Logique & Analyse 161-162-163 (1998), 167-188

A PHILOSOPHICALLY PLAUSIBLE MODIFIED GRZEGORCZYK
SEMANTICS FOR FIRST-DEGREE INTUITIONISTIC ENTAILMENT

Yaroslav SHRAMKO

Abstract

The paper presents a theory of relevant (first-degree) entailment for
formulas of intuitionistic logic. Some natural modification of Grzegor-
czyk semantics enables us to introduce an intuitive concept of “non-
paradoxical” consequence relation between intuitionistic propositions.
This concept finds its formalization within a Hylbert-style axiomatic
system /Eje.

1. Preliminaries

Anderson and Belnap ([1], Section 15.2) consider a Hilbert-style axiomatic
system Efg, which pretends to be a correct formalization of all valid first-
degree logical entailments. All the theorems of Efg. are first-degree rele-
vant implications. (A first-degree implication is a formula of the form A —
B, where “A and B can be truth functions of any degree...” ([1], p. 150).
That is, both A and B can contain connectives &, \/, ~, “but cannot contain
any arrows” (ibd.).)

There are some good semantic characterizations of first-degree relevant
entailments. Several authors took into consideration these characterizations
and constructed various semantics for Efje. One may refer to Dunn’s
intuitive semantics (see in [2], p. 93), Belnap’s theory of “a useful four-
valued logic” for “how a computer should think” (see in [2], p- 506), and
Vojshvillo’s semantics based on the generalized Carnap and Bar-Hillel
theory of semantic information [9]. All these semantics are the so-called
Semantics on American Plan, and are essentially of intuitive character.

I would like to emphasize, however, that connectives &, \/, ~ which
occur in zero-degree formulas A and B above are classical connectives,
and, hence, formulas A and B themselves are formulas of classical proposi-
tional logic. Therefore, what Ezy, does really formalize (if anything) is the
relation of relevant logical entailment between formulas of classical logic.



168 YAROSLAV SHRAMKO

One can achieve that if A and B had represented not the classical truth func-
tions but, e.g., constructive propositions of intuitionistic logic, the proper-
ties of “—~" would be quite different. In that case “— " would stand for
relevant intuitionistic entailment.

In the present paper I develop a theory of the first-degree relevant entail-
ment for formulas of intuitionistic logic. In other words, my goal is to for-
malize all the statements of the form A — B, where both A and B are non-
implicational formulas of intuitionistic propositional logic, and A and B are
relevant to each other. On the base of some natural modification of
Grzegorczyk’s semantics for intuitionistic propositional logic T introduce
an intuitive semantic notion of relevant logical entailment for intuitionistic
formulas. Then I present a Hilbert-style system that axiomatizes this
semantics.

2. Introduction

A. Grzegorczyk proposes in [5] “a philosophically plausible” semantics for
intuitionistic propositional calculus H. This semantics is based on the
informal understanding of intuitionistic logic as “the logic of scientific
research™ as opposed to classical logic that is considered as “the logic of
ontological thought”. From Grzegorczyk’'s point of view a scientific
research can be formally represented as a triple

R = (Jg,0r,PR),

where Jg is the basic informational set of the present research R, i.e. the
set of all possible experimental data (using a term proposed by Urquhart in
[8], one can say that it is a set of “pieces of information™), or —the initial
information (probably empty) from which the research is being started, and
Pr —the function of possible prolongations of the “informations”. That is
for every a € Jg, Pr(a) C Jg. Moreover, if a = (P1,....pp) then either Pr(ca)
= {a} or for every B € Pg(a) there exist atomic sentences PrtlseosPrake] (k
= 0) such that

B = (Plv---,Pnspn+ls---7pn+k+I)-

Then one can define the relation > between the elements of Jg (B>pais
read as “B is an extension of « in the research R):
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Definition 2.1 B >% a = B=a;
B>i" ae vy aand BE P(y)
B=pa = In(B 4 a).

It is easy to see that this relation is reflexive and transitive. Besides that, a
condition is taken, in accordance to which every “piece of information” «
is an extension of the initial information og:

Condition 2.2 ¢« € Jp = a > op.

Grzegorczyk uses also the notion of forcing relation (>g) as a “funda-
mental notion”. Expression “a [>r A” means “the information « in the
research R forces (or induces) us to assert the formula A”. Then we have
the following definitions (for some research R):

Definition 2.3 If p; is some atomic sentence (propositional variable), then
alppi= p € a

Definition 2.4 If A and B are compound formulas:
aPprA&Be al>grAand a >y B;
albrAvBe alpAoralgB;
alp~A = VB(B>pa = BPrA);
al>rADBs VBB >pa = (BPRrA = B>rB)).

We can also add the following two natural definitions:

Definition 2.5 Formula A is valid in the given research R (R-valid — = g
A), iff Va(a € Jgp = a g A).

Definition 2.6 Formula A is intuitionistically valid (= A) iff it is valid in
any research R.

