perfectly coherent neo-classically:

(H)P & ~P Given

2 2)P Hyp.

2 (3)~P 1,2, E
4 (4) Det P Hyp.

24 (51 23[4]~E
+ (6) ~P 5, ~I

-+ (7P 1,6 o E
8 (8) Det Det P Hyp.

48 (9L 6,7 [8] ~E

so that neo-classical logic also provides a framework for handling anti-
nomic sentences such as the Liar. In Part I we will look at strengthened
liar type sentences such as A: (~Tr A \/ ~Det A) which says of itself that it is
untrue or indeterminate, cases where we need to introduce higher-order
indeterminacy though this is something the indeterminacy of conditionals
forces us to accept anyway. Overall the conclusion to be drawn is that the
wise should refrain from accepting or rejecting such sentences as r € r
though for some, at least, we may be able to affirm that they are indeter-
minate or indeterminate to some higher degree.

What form, then, should the set of determinacy axioms AXDET take for
naive set theory? I suggest taking a gung-ho attitude here: —adopt a set M
which is maximally consistent in the sense that M is consistent but adding
sentences Det P or ~Det P not already in M induces inconsistency. Of
course we can have no Cartesian certainty that some given set of determin-
acy axioms we are working with is consistent: —but if inconsistency
should appear, we simply weaken the determinacy axioms accordingly.
This approach, I want to argue, achieves a very smooth classical recapture,
that is, it validates nicely the standard mathematical practice of using

19The complication would be stipulating that if A belongs to a determinacy antecedent Z;
and also to X N Y then Z; = Det A is another of the determinacy premisses. The rule as it

stands, requiring that U z; and (X n'Y) be disjoint, has the consequence that - is not simply

il

AXDET F, but overall is a simpler rule to use.
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classical logic (and, indeed, naive set theoretic principles) when working in
‘safe’ areas, such as arithmetic, analysis or the lower reaches of set theory.

To illustrate this I sketch how the cumulative hierarchy features in the
neo-classical framework. Let us start first of all with the ordinals, the back-
bone of the orthodox cumulative hierarchy. We could introduce a binary
term-forming order-type operator and an abstraction principle similar to
Axiom V or else utilise the classic definition of ordinals as equivalence
classes?? over well-orderings (A,R) i.e. with R C A X A well-ordering A.
The equivalence relation is that of being an order-preserving bijection. But
it will be simpler to use the von Neumann idea of defining ordinals as
transitive sets over which € is a well-ordering.

Naive comprehension then gives us ON the set of all ordinals. But is ON
itself an ordinal, is it a member of itself? Classically either answer to such
questions leads to disaster —in particular, the Burali-Forti paradox. Neo-
classically we have a way out: ON € ON, like r € r, is indeterminate, we
can affirm ~(T - (ON € ON vy ON & ON)) and so be resolutely agnostic
on the question whether ON belongs to itself or not.

Now to work with the ordinals, we need recursive definition. But one of
the virtues of the ‘loopy” ultra-impredicative form of the generalised com-
prehension set axiom is that we get recursion ‘for free’. Indeed it enables
us to prove the existence of sets corresponding to arbitrary inductive defini-
tions where standard set theory permits, in general, only positive inductive
definitions.?! In particular, the generalised comprehension axiom enables
us to prove the existence of the cumulative hierarchy V, (@ € ON) without
going through any of the hard work of proving recursion theorems! The
inductive definition is as follows, where (a.x) € V is more familiarly
written as x € V,,.

(a,x) EV o Vy(yEx = (B < a) (B,y) E V) (for « € ON).

and this, modulo the introduction of a definition of ordered pairs (or intro-
duction of a pairing function as primitive), is an instance of naive compre-
hension in its general form since the defined set V occurs on the right-hand
side of the definition.

Similarly we can introduce unproblematically the arithmetic operations
by using naive comprehension to give us recursion. So, writing (a, 8, y) €

20Rejec:ting the hierarchical approach, I will use ‘class’ and ‘set’ as synonyms.

21gee Y. Moschovakis Elementary Induction on Abstract Structures. (Amsterdam: North
Holland, 1974).
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Plus as y= a + B, (and thus incurring obligations to prove uniqueness, see
below?2) binary ordinal addition + is then defined by:

y=(a+PB) e B=J&y=a
VB=8&y=(a+p)

v Limit B & y=|_J(a+6)
8<p

where &' is the successor of 8, namely 6 U {6}. We can use recursion again
to extend + to an infinitary operation % via the equations (which can be
recast as instances of generalised comprehension):

()=
S(f: e+l > X) = 3(f{ @) + f(a+])

3(f: A X), Aalimit=|_Jf:B X
B<i

Here (f: @+1 — X) is an indexing function from the ordinal «+1 into some
set X of ordinals and f(a is the restriction of that function to a. Then we
can define binary a X B directly, as the sum of the a sequence whose
image set X is just {3} (i.e. the ith term of the sequence is 3, for each i €
«) and go on to extend to arbitrarily long products then to exponentiation.
As for cardinals, these could be taken in the standard fashion as initial
ordinals or we could use the Frege/Russell definition of the cardinal of x as
the set of all sets equinumerous with x. Since we have a universal set U,
with x € U & x=x, we have a greatest infinite cardinal « with x € © & x
= U, where = abbreviates the definition of equinumerosity. I will call %
superinfinity, the number of all things. The existence of the greatest
cardinal o thus vindicates Frege’s early theory of cardinals and Russell’s
early position, as expressed in 1901 (both later abandoned, of course):

