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FINITIZATION PROCEDURES AND FINITE MODEL PROPERTY
Jacques RICHE

Abstract

Investigations into the Relevant and Paraconsistent model theory of
first-order arithmetic have provided interesting new methods and re-
sults which have revived the interest in Hilbert’s program. The attempt
to develop Strict Finitist Mathematics using G. Priest’s Collapsing
lemma to finitize infinite models is an example. In the investigation of
some systems of Relevant Logics, another finitization procedure is
used to solve positively their decision problem and to prove the finite
model property for these systems. Some results related to the proce-
dure used in these investigations show that Hilbert’s ideal cannot be
entirely fulfilled or that it must be reinterpreted.

1. Introduction

The Relevant and Paraconsistent model theory of first-order arithmetic
have provided finite models of arithmetic that have revived the interest in
the old Hilbert’s program of founding mathematics by finitary means
alone. A first example is R. Meyer’s work on the consistency of relevant
arithmetic. Using only finitist methods and taking arithmetic modulo 2 as
domain of a model based on a finitary valued logic RM3, [Me76] proved
that his system R is non trivial. With C. Mortensen, he later exhibited fi-
nite models of theories that are proved (w)-inconsistent, (w)-complete, non
trivial and decidable [MM&4].

We will not be concerned with this approach of the foundations of
mathematics here. Rather, we will consider some of R. Meyer’s results on
the decision problem of various fragments of some systems of Relevant
Logics and on some of their consequences. The main principle on which
we will concentrate is reminiscent of G. Priest’s Collapsing Lemma, an
essential tool used in the Strict Finitism of J.P. van Bendegem [vB94] and
in G. Priest’s minimal LP [Pr91]: Given an interpretation of a first-order
theory in a paraconsistent logic LP, a new collapsed interpretation can be
constructed by defining an equivalence relation on the original domain
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such that the domain modulo that equivalence be finite. Thus the lemma
says that if N is the set of sentences true in the standard interpretation of
Jirst-order arithmetic, and if N, is the set of sentences true in the LP model,
N C Ny,

At first reading, and quoting his author, this lemma may look like a trick:
N is finitized because the partition in equivalence classes puts anything that
is unwanted, i.e. anything above some n, the least inconsistent number, into
the same equivalence class.

In his investigations of Kripke’s lemma, the fundamental lemma used in
the proof of decidability of some fragments of relevant systems, R. Meyer
has also devised various ways to finitize infinite models [Me94] [Me73].
Some of these are sketched here. They are further investigated and proved
in [RM99].

We will briefly review Kripke’s lemma and R. Meyer’s main results, the
Infinite Division Principle and his “collapsing procedure”, as well as some
of their equivalent formulations. Although one could look for some formal
similarity between R. Meyer and G. Priest procedures, their respective
intentions are different. In the present paper we stay at the level of Rele-
vant Paraconsistency, the first level of G. Priest’s hierarchy, that of mini-
mal commitment and minimal involvment in paraconsistency.

2. Decidability and Constructivity

One of the virtues of G. Priest’s model N, is that it is decidable. But, one
may wonder whether decidability is still the important question it used to
be. Hilbert had characterized the Entscheidungproblem, the decision prob-
lem in Logic, as “the fundamental problem of mathematical logic”.
Godel’s incompleteness results later showed that there is no hope of find-
ing a general decision method for any problem formalized in mathematical
logic. Church and Turing later completed his work when they showed that
the problem is undecidable. And, considering that mathematics founded on
the undecidable Zermelo-Fraenkel set theory does not seem to be a major
concern for most mathematicians, V. Pratt [Pr90] remarks that one could
think that decidability is not really an issue.

Of course, one could argue that there are other basis than ZF on which to
found mathematics, or that there are alternative ways to found mathemat-
ics, like the Relevant and Paraconsistent approaches, for example.