The following lemma (a generalization of condition 2.2) can be easily
proved by induction on the length of the formula A:

Lemma 2.7 For every research R, for every formula A, a € Jg, B >g a and
alrA = BDRA.
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3. Consequence relation in intuitionistic logic

Grzegorczyk does not specially consider the relation of logical conse-
quence (entailment) of intuitionistic logic. It is implied that this relation is
represented by intuitionistic implication (namely, when it occurs as the
main symbol in valid formulas). Nevertheless, we can also consider a direct
semantic definition of intuitionistic entailment. It can be defined in a direct
way, analogously as it is made in classical logic. That is: A entails B, iff
every time when A is true, B is true as well. Of course, one has to take into
account a possibility of presence of different researches.

Definition 3.1 A= B = YRVa € Jg(al>pA = al>gB).

The fact that by means of this definition the intuitionistic consequence
relation has been really defined is established in the following theorem:

Theorem3.2A= Be k= A DB.

Proof.

=:Let A= B. Then by definition 3.1, VRVa € Jg (>R A = « >r
B). Consider an arbitrary research R and the arbitrary « € Jg and B € Jg,
such that 8 >g a. We have B>p A = B[>p B. By definition 2.4 « >rA
2 B. As we considered arbitrary research and arbitrary «, then by defini-
tions 2.5and 2.6 = A D B.

«=:Let = A D B. Then, by definitions 2.4 and 2.6, VRV a € JRVB € Jg
(B>ra= (BP>rA = BI>gB)). In particular, substituting « instead of 3,
we have VRVa € Jp(a >pa = (a>pA = a >y B)). Since >pis
reflexive, VRVa € Jg (a[>g A = « >g B). By definition 3.1 A= B.

J

However, as is very well-known, this usual intuitionistic “entailment” is
Just as paradoxical as the classical one in the sense that for every intuition-

istically valid formula A and for any formula B the following principles
hold:

BE A (Positive Paradox)
and
~AkFE B (Negative Paradox)

In other words, the relation of logical consequence in intuitionistic logic
is irrelevant.
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4. What are experimental data?

Consider now some of Grzegorczyk’s intuitive explanations that essentially
underlie his semantic construction, and make it “philosophically plausible”.
As already has been pointed out, he conceived the set Jg as a set of “all
possible experimental data”. Then he proceeds:

“The set J may be finite or infinite. The elements of J are finite
ordered collections of atomic sentences: P,lr(aJ,-),Pf.2 (aj,ag),... where P!
are n-place predicates and aj,ay,... are object names. (The compound
sentences are not a product of experiment, they arise from reasoning.
This concerns also negations: we see that the lemon is yellow, we do
not see that it is not blue.)” ([5], p. 596).

Thus, elements of Jg are not entities of the objective world, they are sets
of linguistic entities —collections of atomic sentences. Moreover, Grzegor-
czyk treats these elements not simply as sets of statements, but as experi-
mental data, i.e. as collections of sentences that are obtained in result of
some experimental investigation (research). Hence, we deal here with
sentences that appear as results of realization of some experiments (which
have to be understood in a very broad sense —as concrete experiments
with definite goals, as empirical observations, etc.). Such experimental data
can be interpreted in a very natural way as accounts of (reports on) results
of experiments.! The scientific activity can be explicated then as follows. A
researcher conducts experiments (or observations) to find out whether
some object has a definite property (or whether some objects are in definite
relation to each other). Then he/she writes down the results of the experi-
ment, and obtains in this way “the informational sets” (sets of experimental
data).

This explication seems to be quite plausible, nevertheless it is still too
rough and too general. For more precise reflection of what really happens
in “scientific practice” we need more subtle analysis. Suppose, we have
some open scientific problem (for example, the problem whether an object
a has property P), and an experiment is needed for solving this problem.
How can this situation be presented within a semantic construction pro-
posed by Grzegorczyk? It is clear that the expression P(a) € Jg stands for
a successfully accomplished experiment that solves the problem. But how

10f course, speaking about experiments, one implies usually the so-called “natural scien-
ces” (physics, chemistry etc.). If one deals with mathematics, it is more appropriate to ac-
cept well-known interpretation by Heyting (see [6]) and to speak of mathematical construct-
ions. One can interpret, however, every mathematical construction as some sort of “mind
experiment”,
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should we interpret the expression P(a) & Jg? This expression appears to
be quite ambiguous. Here at least two situations are possible: either no
corresponding experiment has been conducted at all, or an experiment has
been conducted, but it was unsuccessful. Taking into account that every
experiment is conducted with a definite goal in mind, we can state that if
the goal is reached during the experiment, it is successful, and when the
goal is not reached (e.g. because of limited technical tools or unfavorable
circumstances), the experiment has to be qualified as unsuccessful.2 More-
over, an experiment can be considered unsuccessful for various reasons.
First, the conditions of an experiment can be set up incorrectly, and we can
get therefore an inconsistent result. Second, an experiment can simply give
no definite result (or give an incomplete result), i.e., it can leave us in an
uncertain situation. It is this distinction between accomplished and non-
accomplished experiments, as well as between successful and unsuccessful
experiments which constitutes the basis of my modification of Grzegorczyk
semantics. For science, not only information of successfully accomplished
experiments is important, but also an information of non-accomplished and
unsuccessful experiments.