There is a greatest of all infinite numbers, which is the number of all
things altogether, of every sort and kind. It is obvious that there cannot
be a greater number than this ... . Cantor has a proof that there is no

22 An alternative would be to take function terms as primitive and have functional
comprehension in the form Yx3!yexy - AVxVyfx =y © ¢@xy) where fcan occurin ¢.
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greatest number ... . But in this one point, the master has been guilty of
a very subtle fallacy, which I hope to explain in some future work.23

Of course Russell fails to pay heed here to Cantor’s distinction between
consistent and ‘inconsistent’, ‘absolutely infinite’, multiplicities such as the
‘multiplicity’ or ‘domain’ (i.e. naive set) of all things.

Once we treat of the superinfinite number of all things we are back in the
region of paradox and antinomy; likewise when we put an ordinal size on
the length of the cumulative hierarchy V.24 This does not impugn our
general form of recursion but it does show that defining the set into exis-
tence is one thing, being able to do things with it in neo-classical logic, e.g.
use proof by induction is another. Similarly, mere recursion alone does that
show that Plus is functional, i.e.

{a, B, y) € Plus & (e, B, 8) € Plus » y=4

nor, for example, that ordered pairs under the Weiner-Kuratowski defini-
tion, say, obey the ordered pair law. All these things, proof by induction,
functionality of Plus (which is provable given induction), the ordered pair
law and so forth, will hold for a sub-language L which is classical, so that
Det P € AXDET, for all P € L¢. One obvious proposal for such a classical
sublanguage is the set of all wffs restricted to V, for some particular a.
That is all quantifiers are restricted to V, i.e. each individual variable x is
bound by a quantifier Vx governing a clause Vx(x € V, - ...) or a quanti-
fier dx governing a clause Ix(x € V, & ...) each second-order variable F
is bound by a quantifier VF in a clause VF(F C V, = ...) or by the dual
clause for IF.

Here now is how we can get a very neat classical recapture since it
vindicates all of the standard reasonings of mathematicians, number-
theorists, analysts, ZF and NBG set (and class)-theorists and so on.25 It
does so, at any rate, so long as there is a consistent AXDET set which con-
tains the determination of every wff in these sub-languages. So if « in the

23Bertrand Russell, ‘Recent Work on the Principles of Mathematics, International
Monthly 4, (1901) pp. 83-101. Reprinted in Mysticism and Logic. (New York: Barnes and
Noble, 1971 edition) the quotation is from p. 69.

24As nearly everyone does, even those such as Dummett who deny that it can be done.
See Michael Dummett, Frege: Philosophy of Mathematics, (London: Duckworth, 1991)
pp. 316-317, Alan Weir, ‘Dummett on Impredicativity’, Grazer Philosophische Studien 55,
(1998) pp. 65-101, see pp. 81-82.

251 see no problem about incorporating Category Theory with Big Categories either.
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restriction clauses V, is w —Iet us say in this case that the sub-language is
L,— then if L, is classical one will be able to reason completely classi-
cally about the set-theoretic simulacra of the natural numbers. Similarly
one will be justified in reasoning fully classically about the real line, or
functions over the reals if the classical AXDET set for L, is consistent,
in the first case, or for L,,,> in the second. And if the classical AXDET set
for L is consistent, for some inaccessible «, then one will be entitled to all
classical reasoning from the axioms of ZF. But there will be consistent
AXDET sets of all these types if current standard mathematics is consis-
tent.

How far can one reasonably assume we can go, in this direction? Con-
sider the set of all Small ordinals, where a set is Small iff there is no
bijection from the set onto the entire universe. I will use () as a name for
this set. Vq is, of course, the standard cumulative hierarchy. If Lg- is
classical then we can reason classically and conclude that (), being a class
of (downwards-closed) ordinals, is itself an ordinal. Hence it cannot be
Small (else it would belong, absurdly to itself) and so there is a bijection b
of £} onto the universe. This gives us a well-ordering R of the universe,
with Rxy & blx = b-ly using, for the ordering = over (), the standard x =
y =4 X € y\/ x=y. And this gives us in turn Global Choice.26

By sticking our necks out a little further we can develop the theory of a
whole hierarchy of Big ordinals, the ‘Last Number Class’ as it were: ordi-
nals of the form ', Q + Q, Q2, QL Qg = Q% More precisely, in
this last case, we define by recursion a function f with domain @ by the
equations

f(0) = (),
f(i+1) = ()2
(]
and define ()., the least solution to & = (2#, byU f(i); and we can con
i=0
tinue on upwards. So if LSQ, for some «, is classical then we can reason
fully classically about an initial segment of the last number class of super-
infinite ordinals. I will assume in Part 11 that this assumption is innocent,
until proven guilty.
What, though, if (2, the class of small ordinals is in fact w. Well, in that
case the universe is countable and anything beyond number-theory is illicit.
Similarly, if €} is accessible, then ZF is too strong and so forth. How can

