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INVERSE NEGATION AND CLASSICAL IMPLICATIVE LOGIC

V.M. POPOV*

Abstract

The central result (theorem 5) of this paper arose within the context of
a study of the problem of transfer from implicative-negative logical
systems. This paper has been inspired by one of the ideas of the paper
[1] by A. Arruda. This idea is that a propositional variable is inter-
preted as some implicative formula, but propositional variable nega-
tion is interpreted as inversion of the formula which interprets this
propositional variable. As we see it, the given interpretation of propo-
sitional variables and their negations opens the opportunity to enrich
implication theories by such negations, the nature of which is essen-
tially defined by these theories. We are building a calculus C/;)” and
showing (see theorem 5) that the set of all formulas being deduced in
CI;, is the least implicative-negative logic with inverse negation, the
latter being adequate to the implication of the classical implicative
logic. In this paper a sequential version GCI7 " of the calculus CI2' is

inv inv

presented, the decidability and paraconsistency of CI> is established,

inv

the connection of CI3" with the calculus V| of A. Arruda [1] and with

inv

the calculus PIL of D. Batens [2] is considered.

Let L and Lo — be standardly defined propositional languages. The alpha-
bet of the language L (correspondingly the alphabet of the language
L5 —) contains only propositional variables py, py, ... , binary logical con-
nection D, implication (correspondingly logical connection D, implication
and unary logical connection —, negation) and parentheses. The definition
of a formula in these languages is standard.

We call implicative logic (correspondingly implicative-negative logic)
any non-empty, closed as regards the rules of modus ponens and substitu-
tion, set of formulas in L5 (correspondingly in Lo —). The set K- —, of all
classical tautologies in L — and the set K of all classical tautologies in
L~ are correspondingly implicative-negative and implicative logics. Using
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standard terminology, we call K5 - the classical logic and K+ the classical
implicative logic. We call paraconsistent implicative-negative logic any
implicative-negative logic L such that for some formula A in L — the clo-
sure L U {A, A} by modus ponens is not equal to the set of all formulas in
L—~—. We call any formula of L —, a simple formula if this formula does
not contain subformulas of — — A and — (A D B) kind. We define the
following mapping T of the set of all simple formulas of the language L——,
into the set of all formulas of the language L~:

T(pn) = (P2n-1 2 p2n)s T pp) = (Pan D p2n-1)s
T(A D B))=(T(A) D T(B))
where p,, is an arbitrary variable and A and B are simple formulas.

Main Definition. Let for implicative logic L~ and implicative-negative
logic Lo — the following condition be satisfied: for any simple formula A

Ao— E Liff T(A) € Lo

Then the logic L~ — is called implicative-negative logic with inverse nega-
tion and its negation is called adequate to implication of implicative logic
L.

It is known that the sets K5 and K5 —, can be axiomatized through the
following calculi which we correspondently call C/- and C[2 ™. The cal-
culus CI- is a standard calculus of Hilbert type over L~; the calculus CI°>
has only two deduction rules: modus ponens and substitution, and only
three axioms: (p1 2 (p2 2 p1)). ((p1 D P22 p3)) D (P1 D p2) D (p1 D
p3)), (((p1 D p2) D p1) D p1). The definition of deduction in CI- is
standard. The calculus CI° ™ is a standard calculus of Hilbert type over the
language L~ —; the calculus C/° ™ has only two deduction rules: modus
ponens and substitution, and only four axioms —all axioms of CI> and the
axiom (((—p1) D (—p2)) D (p2 D p1)). The definition of deduction in
CI> ™ is standard.