In this way, we arrive at the following picture. Every experimental re-
search starts with formulating some scientific problem that needs experi-
mental investigation. At the very beginning of such an investigation no
experiment is conducted. To reflect this situation, a researcher can make a
corresponding record in his data: “No experiment has been conducted to
find out whether object @ has property P, Formally one can write this as,
e.g., -P(a) (or, if we confine ourselves with a propositional language, sim-
ply as -p). Then a researcher makes an attempt at an experiment, having a
goal to find out whether object a has property P. If such an attempt appears
to be successful, then the following record is included in the data of the
experimental accounts: “An experiment with the goal to find out whether
object a has the property P has been accomplished successfully”. In formal
writing: +P(a) or simply +p. If the experiment appears to be unsuccessful,
the account can be different, depending of whether the result is incomplete
or inconsistent. In the first case no entry should be made in our data, in the
second case both +p and -p are included in it.

Thus, I propose to interpret elements from J as finite ordered collections
of atomic sentences, each of which is marked either with “+” or with “-.

21t is obvious that not only the experiment which establishes that a certain object has a
definite property is successful, but that also the experiment refutes that an object has a
property is also successful. Here we have, however, the situation described by Grzegorczyk:
such results have no pure empirical nature, but include some reasoning as a necessary
element. Therefore, they cannot be treated as experimental data, but find their reflection on
a theoretical level (involving an object-language negation).
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Such a representation of experimental data seems to be quite adequate.
That is, a researcher has to record not only successful, but also unsuccess-
ful results of his/her experimental activity, as well as he/she should take
into account all the open scientific problems relative to which no experi-
ment has been so far conducted.

To sum up: relative to every atomic sentence p; only four pieces of
information are possible that can be interpreted as follows:

1. {-pi} — “No experiment has been conducted to establish p;”;

2. {} — “Although an experiment has been conducted, it gives us no
definite result’™;

3. {-pi, +pi} — “The conditions of an experiment were incorrect,
therefore we get inconsistent result”;

4. {+p;} — “We accomplished a successful experiment establishing
pi‘H.

Consider an arbitrary o € Jg. Let me call the set of sentences from «
marked with “+” a positive part of a (mark it as a*), and the set of sen-
tences marked with “-” a negative part of a (mark it with a-).

A scientific research R is formally defined as above. Now we have to
take into account the new definition of Jg, and modify the definition of the
function Pgr —the function of possible prolongations of the informations.
As above, for every a € Jg, Pgr(a) C Jg. But now we have: for every B €
Pg(a)

at C Bt and B C o

5. A rejection relation

The key point of further modification consists in introducing (side by side
with forcing relation “[>"") some new relation —*<]"— between elements
of Jg and formulas of language. Let me call it “a relation of (temporary)
rejection” (or simply —“rejection relation™). Its informal sense is a little
bit extensive and needs detailed explanations. An expression “a <lg A” has
to be understood approximately as follows: the experimental data « (in
research R) does not give us enough reasons to accept A (does not force us
to accept A), therefore we reject A at the moment, although it is not ex-
cluded that in the future (when new data appear) we may be forced to
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accept A. (It is important that “<lg” is not a “refutation” relation, its sense
is much weaker.)

M. Fitting in [3] and [4] systematically investigates intuitionistic logic
using forcing relation (he adopts the sign I for it). A general task of these
works is to construct a proof theory for intuitionistic (and modal) logics in
style of Smullyan’s analytic tableaus. The main notion of such a theory is
the notion of a signed formula: if A is a formula, than TA and FA are signed
formulas. In such a way semantic notions “true” and “false” find their
expressions on a syntactical level. In case of classical logic FA and ~A
mean essentially the same. In the case of intuitionistic logic relation be-
tween F and intuitionistic negation is not such as in the classical one. As
Fitting puts it:

“Informally, I'F ~X asserts that, given the state-of knowledge I, a
disproof of X can be achieved. But I'F FX merely asserts that no proof
of X is possible with knowledge I".” ([4], p. 450).

Thus, the rejection relation introduced above is analogous to Fitting’s I'F
FX. (If, on the given stage of investigation, we cannot prove some state-
ment, then we reject this statement so far.)

One may accept the following definitions:

Definition 5.1 If p; is some atomic sentence (propositional variable), then
algppi= +p; € a;
a<lgpie P € a

That is, data « forces us to accept p; iff we provided a successful
experiment establishing p;; and we reject p; on the basis of « iff no experi-
ment has been accomplished with the goal to establish p;.