Nevertheless, the development of Computer Science has renewed the
interest into decision problems. In this field, the constructivity and the
complexity of decision procedures and of algorithms are important. But
more than decidability itself, what is now the fundamental issue is tracta-
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bility or feasibility. With respect to these, and noting the tendency in
Computer Science of viewing programs as proofs and proofs as computa-
tions, V. Pratt proposes that “the proper notions of constructivity in logic
are its computational complexity and its human surveyability”. The criteri-
on for judging the merits of any theory would then be its tractability. And
the criterion for tractability would be “the treshold of polynomial and expo-
nential time” [Pr90].

One may then wonder whether Hilbert’s program can be realized in that
perspective, and to what extent? Here, Hilbert’s program is understood not
so much as what can be saved after Godel’s second theorem, a finitist proof
of consistency of mathematics, but rather, as the finitist and constructivist
ideal applied in logic and mathematics. If one takes into account the issues
of constructivity and complexity, some caution is required.

3. Kripke's and Meyer’s lemmas

In his solution to the decision problem of the the Relevant Logics E _, and
R_,, S. Kripke used a combinatorial argument that R. Meyer later showed
equivalent to Dickson’s lemma in number theory. S. Kripke’'s abstract
[Kr59] does not include a proof of his decision procedure. The proof relies
on a lemma, known as Kripke’s lemma, first explicitly stated and written
out in N. Belnap and J. Wallace [Be65]. Basically, the procedure amounts
to the reduction of a sequence of sequents to some normal form. Kripke’s
lemma then says that this sequence being irredundant, it is finite.

This powerful lemma that will be reviewed below is in fact equivalent to
some other known termination principles. In the context of a Logic like the
relevant R, (also known as BCIW, where the capital letters represent the
usual combinators corresponding to its axioms), such power is required
since the main difficulty to reach a decidability proof is the contraction
axiom W whose effect cannot be easily controlled in the absence of the
weakening principle K.

In his investigations of Kripke’s lemma, R. Meyer [Me73] proved (rele-
vantly) that (N, -, 1), the positive integers seen as the free commutative
monoid with primes as free generators and with multiplication as monoid
operation, are characteristic for R_,. He also showed there that Kripke’s
lemma is equivalent to his Infinite Division Property based on a relation of
relevant divisibility on N,.

This relation is defined as follows: « relevantly divides b, a |, b iff, for all
a, b € N in prime decomposition, there are cy, ..., ¢, (n = 1) in N, s.t.
foralli=n, 1 =k =h, ac,.—l.”‘" cf’ and b = cf" s,

"
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It is interesting to note that this relevant divisibility relation, I, is
consistent with ordinary divisibility |,.

In what follows, we mention the lemmas without proofs. These can be
found in [Me94], [Me94a], [RM99], [Ri91].

Let N, be the free commutative monoid generated by the first n primes.
Kripke’'s lemma can be formulated in the following way:

Let a; be any sequence of members of N,, and suppose that Joralli j ifi<
Jthen a; &, a;. Then a; is finite.

This lemma can then be proved equivalent to the Infinite Division Principle
formulated as follows:

Let A, be any infinite subset of N,,. Then there is an infinite subset A", of
Ay and a member a of A'y s.t. forallb € A'y, a, b.

And it can also be shown that the Infinite Divisibility Principle is equiva-
lent to Dickson’s lemma [Dil3] stated in the following form:

Let A, C N, and suppose that for all a, b € A,, ifal.b(aswellasal, b)
then a = b. Then A,, is finite.

4. Hilbert’s theorem and Higman'’s lemma

The three preceding lemmas and the properties they express can be refor-
mulated in the vocabulary of the theory of partial orders with the notion of
a well-partial-order.

Leta=ay, ay, ..., a,, ... be an infinite sequence of elements of a partially
ordered (PO) set A. Then, a is called good if there exist positive integers i, j
such thati <jand aq; = a;. Otherwise, the sequence a is called bad.