We define the calculus CI; as a standard Hilbert type calculus over
L-— which satisfies the following conditions:

* the calculus C/, has only two deductive rules: modus ponens and
substitution;

* the calculus C/}, has four axioms: all axioms of CI- and the axiom
((p1 2 p2) D (((—p1) D p2) D p2))s

¢ the definition of deduction in CI3 is standard [3].

mny
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We define the sequential calculus GCI})" as a standard sequential calculus
over L5 —, satisfying the following conditions:

* the calculus GCI, has as the main sequences all the sequences of the
A — Atype (here A is a formula in L —) and only these sequences;

* the calculus GCI; has as the initial rules only the following nine
rules (here and further A and B are formulas in Lo —,and I', A4, 3, O
are finite (perhaps empty) sequences of formulas in L —):
I''ABA—-6© TI'-5AABO AAT-0 I'-50,AA
B AA->O I'5ABAO AT'-0  TI'50,A°

'-0 TI'->0 TI'->AA BX->0 ATI->AB
A0 I's0,A" (ADB, X5 A,0 "I'5A(ADB)’
AT— @
I'— 0,(—A)
« the definition of deduction in GCI; is standard for sequential calculi.

inv

Note 1. The system obtaining from GClW by the addition of % as
the initial rule is a sequential version of classical 1mpl1cat1ve negatwe
logic. It directly follows from the fundamental results of G. Gentzen [3].

Note 2. Using Gentzen’s method [3] one can prove that the cut rule © _E’A g
is admissible in GCI},.

Lemma 1. If C[) " + A, then GCE + - A.

my

This lemma can be proved by ‘induction on the length of deduction in the
lDﬁ

calculus CI;, ", using the admissibility of the cut rule in the calculus
GCl;)”

my -t

Lemma 2. If GCE) + ' > A, then G + &(I" - A).

Here and further @ is the mapping of the set of all sequences over L —,

into the set of all formulas of this language, satisfying the following condi-
tions:

s YAy, ..., A, 2)=(A1 D (. (A4, D (T (p1 D pD)) ..

* PAy, ... Ay > B)=(A1 D (..(A4, D By) ..));

e &A,...,A;, - By, ....B,)=(A D (..(A, D (((... (B} D B3) D By)
) 2 By) D By))..)) where m = 2.
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Examples:

D(—)=(—(p1 D p1)),
PD(— By, B2) =((B] D By) D By),
DA - B1)=(A| D B)).

Lemma 2 can be proved by means of induction on the height of deduction
in GCI," considering that if GCI;" + I - A then A is not empty. The
latter is easily proved by means of induction on the height of deduction in
GCI; .

my

Corollary (from Lemma 2). If GCE " + - A, then CE + A.

From Lemma | and this Corollary we get the following:

Theorem 1. CI;) ) F A iff GCE F — A.
Theorem 2. Calculus CL " is decidable.

This theorem follows from Theorem 1 and the fact that the calculus
GCI7" is decidable. The decidability of GCI,);" can be proved by Gent-

inv

zen’s method of reduced sequences following [3].

Theorem 3. Calculus CI, is paraconsistent in the sense that the set
Tr(CL,)) = {A | CF & A) is a paraconsistent implicative-negative logic.
Proof. It follows from the definitions that 7+(C£") is an implicative-nega-
tive logic. That is why to prove our theorem it is sufficient to show that p,
does not belong to the closure as regards modus ponens of the set TriCE)
U {p1. (mp1)}. To show this, use the matrix M| which is a submatrix of
Arruda’s matrix M [1]:

My = {{0,1,2},.{1,2}, D,—)

where the operations are defined by the table

_ADB o 1 2 (—A)
0 11 and 10
| a1 i 01
2 0 1 1 12

It’s not difficult to check that for any evaluation v of L5—, in M| the fol-
lowing conditions are done:



INVERSE NEGATION AND CLASSICAL IMPLICATIVE LOGIC 149

L. TH(CL) CHA | v(A) = 1},

2. the seféw{A | v(A) € | 1,2}} is closed as regards modus ponens.
Let w be an evaluation of L~ — in M/ such that w(p|) = 2 and w(p;) = 0, for
i # 1. Then, by the condition 1 we have

Tr(CL7) U {pr, (mpD} C{A | w(A) € {1,2}).