Definition 5.2 If A and B are compound formulas:
alPrA&B e al>prAand a > B;
a<RA&Be aa<pAora<RB;
alprAvBe alrAoral>gB;
a<lgAvyvBe a<lgAand a <gB;
alprA = YB(B>ra = B<RA);
a<lg~A e AB(B>gaand B> A);
alPRADBe VB(B>ra= (B<gAor B>k B);
a<lgADB e 3B(B>gaand B> A and B <g B).

By means of definition 5.2 the forcing and rejection relations for intui-
tionistic connectives are defined. In particular, “2O” is the intuitionistic
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implication for which, e.g., A D (B D B), as well as A D (~A D B) should
hold.

6. Ideal and real data bases
Consider the following two possible conditions:

Condition 6.1 For every experimental data & and for every atomic sentence
pirtpi€ axor-p; E a.

Condition 6.2 For every experimental data « and for every atomic sentence
piitpi &€ aor-p; & a.

Obviously, taking into account the intuitive understanding of expressions
“+p; € o” and “-p; € a” described above, it would be incorrect to state that
these conditions have to be held for every a. Of course, in an ideal case it
would be desirable that these conditions hold. But we would like to reflect
by means of our semantics a real process of scientific research, and hence,
we have to take into account not only ideal cases.

It is clear that sometimes the result of an experiment is uncertain, and
when an experiment has been made incorrectly (what unfortunately takes
place from time to time), then its result can be inconsistent, i.e. we can ob-
tain +p; and -p; simultaneously (or fast simultaneously).? Thus, introducing
marks “+” and “-” at propositional variables and the rejection relation give
us a possibility to consider not only ideal researches, but all the real ones
that one can meet in scientific-practice.*

31If someone finds it difficult to imagine how an expetiment can produce inconsistent
results simultaneously, he/she can think of fypes of experiments. That is, every p; represents
an experiment of a certain type that can be run several times.

4Fitting ([4]) emphasised that for every “world” I" and for every intuitionistic model we
have:

I'tTX for I'+X
I'FFX for I'kX

In other words, he implicitly accepts for every I"and for every formula X:

I'+TXx or I'hFFX
I'r TX or I'kFX
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Let us name an experimental data « ideal iff conditions 6.1 and 6.2 hold
for it. Mark such ideal accounts of experiments by means of ajq. Then we
have the following definition:

Definition 6.3 A formula A is intuitionistically valid, iff for any research R,
for all ajy € Jg, ajy >R A.

In this way I reconstruct the idea of Routley and Meyer, when they write
that logical truth is “truth in all set-ups... in which all the logical truth are
true!” ([7], p. 202). That is, when evaluating logically valid formulas, only
ideal data should be taken into account.

The following lemma holds:

Lemma 6.4 For every formula A, VRV oy € Jg (ajg >R A = ajy 4R A).

Proof.

Induction on the length of A.

|

Thus, relative to ideal data rejection relation is nothing else but negation
of forcing relation. But this does not hold generally.

7. Intuitive notion of relevant entailment for intuitionistic Sformulas

Now I am in a position to introduce a relation of relevant entailment
between formulas of intuitionistic propositional calculus. Namely, involv-
ing the incomplete and inconsistent researches makes it possible to remove
paradoxes of intuitionistic entailment. Consider the definition 3.1. If now in
Jr all the real accounts of experiments are included, then we immediately
come to a relation of relevant (first-degree) entailment for formulas of
intuitionistic propositional calculus:

Definition 7.1 A= ,o B = YRVa € Jp(a>prA = a>gB).

Let us examine, e.g. the case p; & ~p| FE . pa2. Suppose it is not
correct, i.e. ARJa € Jp (a« Brp; & ~pj and a P g py) = TRIAa € Jk (a
Brprand a>g ~p; and « P»rp2) e ARIAa € Jp (a Brprand VB (B
>ra = B <lgp)and a P g ps). But such a case can be easily constructed,
e.g. Jp={a}, a = {+p1,-p1}. Thus, Negative Paradox is not correct by
definition 7.1. The same holds for Positive Paradox.

That is, Fitting asserts principles of completeness and consistency in relations between
TX and FX which I do not take in general.
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To obtain the usual intuitionistic consequence relation we have to confine
ourselves only with ideal pieces of information:

Definition 7.2 A= B = YRVa;y € Jg(ajy>rA = ajy>r B).

8. Relevant entailment preserves “non-falsity”

The definition 7.1 means that relevant intuitionistic entailment has, as well
as the relevant classical one, the property of truth preservation (for “a [>
A” means in fact “A is intuitionistically true in the world «”). Dunn (see
e.g. [2], p. 207) has shown that in relevant “classical” (Efge) case

“it suffices to mention truth preservation, since if some inference
form fails always to preserve non-Falsity, then it also fails to preserve
Truth”. ([2], p. 519).

It can be shown that relevant intuitionistic entailment (defined by 7.1)
also has the property of non-Falsity preservation (namely, preservation of
non-rejectability). Thus, there is no need of additional postulating this
property: it is possible to prove it by pure semantic means.