A is then well-partially-ordered, (WPO), if every infinite sequence of
elements of A is good. Equivalently, A is WPO if it does not contain an
infinite descending chain (i.e. ag>a| > -*+ > *++), nor an infinite anti-chain,
Le. a set of pairwise incomparable elements. Our lemmas thus say that
under the divisibility ordering, N,, is WPO.

Several other equivalent properties of WPQ are proved in Higman's lem-
ma [Hi52]. This lemma also proves Dickson’s and Kripke’s lemmas equiv-
alent to the WPO property and to the finite basis property. Let A be a PO
set and B C A. Defining the closure of Bas CI (B)={a EA|IbE B, b <
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a}, and B closed iff B = CI (B), then, A has the finite basis property if every
closed subset of A is the closure of a finite set.

Dickson’s lemma is also equivalent to Hilbert’s finite basis theorem
[Hi90], a fact known to Dickson who mentionned in a note that his lemma
could be obtained from Hilbert’s theorem [Dil3].

In his modern formulation, Hilbert’s theorem, originally stated in the
terms of Invariants theory, says that if a ring R is Noetherian, then the
poly;wmial ring in n commuting indeterminates R[X, ... , X,;] is Noethe-
rian'.

As it is well-known, and this is sufficient to show the equivalence of the
former lemmas, a commutative ring R is Noetherian if one of the following
equivalent conditions holds: every ideal in R is finitely generated (i.e. R has
a finite basis), or any ascending chain (AC) of ideals in R is finite, or every
ideal in R has a maximal element.

All the principles mentionned above are finiteness principles, but they
rely on non-constructive and non-effective proofs. Almost constructive
proofs of Hilbert’s basis theorem and of Higman’s lemma exist though (see
[Ri91], [MR90]). But this is not sufficient.

Indeed, the classical characterization of “Noetherian”, that is, to have the
AC property or to have every ideal finitely generated, is still too strong
from a strictly constructive point of view.

Consider, for example, the ascending chain of ideals Iy < [} < --- in some
polynomial ring K[X1, ..., X;;]. This chain is finite, but, as [Se85] remarks,
we can always select a m < n and construct the chain Iy <1} < --- <[, <I,.

Or, following [Ri74], consider /,, the set of integers {0, X}, where X re-
presents the multiples of the least positive k = n such that the sequence
0123456789 occurs in the first k digits of the decimal expansion of 7.
Then, I = U/, is an ideal in the ring of integers. But a finite set of genera-
tors for [ has still to be found.

These examples suffice to show that, even though it exists, no asymptotic
bound can be given to the AC of ideals.

A solution proposed by Seidenberg in several articles is to put some
bounds on the degrees of some basis elements of the ideal /;. Then a bound
can be placed on the length of the ascending chain. But which bound? And
if it can be found, as it is the case in the finite models of the next section,
what could its value be? These same questions can be raised with respect to
the size of the models of the Strict Finitists [vB94] as well as to that of the
least inconsistent # in N,, mentioned in section 2 [Pr94].

ILet us recall that a ring R is an additive commutative group together with an associative
and distributive multiplication operation. If 7 is an additive subgroup of R such that for all a
€ I, forall r € R, ar, ra € I, then [ is an ideal.
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5. The Finite Model Property

To find finite models for the logic R, with N, taken as characteristic
presents a difficulty because, remembering that the elements of N,, are vec-
tors, the vectors in N, can be arbitrarily long.

This problem is solved by the finite generator property. Let n be the
index of a formula A, i.e. the number of its subformulae, then A is a theo-
rem of R_, iff A is valid in all n generators N, C N,. This property trans-
forms infinitely long vectors with no finite bound into vectors of uniform
length n as sequences corresponding to a given formula A.

A second difficulty arises because arbitrarily high exponents are allowed
on any particular prime of the decomposition of N,. This second problem
is solved in placing bounds on the exponents which are relevant to a refuta-
tion of a formula A. This is done in the following way.