26The Brady and Routley proof, in a paraconsistent logic with generalised
comprehension, of Global Choice —see ‘Applications of Paraconsistent Logic’ in Brady
~and Routley (eds.) op. cit. p. 374, fails to hold in full generality neo-classically.
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we decide what size the universe is, from the neo-classical naive per-
spective? There is no formal decision procedure or even criterion. One can
demonstrate that w is small and so () > w by applying Cantor’s Power-Set
Theorem to w thereby showing that its power class is of higher cardinality.
But this demonstration will only be accepted as such by someone who in
effect thinks of w as determinate (more exactly, accepts T - (f(C,) € C,,
v f(C,) & Cg), where (x € C,, © X € @ & x & f1(x)) f the purported
one:one mapping from P(w) into w). Similarly if one accepts the Cantorian
PowerSet reasoning as applied to the set A of all cardinals accessible from
No then one will accept as provable that there is at least one inaccessible,
and so accept as legitimate classical reasoning with respect to ZFC (the C
from the above argument for Global Choice).

As remarked, nothing rules out the possibility that, having accepted, e.g.
that f(Cp) € Cjp is determinate, one will later discover that antinomy is
derivable by anyone reasoning neo-classically on that determinacy assump-
tion. If L, turns out to be non-classical, for ¢ inaccessible, then one will
simply have to revise one’s estimate as to what is provable and so true; in
particular one will no longer treat full ZFC reasoning as legitimate. To ask
of an account of mathematics that it rule out any such future revision is to
demand a Cartesian certainty which is not possible even in mathematics.

I finish with a comparison between the neo-classical and the dialetheic
accounts of classical recapture. On the neo-classical account, our actual
practice of unrestricted classical reasoning is legitimate for the sub-
fragment of mathematical language in which all quantifiers are restricted to
a ‘safe’ set and if standard mathematics is classically consistent there will
be such a safe set. This means that neo-classical lagic in effect collapses
into classical with regard to standard mathematics. Where classical logic is
not consistent, outside the domain of standard mathematics, neo-classical
logic provides techniques for reasoning coherently about ‘unsafe’ sets such
as the universal set, the Russell set, the class of all ordinals and so on. Of
course the standard view is that there is nowhere outside the standard “do-
main” and we do not reason about these sets, we simply deny they exist.
But as a whole tradition from Frederic Fitch up to Graham Priest has per-
suasively argued, few, if any, have been able to stick consistently to the
official line: the proscribed sets have a persistent habit of resurfacing in the
guise of ‘totalities” or ‘collections’ or ‘domains’ or some other such genteel
euphemism, wherever an attempt is made to interpret or justify set theory.
Neo-classical logic saves us from the bad faith involved in all this.

What about the dialetheic account of classical recapture? There seems to
be more than one: one recent idea is that the classical reasoning employed
in mathematics departments the world over is ‘default’ reasoning, legiti-
mate except when employed in inconsistent situations; and when reasoning
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in number theory, analysis, ZFC and so forth one might suppose we have
good reason to believe we are not in inconsistent situations.2’ This notion
of default reasoning bears some  resemblance to the neo-classical idea of
classical reasoning being safe in domains where the needed determinacy
axioms hold. However the positions are, I think, really rather different.
Priest cashes out the notion of default reasoning in terms of non-monotonic
calculi, calculi in which simple and intuitive operational rules such as the
disjunctive syllogism rule for \/ and ~, are not universally valid. This is
more counter-intuitive than the neo-classical position which validates this
operational rule. But the point is not clear cut because of course what is a
basic operational rule in one proof architecture can be derived via opera-
tional plus structural rules in other. Still the more clear and obvious the rule
one rejects, the less the initial plausibility of one’s position. And a calculi is
not plausibly viewed as a logic, I would argue, unless the rules it takes as
basic single step operational rules are treated as globally correct.

There is a stronger reason for thinking, however, that such calculi, how-
ever useful they may prove in formalising non-deductive reasoning, are not
genuine logics. For to say that X entails A is to say, on the intuitive rough
gloss, that in any possible situation in which X is true A is; but in non-
monotonic calculi, X = A could hold yet A fail to hold in a situation in
which X is true together with some other stuff Y.

In an earlier account of classical recapture, (In Contradiction pp. 144—
148), Priest argues that the dialetheist can argue classically in areas where
no contradiction is suspected, even when such reasoning is invalid accord-
ing to the dialetheist, because invalid reasoning can be perfectly respect-
able, as inductive reasoning shows. But the legitimacy of inference to the
best explanation, for example, does not show that affirming the consequent
is legitimate. Rather, the conclusion of an inference to the best explanation
should, at least when we are being exact, be qualified probabilistically. But
to reformulate mathematical practice so that, e.g. we may conclude only
that it is probable that there are more reals than natural numbers, is not to
recapture classical mathematics but to mangle it almost beyond recog-
nition.