Lemma 8.1 Consider an arbitrary research R. Let us transform every a €
Jg to a piece of information g in conformity with the following conditions:

(1) +p; € aand -p; & a = +p; € Band -p; & B;
(2) +pi & aand -p; € a = +p; & Band -p; € B;
(3) tpi€ aand p; € a = +p; & Band -p; & B;
(4) +p; € aand -p; € a = +p; € Band -p; € B.

Then we obtain some new research R' such that 8 € Jg, and for every
formula A:

(1) alrAand a €A = B>'A and B 4R A;
(2) aPrpAand a <lgA = BPgrAand B <l A;
(3) alrAanda <gA = BPrAand B 4z A;
(4) aPrAand o A = Bp'Aand B <lg A.

Proof.

By an induction on the construction of A. The proof is standard, although
a little bit cumbersome (there are a lot of cases for consideration). I present
here the basis of induction and one of the cases.
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First of all, note that for every e and «' from R and for every 8 and B8’
from R’ holds:

a'>pae B >pB (*)

Indeed, relative to every propositional variable p; only the following four
pieces of information are possible: a| = {}, ax = {-p;}, a3 = {+p;}, ay = {-
pitpil. The relation >p is then as follows: a3 >pg ay, a3 >g ao, a3 >p ay,
a4 > oo, @ >g ap. According to the conditions (1)—(4) above we get the
following new pieces of information: By = {-p;,+p;}, B2= {-pi}, B3 =
{+pi}, Ba = {}. And the relation >g" B3 >g' B4, B3 >’ B2, B3 >r B1. Bi
>g' B2, B4 > g B It is easy to see that (*) really holds.

Let A be a propositional variable. Then the lemma is true by definition
3.1,

Now, let A be ~B. There are the following main cases for forcing and
rejection relations between ~B and a:

1. alpgr~B and @ 4 ~B. By definition 5.2. Va'(a' >pa = o'
B)and Va' (a' >k a = a'Pg B). That is, we have Vo' (a' > a =
a’' <lg B and a' P g B). By the Induction Hypotheses (IH) and (*) V8’
(B">pg'B = (B"<g'B and B'Wp'B)). Hence, VB'(B' >p B = B’
<lg'B)and VB'(B' >k B = B'P g B). By definition 5.2, 8 > ~B
and 8 dg ~B.

2. (aPg~B)and a <g~B. By definition 5.2. o' (a’' > a and o' dg
B) and da" (a" > a and &' > B). Consider these «' and a"'. There
are the following sub-cases for forcing and rejection relations
between B and a” and «'"

(a) a'dgBand a'>gBand o' dg B and a" > B. By (IH) holds
in particular 8’ dg' B and B' >k B. We have a' >p a, thus by
(*) B’ >g' B as well. Hence, AB’' (B’ > B and B’ Ak B) and
3B’ (B' >g' B and B' > B). By definition 5.2. 8 »g'~B and
B <g'~B.

(b) o' 4g B and a'P g B and o <lg B and a" > B. By (IH): g8’
<lg'Band B'>g B and 8" g B and B" W B. We have a’
>gaand a" >p a, thus by (*) 8’ >g' B and 8" >pg' B as well.
Then 3B" (B" >g B and B" dg'B) and AB' (B’ >x' B and B’
g’ B). By definition 5.2. B ~B and B <lg ~B.
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(c) o'dgBand a'>g B and a” <lg B and a" > B. By (IH), in
particular B’ dg' B and B'[>g' B. We have a' > a, thus by (*)
B >pg' B as well. Then we have 3B’ (B’ >g B and B’ dg' B)
and 38’ (B’ >g' B and B' > B). By definition 5.2. B P ~B
and B8 <lg-~B.

(d) a'4gBand a'P»g B and o' 4g B and «" > B. By (IH), in
particular 3" g B and B" > B. We have a” >p a, thus by
(*) B" >R B as well. Then we have AB" (B" > B and B" g
B) and 3B" (B" >g' B and B" >’ B). By definition 5.2. B P’
~B and B <l|g'~B.

a > ~B and a <lg ~B. By definition 5.2 Va' (o' > a = o' <g B)
and da" (a" >pg a and a" >g B). In particular, holds: a” <lg B and
a">grB. By (IH) 8" dg' B and B” W' B and by (*) B" >p B.
Hence, 38" (8" >k B and B’ g B) and by definition 5.2 8P ~B.
Now, consider an arbitrary o' from the research R, such that o' > «.
There are the following two sub-cases for the forcing (rejection)
relation between B and "

(a) a'<lgBand o' »gB. By (IH) ' <lg-B and B' P g B.
(b) a'<lgBand ' >k B. By (IH) B’ 4g' B and 8' P’ B.