Let N,, C N be the free commutative monoid with n generators and N
C Ny be the set of n-tuples of integers, that is, the free commutative
monoid with n free generators written additively: (N”, +, 0). This additive
monoid is trivially isomorphic to (N, +, 1). The shrinking lemma then
reduces (N¥, +, 0) to it = (ik, @, 0), where k € N, (i, @, 0) is the additive
commutative monoid where i = {n :0 = n < i}, and & is defined as
follows: forO0 =m,n<i,if m+n=1thenm @ n=i-1, otherwise, n P n
=m 4+ n. That is, { is the 1-generator commutative monoid (N, +, 0)
bounded at 7 - 1, and the elements of i* are the k-places sequences of natu-
ral numbers < i on every coordinate substituted to the sequences > i of N¥,
The substitution of i to N is then guaranteed by the natural homomor-
phism h: NK - ik whose effect on the jth coordinate of some element a €
NE g s.t. if aj = i, (h(aj)) =i - 1, else (h(a;)) = a;. In this way, the coordi-
nates of elements that are greater than 7 - 1 are finitized and bounded to i -
1.

The finite generator property and the shrinking lemma allow thus to
control the size of the elements of the model which, otherwise, could be
arbitrarily long vectors with arbitrarily high exponents. The lemma and the
property suffice to show that R_, has the finite model property.

6. Complexity

With Kripke’s lemma or Meyer’s principle, we now have a finiteness or
termination condition. But finite can still be very large. Complexity theory
can tell us what is feasible and what is not.
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A. Urquhart [Ur90] has shown that Kripke's decision procedure is primi-
tive recursive in the Ackermann function, a result that follows from the
study of a decision procedures for vector addition systems (VAS).

A k-dimensional VAS is a pair (d, W) where d is a k-vector of positive
integers and W is a finite set of k-vectors of integers. The reachability set
R(d, W) is the set of all vectors d + wy + *+ + wy such that w; € W and d +
wi+ o +w; =0,(=1,2,..,5). Any vector in R(d, W) is reachable from
d by a sequence of displacements in W such that the path lies entirely in the
first orthant of the k-vector space.

R. Karp and R. Miller [KM69] have shown that the finite containment
(FCP) and the finite equality problems are decidable. That is, it is decidable
for two VAS whether each is finite reachable, and if so, whether the reach-
ability vector of the first contains the reachability vector of the second. A
rooted tree T(VAS) is associated with the VAS, each vertex of the tree
being labelled by a k-vector. In order to show that the reachability tree of a
VAS is finite, they rely on a lemma which is essentially equivalent to
Kripke’s lemma.

K. McAloon [McA84] has shown that for each k in a k-dimensional
VAS, the k-FCP has a primitive recursive decision procedure. And in the
unbounded case, the procedure is primitive recursive in the Ackermann
Junction. The upper bound for the FCP problem provides thus an upper
bound on the size or the height of the reachability tree associated with the
k-VAS (d, W).

With the help of these results adapted to his complexity analysis of the
decision procedure of the logic LR, a decidable extension of R_,, A.
Urquhart shows that the decision procedure consisting in checking whether
the proof search tree contains a proof of a given formula is primitive recur-
sive in the size of the tree, and, to the limit, it is primitive recursive in the
Ackermann function.

With respect to feasibility or practical computability, this result is
worrying if we remember that a function fis primitive recursive in a func-
tion f"iff f is in the class obtained by primitive recursion and composition
from f', and that the Ackermann function? grows very rapidly, too rapidly.
For example, f(3, 2) = 16, f(3, 4) = 265536,

The authors of [TMM88] report that Kripke had conjectured that the
decision procedure proof for R, is not provable in elementary recursive
arithmetic (ERA). The conjecture seems to be true since Kripke’s lemma is
not even provable in primitive recursive arithmetic (PRA).