This criticism highlights what I believe is the crucial failing of dialethe-
ism in general, one which vitiates its claims to provide a rational recon-
struction of mathematical practice. This failing is its inability to explain
why abandonment of theories is sometimes rationally compelling. One of
Priest’s explanation is that when a theory entails something with low
probability, say a ‘malign’ zero-probability contradiction, then it should be

27But see G. Priest: ‘Is Arithmetic Inconsistent?, Mind 103, (1994) pp. 337-349.
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abandoned; (some atypically benign contradictions, have, for the dialethe-
ist, probabilities greater than zero, e.g. one). Here ‘probability’ cannot be
interpreted in frequentist terms' but must be interpreted ‘epistemically’
either as an objective relation among arbitrary propositions —thus some
type of a priori confirmation relation— or else subjectively & la Bayesians.
If the dialetheist appeals to subjective probability, the game is up. Priest
believes we can knowingly believe P & ~P. Hence if we are extremely fond
of a theory 6 but turn up a contradictory consequence P & ~P we will
presumably have no problem in believing P & ~P, i.e. attaching subjective
degree of probability one to it. At any rate there are no objective rational
grounds which debar us from doing this, regardless of what § and P are, so
that no refusal to abandon a theory can ever be objectively criticised.
Hence it would seem that the dialetheist, in explaining when it is irrational
to persist with a theory, must rely on a priori objective degrees of confir-
mation or something of a similar nature. And the problem there is that she
is then wedded to one of the least successful philosophical research pro-
grammes of recent times. No such commitment is required of the neo-
classical approach, so on these grounds I conclude that it affords a superior
classical recapture when compared to dialetheism. All granted the sound-
ness of the system, of course, to which I turn in Part II.

Alan Weir

Department of Philosophy

The Queen’s University of Belfast
BELFAST BT7 1NN N. IRELAND.
a.weir@qub.ac.uk

APPENDIX: SOUNDNESS AND COMPLETENESS RESULTS

Soundness for the conditional

The inductive steps for many of the non-conditional operational rules in the
proof of soundness for the neo-classical system have been considered in the
main body of the article so I consider now the cases of the introduction and
elimination rules for —. We are especially interested in the intended inter-
pretation of — as representing logical entailment but for the soundness
proof let us consider a more general interpretation. Thus our models are
sets of worlds, worlds being just admissible valuations; but models need
not include all admissible valuations, moreover we let the accessibility
relation by any relation at all over the worlds of the model.
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Since antecedents of sequents are sets of wffs indexed by some initial
segment of the ordinals we need to add the idea of a sequence of worlds in
model M being ‘suited’ for a sequent. If the antecedent is indexed by an n
long segment then the sequence of worlds is suited iff it is of the form
{(wq, ..., wp) with w;, | accessible from w;. In the definition of entailment we
then replace truth and falsity of wffs in a valuation by truth (falsity) in the
ith world for a wff indexed by i, with truth and falsity for the succeedent
wif defined by truth or falsity of the wff in w), the ‘end’ world in the string.
So a world-sequence satisfies a sequent iff neo-classical truth and falsity
preservation hold with truth and falsity world-relativised as above. That is,
X = A is a neo-classically correct sequent just when for every admissible
model M and every sequence {w;) of worlds of the model suited to X:

a) If all wifs in X are true relative to their assigned worlds in {w;} then
A is true relative to we, the end world of (w;).

b) For any wff P in X,28 if A is false relative to the end world of (w;)
and all in X but P are true relative to their assigned worlds then P is
false relative to at least some of its assigned worlds.

Having thus set out the semantics, we turn to the proof theory for —
which is given by the following introduction and elimination rules:

XAt (HB Given
Y; (2.0) Det C; Given, C; € X
X, |Jr. (3)A'> B 1 [2.]~ 1

iel
where X N UY,- =2

iel

X (1)A—-B Given
Y 2)A Given
Zi (3.i) Det C; VC,EXNY
Y Jz.  @Q 1,2[3.i] »E

iel
where (X U Y)n JZ, =@.
iel
281 ¢. such that (P,a) occurs in X.

2gStrictly speaking, this means there is no wff P such that {P,a) € X and (P,8) €] v,.
iel
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The notation in these rules is interpreted as follows A+ = {(A,a)}, where
a =1+ uyx, with ux the supremum of the indices in X.30 The idea behind
YX+ is that we “slide” the indexed Y and X wffs together so that their last
index3! and so end-worlds are “aligned” then “nudge” the Y wffs one
world “past”. Thus if X is {(P,0), (Q,1), {R,2)} —we can write this
{(PY, Q!, RZ)— and Y is {PY, TO, U'} then X,YX+is {P0, Q!, P2, R2, T2,
U3} whilst if X is (PO} and Y is {P0, Q!, R2} then X,YX+ is {PO, P, Q!,
R2}. More generally, with wy defined as for mx above, the rule for con-
structing X, YX+is:

a) if ux = wy then leave the indices on the wffs in X untouched and add
(mx-py)+1 to the indices on the wffs on Y and form the union of the
resulting sets.

b) if wx < wy then leave the indices on Y untouched and add (y-ux)-1
to the indices in X.