In both cases holds 8'» g B. By (*) ' > g’ B. Then we have V' (8"
>g' B = B'Pg B). By definition 5.2. 8 dg ~B.

a P g ~B and @ 4 ~B. By definition 5.2. Ja'(a' >; a and o' dg
B)and Va'(a'>g a = o' P g B). Consider an arbitrary a" from R
such that a” >pg a. There are the following sub-cases for the forcing
(rejection) relation between B and o™

(a) o 4gBand a"PgB. By (IH) 8" <lg'B and 8" > B.
(b) a”<lgBand a" PgB. By (IH) 8" <lg'B and 8" P ' B.

In both cases holds 8" <Ig'B. By (*) B" >g' B. Hence, we have V'
(B">g'B = B’ <g'B), and by definition 5.2 B > ~B.

Consider now the above piece of information a'. a' g B holds. a’
» B holds as well. By (IH) B’ <lg'B and B' > B. By (*) B' >g' B.
In particular, we have 3B’ (8’ >g' B and B'[>g B). By definition 5.2.
B <]R'NB.
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These were all the cases when A = ~B.
WhenA =B & C, B/ C, B D C, the proof is analogous.
|

Corollary 8.2 For every research R, for every a € Jp, there exists research
R', there exists 8 € Jg, such that conditions (1)~(4)' from lemma 8.1. hold
for every formula A.

Proof.
Immediately follows from lemma 8.1.
|

Lemma 8.3 AR'Ja € Jg' (o dgA and @ g B) = IR"IAB E Jp' (B> A
and 8P B).

Proof.
=:Let IR Ja € Jg (o g A and a <g B). Then there are the following
four possible cases for forcing and rejection relations for A and B in a:

I. adgAand a>gA and a <lg B and a P B. The lemma is trivially
true,

2. adgAand aPpA and a <lg B and a P B. By corollary 8.2.
JR"IAB € Jg+ (B <z A and B>, A and BgBand B8Pk B).

3. adgAand al>pA and a <lg B and @ [> B. By corollary 8.2.
AR"AB E Jp (B4 A and B> A and 8 <g B and B>p B).

4. a 4gA and a P rA and a <g B and «a > B. By corollary 8.2.
AR"IAB € Jr (B <gA and B>k A and B g B and B PR B).

«: Analogous as above.
»

Corollary 8 4VRVa E Jgp(aRrA = al>gB) = VRVa € Jp(a <z B =
a <R A).

Proof.
From lemma 8.3 by contraposition.
|

Theorem 8.5

l. AFE ;B = VRVa € Jg(a<RB = a<gA)
2. AF B =VRVaE Jp(a 4z A = a 4z B).
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Proof.

Definition 7.1, corollary 8.4.
[ |

9.  Axiomatization

In this section I present a Hilbert-style system which axiomatizes the
notion of (first-degree) relevant entailment (definition 7.1) between non-
implicational formulas of intuitionistic propositional calculus. T call this
system [Egg,. All the theorems of IE. have the form A - B, moreover
both A and B are zero-degree formulas of intuitionistic propositional logic,
i.e., they can contain only intuitionistic connectives &, \/ and ~. It has the
following schemes of axioms and rules of inference:

Al A=A

A2 A&B- A

A3 A&B - B

A4 A—-AvyB

AS B->AvVEB

A6 A& B\vC)» (A&B) VA &CD
A7 A = ~rvA

R1 A-> B B-CA-C
R2 A-BA->CA->B&C
R3 A-CB->CAyvB->C
R4 A = BlI~B - ~A

Theorem 9.1 If A - Bis an IEf;.-theorem, then A = ,,; B.

Proof.

Is mostly of a routine nature, and is left to a reader. As an example 1 will
consider R4, and show that it preserves relevant intuitionistic entailment.

Let A= . B. Suppose that ~B k.,; ~A. Then ARAa € Jg (a > ~B
and a P g A). That is, 3R € Jp (VB (B >p a = B <Ig B) and B (B >g
a and B g A)). Consider this 3. We have 8 <Ip B and B dg A. But by
corollary 8.5(2) B 4r A = 3 4g B. A contradiction.

|

I next go about the business of establishing the completeness.
In the further account by F A - B I mean the fact that A — B is a
theorem of 1Ef40;
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by x, y, z, m I mean arbitrary sets of formulas of intuitionistic logic
(containing only &, \/, ~);

by L I mean a formula p; & ~p;, where p; is some propositional variable:

by x - y [ mean:

I. aformulad; & ... & A, = B|\/...\/ B,, when x = {A|, ..., A,,,}, and
y={B1, .., Bp};

2. aformulaA| & ... & A, when x = {A|, ..., A,;}, and y is empty;

3. aformula By\/...\/ B,, when x is empty and y = {By, ..., B,,}:

4. aformula L, when both x and y are empty;

by var(x) I mean the set of all the propositional variables from x.

Definition 9.2 Let me call a pair (x, y) consistent iff the formula x — y is
not a theorem of /Eg,.