Therefore, by condition 2 it follows that the closure as regards modus
ponens of the set Tr(CL ") U {p1, (—p1)} is included in {A | w(A) €
{1,2}}, but by the definition of w we have py & {A | w(A) € {1,2}}.

Hence, p does not belong to the closure as regards modus ponens of the
set Tr(CE7) U {p1, (—p1)}.

Theorem 3 is proved.

Now we will need the auxiliary calculus V| which is defined as a stan-

dard Hilbert type calculus over Lo —, satistying the following conditions:

1. V| has only two deduction rules modus ponens and substitution,
2. axioms of V| are the following formulas:
(a) all the axioms of CI ",
(b) all the formulas (¢ D ((—«) D p1)) where a is a formula in
L~ — which is not a propositional variable,
(¢) the formulas ((p1 D (7 (p2 2 p2))) D (—p)). (—(p1 D p1) D
p2).
3. the definition of deduction in V| is standard.

Lemma 3. Let ¢ be any mapping of the set of all formulas in L~ — into it-
self, satisfying the following three conditions:

1. for any propositional variable p; the formula ¢(p;) is not a proposi-
tional variable,

2. @((—mA) =(7e(A)),

3. @(AD B))=(¢p(A) D ¢(B)).

Therefore if CI° 7 F A then V| F @(A).

The lemma can be proved by means of induction on the length of deduc-
tion in C[° ™.

We define the sequential calculus GV as a standard sequential calculus
over Lo —, satisfying the following conditions:

1. the main sequences of GV are the same as of GCL

inv *



150 V.M. POPOV

2. GVj has as initial rules only the following rules:
(a) all the initial rules of GCI?",
(b) the rule Jﬁﬂ where « is a formula in Lo —, which is not a
propositional Vatiable,
3. the definition of deduction in GV is standard for sequential calculi

[3].

Note 3. By means of Gentzen’s method [3] it is possible to prove that the
cut rule T22:4 j5 admissible in GV/.
A Z-0
Lemma 4. If VI F A, then GV F - A.
This lemma can be proved by induction on the length of deduction in the
calculus V{, using the admissibility of the cut rule in the calculus GV.

Lemma 5. If GV F T = A then V) F & - A).
Lemma 5 can be proved by means of induction on the height of deduc-
tion in GV/.

Corollary (from Lemma 5). If GV + = A, then V| | A.

The following theorem is obtained from Lemma 3 and Corollary from
Lemma 5.

Theorem4. VI FAiff GV F - A.

Lemma 6. If A is a simple formula, then V| F A iff (] F A.
Proof. According to Theorem 1 and Theorem 2, it is sufficient to prove that
if A is a simple formula, then

GV F - Aff GG + - A.

Let us name a sequence I' - A a simple sequence, if I"and A consist of
simple formulas only.

It is easily proved by induction on the height of deduction in GV that if
S is a simple sequence and GV I §, then GC[ " + S. On the other hand, it

ny

is evident that any sequence deduced in GCI;," is deduced in GVy. There-
fore if § is a simple sequence, then GV + S iff GC " F S. In particular, if
A is a simple formula, then GV + = A iff GG]" - > A.

Lemma 6 is proved.

Let us define two mappings * and ¥ which are adaptations to L— —, of the

mappings of the same name from [1]. The conditions for * are:
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(Pw)* = (P2n-1 2 p2n), (A D B))* = ((A)* D (B)*),
((_'A))* - (p2n - p2n—l )’ ‘ ’ lf A = pu’
(=(A)*) , if Ais not a propositional variable.

The conditions for § are:
(p2n)§ =((mpn) D pn)s (PZn-l)§ =(py 2 (7pp)),
((mA)S = (—(A)P), (A D B)S = ((A) D (B)®).
Lemma 7. For any formula A in L~—, if Vi F A, then CI° 7 | A%,
This lemma can be proved by induction on the length of deduction in the
calculus CI° ™.
Lemma 8. For any formula A in L,

Vi F (A8 D A)and Vi F (A D ((A)¥)Y).