We then form a sequence (w;) suited to X, YX+U Z, by aligning the
iel
indices of (X, YX*) and those of LJZj the latter in turn formed by aligning
iel

end indices of all Z; sets.

Proof of Soundness:
For — L. Truth-preservation direction. Suppose all of X, UYj are true
iel

relative to (w;) a sequence of worlds suited to X whose ‘end’ world is We;
and suppose A is true at w* accessible from we. Then (w;*w*32 is suited to
X,A*, all wffs are true at their respective worlds so that B is true at the end
world w* of (w)*w*. Suppose on the other hand B is false at such a w*.
Then since all of X are true relative to {w;) and {w;)w* is suited to X,A*,
the correctness of X,A* = B yields the falsity of A in w*, as required.

30Since we will only consider sequents, finite or infinite, which have are indexed by a
finite ordinal string, there will always be a greatest index in X, hence the supremum of the
indices in X is in X itself. By the index of a set X of wff indices we will mean the least
ordinal containing all and only the indices in X.

31 There always is one in the finitary case.

321 .e. —the extension of the sequence (w;) formed by adding w* as the i+1™ end term.
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Falsity preservation. Suppose A — B is false at w,, and all of X, U Y, but
iel

P are true relative to their appropriate worlds in (w;). Thus there is a world

w* accessible from we such that either a) A is true at w, and B is not or

b) B is false at we and A is not. Moreover P & UY,. since if not, by the
iel

disjointness condition, all members X are true in their respective worlds
violating truth preservation. Since all of the Y; are true at their respective
worlds, all members of X have determinate values at their worlds, by the
correctness of the 2.i sequents. P cannot be true at all its respective worlds
in (w;) otherwise (w;)*w* yields a counterexample to the correctness of line
(1), either violating truth preservation, in case (a), or falsity preservation
upwards, in case (b). Since P is determinate, it must therefore be false at
some of its worlds as required.

For = E: Truth-preservation. Suppose all of X,YX+,UZj are true relative
iel
to (w;) a sequence of worlds suited to X,YX+U Z, and whose end world
iel

is we and whose penultimate world (which must exist by the construction
of X,YX*) is wp. By the definition of X,YX*, all Y wffs are true relative to
(e;), the end-sequent of (w;) of Y’s length (i.e. the length of the ordinal
string indexing Y). Hence by the correctness of the minor premiss, A is
true at we, while from the major premiss and the definition of X,YX+, we
have that A — B is true at wp. Since w, is accessible from wyp this yields
the truth of B at w, as required.

Falsity Preservation. Suppose B is false at w, and all wffs in X,YX+U Z
iel
are true at all their assigned worlds except P. As before, P cannot occur in

LJZj on pain of violation of truth preservation. There are thus three cases:
iel

i) P occurs in X but not YX+; ii) P occurs in YX+ but not X; iii) P occurs in
both —in which case by the determinacy premisses 3.i it is non-gappy in
all worlds.

Case i) All of Y is true at {e;), defined as above, hence A is true at w,. The
truncation of (w;) by the deletion of the end term w, yields a world-se-
quence {w;)" suited for X with end world wp and in which all wffs but P are
true. Since we is accessible from wy, and A is true at w, but B false there it
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follows from the correctness of the major premiss that P is false at some of
its assigned worlds in (w;)” hence at some assigned worlds in (w;).

Case ii) All of X is true at {w;)" hence A — B is true at wp. Since B is false
at we, we accessible from wy, then A is false at we by the semantic clause
for —. By the correctness of the minor premiss, P is false in some of its
assigned worlds in (e;) hence in (w;).

Case iii) P is determinate so either true at all worlds assigned it or false in
at least one. If the former, B is true at w, by the truth-preservation reason-
ing. Since it is not —by hypothesis— P is false relative to at least one
world.

The transitivity rule, added as a further primitive:

X (HP->Q Given
Y (2)Q-R Given
Z; (3.)DetA; VA,EXNY

X.Y.Jz @P->R  1.2[3.] Trans.

iel

also has to be shown to be sound. Here we assume X, Y, UZ,. is formed
by simple alignment of end-indices. iel

Truth-preservation: Suppose all of X, Y, UZ,. are true in their respective
iel

worlds in a suitable sequence (w;) and that P is true at a world w* acces-

sible from the end world we. We take the two end segments (e;) and (f;)

suitable for X and Y both with w, as their respective end world. By (1) Q is

true at w* and by (2) R is true at w*; Similarly if R is false at w* so is P.

Since w* is any world accessible from we, P — R is true at (wy).