Definition 9.3 A pair (x', y') is an extension of a pair (x, y) iff x C x"and y
cy'

Definition 9.4 Let met call a consistent pair (x, y) maximal iff for every
formula A:

i. A&xe (xuU{A},v})isinconsistent;
ii. A€ye {(x,yu {A})isinconsistent;
iii. vAExe A€y,

iv. vVAEye AEx

Definition 9.5 Let me call a set of maximal pairs X an organized set of
pairs iff for every (x, y) and (z, m) from X:

i. wvar(x) Cvar(z) = xC z;
. xCz=(VAEm= ~AEy);
. xCz=(VAEm=~AEy).

Remark: Obviously, for every maximal pair (x, y) there exists an organized
set X such that (x, y) € X. (As a minimal case of such an X can be
considered X = {{x, v)}.)

Definition 9.6 Let me call a set of pairs [T a canonical collection of pairs
iff for every (x, y) € II
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A&BExe= A€ xand B € x;

AyBEeExe AExorBex;

~A € x = YWz, m) € I (var(x) C var(z) and var(m) C var(y) = A
€ m);

A& BeEys=s AEyorBEy;

AyBeye=s AEyandBEy;

~A Ey e Iz, m) € I (var(x) C var(z) and var(m) C var(y) and A
€ 2).

Lemma 9.7 For every formula A: if (x, y) is consistent, then so is either (x U

{A}’

) orx, y U {A}).

Proof.

Let (x, v} is consistent. Suppose both (x,y U {A}) and (x U {A}, y) are
inconsistent. By 9.2. Fx - y U {A}, and {A} U x = y. It can be shown,
that in this case x — y. To show this, it is sufficient to demonstrate that if |
A->ByCand+-C&A — B, thent A - B,

10.
11.
12.
13.
14.
15.

Woo N Oy B b e

A-BvyC (IEfge-theorem, by hypothesis)
C&A- B (IEf4e-theorem, by hypothesis)
Ao A (AD)

A- ByvO&A (1,3, R2)
ByO&A - (A&B V(IC&A) (A6)
B-> (C&A)\B (AS)

A&B - B (A3)

(A& B) > (C&A)vB (6,7,R1)
(C&A) - (C&A VB (A6)
A&B)V(IC&A) - (C&A VB (8,9,R3)
ByCO) &A-> (C&A) VB (5. 10, R1)
B-B (Al)

(C&A)vB - B (2,12,R3)
ByvC)&A->B (11, 13, R1)

A->B (4, 14, R1).

But if  x - y, then by 9.2 (x, y) is inconsistent. A contradiction.

Lemma 9.8 Let us consider an arbitrary maximal pair {x, y). Then for every
formulaA,A & x e AEy.
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=:Let A & x. By 9.4(i) and 9.2 F x U {A} - y. Suppose A & y. By
9.4(ii) and 9.2 F x = y U {A}. As has been showed above (see proof of
lemma 9.7), in this case + x — y. Hence, by 9.2 (x, y) is inconsistent: a
contradiction with a condition that (x, y) is maximal.

=:LetA € y. Suppose A € x. In this case it can be easily shown that F x
- y. A contradiction.

Lemma 9.9 Every consistent pair (x, y) can be extended to some maximal

pair.

Proof.

Immediately follows from lemmas 9.7 and 9.8.

Lemma 9.10 Every organized set M is a canonical collection.

Proof.

Consider an arbitrary pair (x, y) € M.

1.

Let A & B € x. Suppose A & x. By 9.4(i)) ({A} U x,y) is
inconsistent, hence + {A} U x - y. It can be easily shown that in
this case F {A & B} U x - y. Thatis ({A & B) U x, y) is consistent,
and by 9.5() A & B & x. A contradiction. The analogous argument
can be made, if assume that B & x. Hence, A& BE x = A € x and
Bex

Let A € xand B € x. By lemma 9.8 A & y and B & y. By 9.4(ii)
and 9.2+ x - y U {A} and  x - y U {B}. But using R2 it can be
shown that in this case Fx - y U {A & B}. By 9.4(i)) A & B & .
Bylemma9.8A & B € x.

Let A\/ B € x. Suppose A & x and B & x. Then by 9.4(i) and 9.2 F
{A} Ux > yand+ {B} U x > y. Using R3 one can show that I {A
v B} Ux - v.By94(i) A B & x. A contradiction. Hence A € x
or B € x.

LetA € xor B € x. Assume A \/ B & x. By 9.4(i) and 9.2 {A v
B} Ux — y. Using A4, A5 and R1 one can easily show that in this
case F {A} Ux - yandF {B} Ux > y.By9.4(i)A & xand B € x.
A contradiction. Hence A \/ B € x.
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3. Let ~A € x. Suppose A & y. Suppose there is a pair (z, m) € M,
such that x C zand m C y and A & m. By 9.4(iii) ~A & z. But ~A
€ z also holds. A contradiction. Hence for every (z,m) E M, (x C z
and m Cy = A € m). But M is an organized set, hence by 9.5(i)
V(z, m) (var(x) C var(z) and var(m) C var(y) = A € m).
Let V{z, m) (var(x) C var(z) and var(m) C var(y) = A € m). In
particular A € y. By 9.4(iii) ~A € x.