In order to show that it is actually so, consider some recent results in the
foundations of mathematics, particularly in weak formal theories of mathe-

2ﬂa, by=b+1lita=0,else la-1, )it h=0,elsefl(a- 1), fla, b- 1)]
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matics and in the context of H.Friedmann’s program of “Reverse Mathe-
matics” [Si85], [Dr87]. The later is often summarized in the question
“Which set existence axioms aré needed to prove the theorems of ordinary
mathematics?” and it throws light on the relative strength of various
mathematical theorems, i.e. how much “mathematical power” is required to
prove them, in a hierarchy starting from PRA up to ZFC (ZF plus the
Axiom of Choice) and beyond. Some of these results concern the relative
strength of properties equivalent to Kripke's lemma.

PRA and RCA( are subsystems of ZZ, second-order arithmetic, and they
can be characterized as follows:

PRA contains variables ranging over natural numbers, symbols for primi-
tive recursive functions, each defined by recursive equations, induction for
open formulae, second order variables ranging over subsets of natural
numbers, membership and restricted induction: (0 €E X AVa(n € X - n+
1 EX)) - VnneX).

RCA (for recursive comprehension axiom) adds to PRA the X, induc-
tion axiom scheme for 2(') formulae3 ¢: ¢(0) A Vn(d(n) = d(n+ 1)) =
Vn($(n)), and the comprehension axiom scheme for all E('J formulae r:
Yu(d(n) © y(n)) - AX Vn(n € X & ¢(n)), where ¢ and  are arithmeti-
cal.

In RCAy it is provable that Hilbert’s theorem is equivalent to the WPO of
A",

Hilbert’s finite basis theorem is not provable in RCAg, but for each n €
N, the indeterminate in the polynomial ring R[X|, ... , X,;], RCA( proves
Hilbert’s theorem. [Si188]

Obviously, the decidability proof of R_, and of any other related logical
system relying on the same decision procedure where termination is
insured by one of the properties equivalent to Kripke’s lemma is not prov-
able in PRA. And a fortiori, as conjectured by S. Kripke, it is not provable
in the weaker ERA%,

3A n (zf ) formula is of the form ¥m® (3m6) where 8 isAg, i.e. a formula with all
its number axioms bounded: Vm(m <t - ), Amm <t & -)). A sentemféL is of the
form VX1 3X>, ..., X0 and @ is arithmetical, i.e. contains no quantification over set vari-
ables.

4A. Urqubart has remarked that in order to be complete on this point, it must be shown
that ERA ¥ Kripke’s lemma — LR decidable.
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7. Conclusion

Hilbert defended a finitist and constructivist perspective in Logic and
Mathematics. Only finite sets of objects should be considered, and no
object should exist if it has not been constructed and computed precisely,
i.e. by means of recursive functions.

Tait [Tait81] has argued that the finitary and constructive system PRA
corresponds to Hilbert’s notion of finitism. The finitization principles,
Kripke’s lemma and its equivalent principles, are not provable in PRA.
Given Tait’s interpretation, the finitization procedures presented here are
not Hilbertian,

Moreover, we have seen that a strictly constructive proof of Hilbert’s
theorem itself will be hard to obtain.

Finally, given the complexity results for the decision procedure, feasibili-
ty or tractability cannot be expected.

Any Hilbertian wanting to stick to a strict finitist and constructivist posi-
tion in the foundations of mathematics has to face these problems.

But one could also wonder whether a general, unique, foundation is
needed, because, as Pratt [Pr90] suggests, any given argument may be con-
sidered inside small and localized theories. Mathematics would then be a
family of domain specific theories. And the shift of perspective could be
justified by viewing theories as a way “fo organize thought to be construc-
tive without being oracular”.

Katholieke Universiteit Leuven, Departement Computerwetenschappen
200A, Celestijnenlaan, B-3001 Heverlee
email: riche@cs.kuleuven.ac.be
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