Falsity-preservation: Suppose all of X, Y, UZ,- but S are true in their
iel
respective worlds and P — R is false at (w,). S cannot belong tcLJ Z, for
iel

the usual reason; if it belongs to X N Y it is determinate but cannot be true
on pain of violating truth-preservation. So we consider only the cases
where (i) S belongs to X but not Y or else (ii) to Y but not X. In the first
case, Q — R is true at (w,). Since P - R is false there, there is a world w*
accessible from (w) at which either a) P is true and R is not or b) R is false
and P is not. If case a), Q is not true at w* by (2) hence P - Q is false at
{we) so by line (1) S is false at some of its worlds in (e;) and so (w;). In case
b) R is false at w* so by (2) Q is false at w* whilst P is not. Hence P - Q
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is false at {we) and once again by line (1), S is false at some of its worlds in
(e;) and so {w;) as required. The argument for the second case, S is in Y but
not X, is similar. []

The extensional rules all have to be complicated in the intensional frame-
work in order to handle the modal indices. For example, for ~I

X,P (1 L Given
X 2y ~P 1, ~1

X~P ()1 Given
X )P 1, ~I;

X,P is to be interpreted as saying that P, in the first case, ~P in the second,
occurs with the same index as wx. Hence for the first case in the falsity
preservation direction, if ~P is false at w,, the end world of a world-
sequence suited to X, then P is true at w, and so if all of X but Q are true at
their worlds, Q must be false at some assigned world. Similarly we must
complicate the Expansion rule. Two sound expansion rules are:

Y (DA Given
X,YX*  (2)A 1, Expansion

Y () A Given
X, YX (2) A 1, Expansion

Here in the first form of the rule, X,YX+ is formed from X and Y just as
with — E whilst in the second form we merely “end-align” the indexed sets
of wffs. To see the soundness of the first form, suppose all of X,YX+ are
true relative to (w;) as defined for - E above, likewise for the definitions of
we and wp. By the definition of X, YX+, all Y wffs are true relative to (e;),
the Y-length end-sequent of (w;) hence by the premiss sequent A is true at
we as required. If, however, A is false at w, and all members of X,Y*+ but
P are true in (w;) hence all members of Y but P true in (¢;), then, by the cor-
rectness of the premiss, P must occur in Y and be false in some worlds in
{ei) hence (w;). As can be seen, we could “nudge” Y past X as much or as
little as we are able to, yielding in the minimal case the second form of the
rule, and still preserve soundness.

To incorporate the standard modal logics we simply alter the construction
of the Y set in the third premiss of the — E rule. For example, if the
accessibility relation is reflexive this form of - E is sound:
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X 1)A - B Given

Y 2)A Given

Z; B.)DetC; VG eEXnY
X, Y% )z @Q 1,2 [3.i] »E

iel

(subject to the same disjointness condition). Here YX is to be interpreted as
in the previous paragraph. As to soundness, the argument is exactly the
same as the original form of — E except that we drop wp, the penultimate
world; there is now no need for a penultimate world in the soundness proof
since the end world wy is the end world for both the X set and the Y set and
is accessible from itself. This form of the rule then enables us to derive the
rule [JE, that is the rule if X  [JP then X F P, with (JP =T - P, T the
nullary logically truth constant. The proof is:

X (HT - P Given
T T Hyp.

X T 3P 1,2 -E
X @HP Supp.

with the principle at (4) being the suppression of the logical truth constant
T.

Similarly if the accessibility relation is transitive we get the K4 and
stronger logics adequate for such classes of modal models by adding
another variant of — E in which the Y wffs can be nudged two worlds
‘past’ the end world of the sequences suited to the X world:

X (HA->B Given

Y 2)A Given

Z; (3.)DetC; VYC,EXNY
X, Y%+ )z, @Q 1,2 [3.i] »E

iel
whilst for the Brouwersche we use a version of — E in which this time the
X wffs are nudged one past the Y wffs.

X HDA->B Given
Y (2) A Given
Z; (3.0) Det C; VC,eEXnY

X, Y% )z, @Q 1,2 [3.i] »E

iel
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Completeness

We prove completeness with respect to the gappy semantics and thus for
the non-mathematical case in which we do not have the strong Maximingle
rule equating indeterminacy and antinomicity. In its place, we add MM*:

— (1) ~Det P Given
—  (2)~DetQ  Given
X 3P Given
X »Q 1,2,3 MM*

which is trivially both truth-preserving and upwards falsity-preserving. We
also consider — to have the intended interpretation of a logical entailment
conditional so models are essentially just the set of all valuations with each
world accessible from any other.

Define sublanguage L to be complete just when for all A € L, either Det
A € AXDET or else ~Det A € AXDET. Then we have, for finite X and
with X,Q C L, L complete:

IfXF QthenX Q.

Proof: We prove this by induction on the degree of the sequent X = Q,
where this is 1 + the maximum degree of the component wifs and where
the degree of the wif ranks the number of nestings of the conditional; that
is atoms have zero degree, the degree of (A — B) is 1 plus the maximum
degree of its immediate components and the degree of all other compounds
is just the maximum degree of their immediate components.

We need, in fact, to prove inductively both the above completeness result
and the Conditional Lemma:

If A - B is true at some valuation v (equivalently at all valuations) then
F(A - B);if A » B is false, then F~(A = B)

where 'is any legitimate substitution function.

We assume the result holds for all sequents of degree less than or equal
to n and conditionals of degree = n and prove both parts for degree n+1.
The proof of completeness is by contraposition. So we assume Not: X i Q,
where X = Q is of degree n+1. The proof that Not: X = Q appeals to
transformations into disjunctive and conjunctive normal forms after the
fashion of Anderson and Belnap’s for their system of tautological entail-
ments in Entailment op. cit. §15.1.