4. letA& BE y. Suppose AL yand B& y. By 9.4(ii)and 9.2 Fx —» v
U {A} and F x - vy U {B}. Using R2 one can show that - x - y U
{A & B}. By 9.4(i) A & B & x. A contradiction. Hence A € yor B €
y.
LetAEyorBE y. Assume A& B & y. By 94(i)and92Fx - y
U {A & B}. Using A2, A3 and R1 one can easily show that in this
caserx - {A)UyandFx - (B} Uy.By94(i) A& yand B & y.
A contradiction. Hence A & B € .

5. LetAE€vyand BE y. By lemma 9.8 A & x and B & x. By 9.4(i) and
92FxU {A} - yand F x U {B} - y. But using R3 it can be
shown that in this case Fx U {Ay B} = y. By 9.4(i) A\ B & x. By
lemma 9.8 Ay B € y.

Let A\ B € y. Suppose A & y. By 9.4(ii)) and 9.2 F x - y U {A}.
It can be easily shown using A4 that in this case F x = {A\ B} U y.
That is A v/ B & y. A contradiction. The analogous argument can be
made, if assume that B & y. Hence, A\, BEy=AEyand B E y.

6. Let ~A € y. Suppose V(z,m) EM (xCzandm Cy = A& z). In
particular, A &€ x. By 9.4(iv) ~A & y. A contradiction. Hence 3(z,
m) (x C zand m C yand A € 7). But M is an organized set, hence by
9.5(1) and (ii) (z, m) (var(x) C var(z) and var(m) C var(y) and A €
2).
Let 3(z, m) € M (var(x) C var(z) and var(m) C var(y) and A € z).
By lemma 9.8 A & m, and by 9.4(iii) ~A & z. Thus, by lemma 9.8.
~A € m. M is an organized set, hence by 9.5(ii) m C y. Hence, ~A
€ y.

|

Lemma 9.11 For every canonical collection X, there exists a research R,
such that for every (x, y) € X there exists @ € Jg such that

(a) AExe=alprA,;
(b) AEye a<pA.
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Proof.
Consider an arbitrary canonical collection X. Let us do the following
simple manipulation with every (x, y) € X:

1. pick out all the propositional variables from x and y;

2. ascribe the sign “+” to every p; € var(x); and the sign “-” to every p;
€ var(y) —as a result we obtain some sets of variables marked with
“+7 and “-” (call these sets var(+x) and var(-y) respectively);

3. unite sets var(+x) and var(-y).

After this manipulation we obtain a set var(+x) U var(-y), which is some
“piece of information”. Let me call this piece of information V. By doing
this manipulation with every (x, y) € X, we obtain some set of pieces of
information. This set is exactly the research we are looking for. Let me
prove this fact. At first notice that for every (x, y) and {z, m) from X:

var(x) C var(z) and var(m) C var(y) & o@m >p oV, (*)
(As a* = var(x), a@* = var(z), o = var(y), a¥ = var(m).)

Now I am in a position to conclude the proof with an induction on the
structure of A.

If A is a propositional variable, the lemma holds trivially by 5.1.

LetAbe B& C. ThenB& CEx= BExand C €E x (9.6) » oV [>g B
and eV BrC(H) & aVPrB& C(52).B&CEy=s BEyorCEy
(9.6) o <pBor a™” <lg C (IH) & oY <lp B & C(5.2).

LetAbe B\/C.ThenB\yyCEx e BExorC € x(9.6) o[>, B or
aVPRrC(IH) e oW >pBy C(5.2).ByCEy= BEyand C € y (9.6)
o g Band o <lg C (IH) & <lgp B/ C (5.2).

Let A is ~B. Then ~B € x « ¥Y(z, m) € (Xvar(x) C var(z) and var(m)
Cvar(y) = B € m) (9.6) & Vo (a? >p a® = a¥m <|g B) (by (*) and
IH) & oV B>r~B.~BEy = Iz, m) € (Xvar(x) C var(z) and var(m) C
var(y) and B € z) (9.6) & Ja? (a¥™ >p o and o™ >5 B) (by (*) and
H) & o <z ~B.

|

Theorem 9.12 If A —» B is not a theorem of 1Efge, then A 0 B.

Proof.

Let A —» B is not IEf,-theorem. By lemma 9.9. there exists a maximal
pair (x, y) such that A € x and B € y. By lemma 9.8 B & x. Taking into
account the Remark (see above) there exists an organized set of pairs X,
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there exists (x, y) € X, such that A € x and B & x. By lemma 9.10 X is a
canonical collection of pairs. By lemma 9.11 there exist a research R and «
€ Jg, such that « >g A and a g B. Hence by 7.1 A k<, B.

|

Corollary 9.13AF ,jB=F+FA - B.
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