This lemma can be proved by induction on the number of occurrences of
logical connections in A.

Lemma 9. For any formula A in L~—, if CI° 7 F (A)*, then V| F A.
Proof:

1. CIP™F(A)* (assumption)
2. ViF((A)*)3 (by 1, the definition of ¥ and Lemma 3)
3. ViE({((A)*¥D A) (by Lemma 8)
4. ViFA (by 2, 3, modus ponens).

Lemma 9 is proved.

From lemmas 7 and 9 we obtain

Lemma 10. For any formula A in L5 —,
ViFAIfCIP™ F (A)*

Lemma 11. For any simple formula A in L~ —,

Vi FAiff (A)* € Ko,
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Proof:

. Aisasimple formula ' (assumption)
2. A*isaformulain L5 (by 1 and the definition of *)
3. (A)*is T(A) (by 1 and the definitions of * and T)
4. (A)*€ K5 iff (A)* € K5 (by 2 and the definitions of the sets
K- and K5)

5. CI°T FAIff (A)* € K5 (from the fact that C/° 7 is an
axiomatization of K )

6. ViFAIff Fos (A)* (Lemma 10)
7. ViFAIff (A)* € Ko (by 5 and 6)
8 VIFAIff (A)* € K5 (by 4 and 7)
9. VIFAIff T(A) € K+ (by 3 and 8).

Lemma 11 is proved.

Corollary (from Lemma 6 and Lemma 11). For any simple formula A

CIZ7 FAiff (A)* € Ko,
Lemma 12. If L is an implicative-negative logic with inverse negation ade-
quate to implication of logic K~, then C[" - A implies A € L.
Proof. Let L be an implicative-negative logic with inverse negation ade-
quate to implication of logic K5. Then for any simple formula A the fol-
lowing is true: A € L iff T(A) € K. Let us show that the set of all theo-
rems of the system CI;," is included in L.

As L is closed as regards modus ponens and substitution, it is sufficient to
show that

(1) KxCL and (2) ()1 Dp2) D(—p1) Dpr) Dp2) EL.

Let us prove (I). Let A € K. Then A is a simple formula without
occurrences of —. Therefore T(A) does not contain occurrences of — and
is a substitution instance of a formula A. By the rule of substitution we
have T(A) € K, and then by the choice of L we obtain A € L.

Let us prove (2). According to the choice of L and the simplicity of the
formula ((p1 D p2) D (((—p1) D p2) D pa)) it’s sufficient to show that
T(((p1 2 p2) D (((—p1) D p2) D p2))) € K. The latter occurs because the

formula ((p1 D p2) D (((—p1) D p2) D pa)) is a classical tautology in L-,
and hence belongs to K.

Lemma 12 is proved.
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Theorem 5. The set of all formulas to be deduced in CL) is the least
implicative-negative logic with inverse negation, adequate to implication of
the classical implicative logic K.

This theorem follows from the Corollary from Lemmas 6 and 11, that has

been formulated above, and from Lemma 12.

In conclusion a few words about the connection of the calculus C/;) " with
the calculus Vq of A. Arruda [1] and with the calculus PIL of D. Batens [2].

From Note 3, made earlier, and from the definition of the system V it
follows that if CI[; + A then V| F A. Besides, from Note 3 and from

my

Lemma 6 it follows that if A is a simple formula, then CE F A iff V| F A.

iy

As regards the connection of CI7" with P/L, when the main work at the

oy

paper was over, the author found out that C/ " coincides with the implica-
tive-negative fragment of the calculus P/L. Thus, the suggested paper may
be considered as a study of the implicative-negative fragment of the calcu-

lus PIL of D. Batens.
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