We note firstly that an inductive proof establishes that every sentence P
takes the same value in every valuation as, and can be transformed by
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minimax rules into, a disjunctive normal form (DNF) 1\2 P;, where i\}l P;isa
disjunction of basic conjunctions,?3 a basic conjunction being a conjunc-
tion of basic sentences * A, each basic sentence of the form A or ~A, A an
atom or a conditional.3* Similarly any sentence can be transformed neo-
classically into an equivalent conjunctive normal form (CNF) a conjunction
of basic disjunctions, each such disjunction composed of basic sentences as
above.
Let P be the conjunction of all wffs in X, v P; a DNF of P and & Q,

CNF of Q. Then we have

Not: (v P;F & Q)
1=1 j=1

For otherwise we would have X + Q by:
X (HhP &I's
P (2) .\I_I/I P; Normal Forms
S/ P; (3 g'. Q;  Given
i=1 j=1
_a"ile (4)Q Normal Forms
i=
X 5Q 1:4 Cut
So there must be some P;, Q; with Not: (P; - Qj) else there would indeed

be a sub-proof of gale from ,\nfl P; with the following structure:
i= i=

vPi (DvPi=,  Hyp.

P (2) Q Given

P -(;;z+l) Qm Given

33More exactly, a disjunction in which no occurrence of & or ~ has an occurrence of v/ in
its scope.

347This is a deviant notion of basic conjunct, of course, designed to simplify treatment of
the conditional in the completeness proof.
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P (m+2) &Qjj=m 2:m+1 &I

By '(0) &Qj j=m as 2:m+1 &I
Pn (P) &Qj_jSm as 2om+1 &1
P (p+1) &Qjj=p, 1m+2 ...pVE

Hence we know that there is some basic conjunction P;, and basic dis-
junction Q; such that Not: (P; - Q;). It follows that they cannot share any
basic sentence in common, else Q; would be derivable by &E and \/I from
P;. It follows also that they cannot both be replete where a basic con-
Junction or disjunction is replete if it has as constituents both A and ~A, for
some atom A. This is so because otherwise the basic disjunction would be
neo-classically derivable this time using the mingle rule.

So suppose Q;, at least, is not replete (the argument in the other case is
symmetrical) and P; is of the form

Ay &~A1 & .. A, & ~A, & By ... B,.

where r may be zero and no negate33 of By ... By occurs in P; or Q;. We
cannot have Det Ay € AXDET, for k = r: for if so, then Ay & ~A; F Q;
(since then I Det (Ay & ~Ay)) hence by Cut P; I Q; since P; - Ay & ~Ay.
Moreover there cannot be both an indeterminate conjunct (i.e. conjunct C
with ~Det C € AXDET) of P; and indeterminate disjunct D of Q; since
then we would have C + D by the MM* version of the maximingle rule and
so P; F Q;. Suppose without loss of generality that all wifs in Q; are deter-
minate (the case where all in P; are determinate is similar).

We now proceed to construct a counterexample valuation v. Suppose first
of all, in order that the idea behind the valuation be made clear, that P; and
Qj contain no conditionals. We construct the valuation in stages firstly by
assigning the value false to each basic sentence in Q;: this is possible since
each disjunct is determinate and Q; is not replete so that no two basic
sentences share atoms. We then extend this partial valuation by assigning
true to each B, in P, t > r such that B, is determinate, and gap to each
indeterminate conjunct; similarly all the opposing Ay, ~A; formulae are left
gappy. Again the result is a partial valuation because no two B, sentences
share atoms and if any sentence shares an atom with a basic sentence in Q;
the sentences are negates of one another and the Q; sentence is false. We
then extend this valuation any way we like (but respecting AXDET, e.g.
true or false for E with Det E € AXDET, gappy if ~Det E € AXDET)

3Sle. Aisa negate of B if A is ~B or B is ~A.
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over all other atoms to yield our admissible valuation v which is a counter-
example to P; = Qj, since Q; is false and P; is not, and so a counter-
example to P = Q by the clauses for & and /. By contraposition, if X =
Qthen X Q.

But we must consider the more general case where P; or Q; may contain
conditionals. Here we apply the Conditional Lemma, which we have
supposed holds of wifs of degree n or less and since X = Q is of degree
n+1, any conditional in X,Q must be of degree n at most. It follows from
the inductive hypothesis that if a conditional is in P; or its negatlon is in Q;
then it cannot be false in any valuation. For if R — S is false in valuation w
then by the inductive hypothesis to the Conditional Lemma, F~(R — S).
Thus if ~(R - S) is in Q; then + Q; hence P; F Q; by expansion, contrary to
hypothesis. Similarly R — S cannot be in P; else P; - Q; by ~E. Since (R
- S) is false in no valuations it is true in all valuations, given our bivalent
semantics for = and so true in our counterexample valuation v; hence it
can be treated just like a determinate basic atom which is in P; or whose
negation is in Q; in generating a counterexample valuation.3¢ If, on the
other hand, R — S is in Q; or its negation in P; then it cannot be true in any
valuations (hence by our semantics must be false in all). For if true then F
R — § by the Conditional Lemma in the special case of a null substitution
function ".

We need, then, in order to tie up the proof, to prove the Conditional
Lemma itself, for wffs of degree n+1. If any such wff E —» F is true in a
valuation then E = F. Since E - F is of maximum degree n+1 so too is
E = F hence by the completeness result for degree n+1 just established, E
FFsot (E = F)' by =1 followed by — gyg. Suppose, on the other hand,
E — Fis false. Then there is a counterexample valuation v in which (i) E is
true and F untrue or (ii) F is false and E is non-false.

In either case we use the = gyp rule with respect to a substitution
function * which assigns T to every subformula of E or F true in v, 1 to
every wif false in v and I to every wff gappy in v where I is some sentence
such that ~Det I € AXDET (if there is no such sentence, the language is
purely classical and we can consider a purely bivalent semantics which
simplifies the proof). Since our language L is complete, * is a legitimate
substitution function. Any wff A true or false in v is determinate so Det A

361n a subtler semantics which allows for indeterminacy —by dint of working in a non-
classical metatheory, for example— we can argue that if (R - S) is indeterminate and
belongs to the complete sector of the language then we have outright ~Det (R = S) €
AXDET, by our definition of AXDET. Such conditionals can then be treated like
indeterminate basic sentences in P; and Q; so that, for example, we cannot have an
indeterminate sentence, including a condmonal in one of P;, Q; if there is an indeterminate
sentence in the other.



NAIVE SET THEORY, PARACONSISTENCY AND INDETERMINACY: PART 1265

€ AXDET, any wff gappy there is indeterminate. The next fact we need is
Lemma II:

If A is true in v then F A*, if A is false in v then F ~A* and if A is gappy in
v then | ~Det A%,

Proof of Lemma II. Proof is by induction on wff complexity over the set of
all sub-formulae of E or F (which have maximum degree of — nesting n).
The base step is easy (using the completeness of L). For an example of an
inductive case for a non-conditional operator, consider A = (R&S). The
case where A is true in v is easy. If A false in is v, one conjunct at least is
false, say R. Then by inductive hypothesis F ~R* so by minimax
~(R* & §*) but this wft is just [~(R&S)]*. Suppose, finally, that A is
gappy at v because, for example, R is true but S is gappy. Then | ~Det A%,
If not, by completeness + Det A* even though, by inductive hypothesis, F
~Det S*. But this is impossible, by soundness, since otherwise we would
have the following proof.

— (1) Det (R* & §*)  Given

— (2)R* Given

3 B)R*&S* Hyp.

3 (4)S8* 3 &E

— (5) ~Det S* Given

— (6) ~Det ~S* 5 Det vi)

3 (7)~S* 4,5,6 MM*
3 (8L 4,711 ~E

(9) ~(R* & S*) 8 ~I
— (10) ~R*\/ ~S* 9 Minimax

11 (11)~R* Hyp.

11 (12) ~S* 2,11 ~E

13 (13) ~S* Hyp.

— (14g~§* 10, 12, 13 VE
— (15) S* 5,6, 15 MM*
— (16) L 14, 15 ~E

So much for ‘extensional’ operators: we have finally to prove Lemma II
for conditionals sub-formulae of E or F. But these must have degree n or
less. Here we appeal to our overall inductive hypothesis applied to the
Conditional Lemma. (Once again we need not consider the case of gappy
conditionals but in a semantics which allowed for indeterminacy we would
have outright ~Det(R — S) € AXDET, for indeterminate R - S.) If R -
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S is true in v then as we have seen F (R — S)’ for any legitimate substi-
tution function such as *. If R - S is false in v then there is a valuation w
at which either R is true and S not true —and so - R* and either  ~S* or
~Det §*; or S is false and R not false in which case  ~S* and either F R*
or - ~Det R*. Either way F ~(R - S)* by a proof of the same type as that
in proof of the Conditional Lemma to be given next.

Returning, then, to the proof of the Conditional Lemma for the inductive
stage of degree n+1 sequents, we have still to prove that F ~(E - F) when
E - Fis false and we noted there were two cases. In case (a), E is true at v
and F is untrue. By Lemma II, we have + E* and + ~Det F* or  ~F*. The
right disjunct here provides an easier case so we consider the left disjunct.
Given that I ~Det F* and that our conditional is determinate there must
exist the following proof:

1 (HDE-=F Hyp.

1 (2) E* - F* 1 —>SUB

— (3)E* Given

1 (4)F* 23 -E

— (5) ~Det F* Given

— (6) ~Det ~F* 5 Det vi)

I (7)~F* 4,5,6 MM*

— (8)DetE - F AXDET
) L 4,7 [8] ~E

— (IO ~(E > F) 9 ~1

The argument in case (b) is similar. Note that by omitting line 1 and letting
line (2) by an example of the rule of hypothesis the above proof could be
transformed into a proof that ~(E - F)*. A proof of similar type gives us
the required result F ~(R - S)* in the proof of Lemma II above. This com-
pletes the proof of Completeness and the Conditional Lemma. []



