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MAXIMAL PARACONSISTENT EXTENSION
OF JOHANSSON LOGIC

S.P. ODINTSOV

1. Introduction

The paraconsistent logics was studied long before the concept of paracon-
sistency was formulated. One of such logics is a minimal logic suggested
by Johansson [1] which is obtained from the intuitionistic logic by omitting
the axiom scheme — ¢ D (¢ D ¥). In his unpublished work [2], Kripke
considered the system LE, which is obtained by adjoining the Peirce law
((¢ D ) D ¢) D ¢ to the minimal logic. The reference at this work can be
found in [3]. Curry [3] considered the system LM for minimal logic and
the system LE along with other L-systems for negation, which are usually
referred as Curry logics. He characterizes the properties of negation in LM
and LE as simple and classical refutability, respectively.

Our studies also lead to the system LE, but it arises here in an
unexpected way, from the investigation of the constructivity concept sug-
gested in [4]. The important feature of this approach is that the constructive
sense of a formula is determined by its outer connective and related to
some formal system. This allows to avoid technical difficulties concerned
with inductive definitions, as in case of realizability semantics, for in-
stance. The constructivity of the whole system is defined via a simple
second order condition, i.e., a condition imposed on the sets of formulae. A
system is constructive if every theorem is constructively true relative to the
system, and exactly constructive if the sets of its theorems and construc-
tively true formulae coincide. As was shown in [5], the constructivity con-
cept of [4] agrees with traditional approaches, for any constructive system,
we can construct a realizability semantics.

In this paper, we study the class EK of formulae constructive in any
exactly constructive system. It turns out that EK is a paraconsistent logic,
which is equal to the intersection of the maximal extensions of the minimal
logic. Using this fact we establish the maximality property for EK. The
first example of maximal paraconsistent logic P! was suggested by Sette
[6]. Adjoining to P' a classical tautology, which is not provable in P!, gives
the classical logic. A similar property holds for EK. Adjoining to EK a
new classical tautology gives the classical logic, and adjoining a new maxi-
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mal negative tautology (see Sec.2) gives the maximal negative logic. Note
that EK has no other nontrivial extensions.

Further, we describe an adequate algebraic semantics for EK, which
easily implies the equality EK = Le. Le denotes the logic which corre-
sponds to the deductive system LE, i.e., the set of theorems of LE. And we
can see that the class of all nontrivial extensions of the minimal logic is
divided into three intervals: the well-known intermediate logics lying be-
tween the intuitionistic and the classical logics, the negative logics, i.e.
logics with degenerate negation when all negated formulae are true, lying
between the negative and the maximal negative logics (see Sec.2), and the
proper paraconsistent logics, which all lie between the minimal logic and
Le.

In conclusion, we present a natural four-valued semantics for the logic
Le.

2. Preliminaries

In the present article, we consider only logics and deductive systems in the
propositional language {A,\/,D, 1}, where L is the constant “contradic-
tion”. The negation is assumed to be a definable symbol, m¢g==¢ D 1.
As usually, by a logic we mean a set of formulae closed under substitution
and modus ponens, and the deductive system is a collection of axioms and
inference rules. An arbitrary set of formulae can be treated as a deductive
system with empty set of inference rules. We say that a set of formulae has
the structural property if it is closed under substitution.

If L is a deductive system, Thm(L) denotes its set of theorems. We call a
deductive system L formal if the set Thm(L) is recursively enumerable; the
system L is consistent if 1 & Thm(L) and weakly consistent if there is a
formula ¢ with ¢ & Thm(L). Finally, we say that the deductive system L is
inconsistent if L - ¢ for all formulae .

We adopt the following notation for propositional logics:

Lp is a positive logic;

Lj is a minimal or Johansson logic;

Le is a Curry logic of classical refutability;

Li is an intuitionistic logic;

LK is a classical logic;

Ln is a negative logic.

Hilbert style deductive systems for logics Lp, Lj, Le, Li, Lk, and Ln are
denoted LP, LJ, LE, LI, LK, LN respectively.
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We recall that the logic Lp is defined in the language (\/,/\,D), and the
axiomatics for Lj is obtained by extending the traditional axiom schemes
for Lp to the language (\/,A, D, L). Other listed above logics are related as
follows:

Le=Lj+{(p D29 Dp)Dp)l.Li=Lj+ {—pD(pDg),
Lk=Li+{——pDp},Ln=Lj+ {—p).

Below we give a few definitions and facts concerning the algebraic
semantics for propositional logics. The detailed information can be found
in [7, 8].

Let A be an algebra for the language (A\,\/,D,L,1). An arbitrary map V :
{PosP15---} = A from the set of propositional variables to the universe of A
is called an A-valuation. Each A-valuation extends naturally to the set of
all formulae. A formula ¢ is frue in A, or is an identity of A, and we write
AE o, if V(¢) =1 for any A—valuation V.

Obviously, the set LA = {¢lA = ¢} of formulae is a logic, which we
call a logic of A. A logic of the class of algebras ¥ is the intersection of
logics of algebras in K,

L?}{:ﬂ (LAIA € %}.

The algebra A is a model for the logic L if L C LA. If also L = LA, we
say that A is a characteristic model for L.

Proposition 2.1.[7, Ch.II1, Sec.3] Every logic has a characteristic model.

The lattice A = (A,/\,\/,1) with the greatest element 1 is called implicative
if for any a,b € A there exists a supremum \/{xla A x = b}. All implicative
lattices form a variety, and the logic of this variety is Lp [8, Theo-
rem X.2.1].

By a j-algebra we mean an implicative lattice, treated in the language
("\w,D,L,1) with L interpreted as an arbitrary element of the lattice. The
minimal logic Lj corresponds to the variety of j-algebras [8, Theo-
rem X1.2.2]. Equivalently, we can define j-algebras as implicative lattices
with the negation satisfying the property a O —b =b D —a. The equiva-
lent definitions are related as follows: —ma=a D L, 1 = —1.
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A Heyting algebra is a j—algebra with the least element L. The
intuitionistic logic Li is the logic of the variety of Heyting algebras [8,
Theorem XI1.8.2]. '

A negative j-algebra is a j—algebra with L = 1. Obviously, the negative
J—algebras are distinguished in the variety of j-algebras via the identity
—p. Therefore, the negative logic Ln is the logic of the variety of negative
Jj—algebras.

We call a Peirce algebra an implicative lattice satisfying the identity

(p2q)Dp)Dp.

Let X and 2% be a set and its power-set. The set-algebra { 2X,U,n,D,X),
where

Yo Z=X\Yu?Z

for any Y,Z, € 2%, and U and N are ordinary union and intersection of sets,
is a Peirce algebra. Moreover, we have the following

Proposition 2.2. [8, Ex. I11.4] Let A be a Peirce algebra. For a suitable
set X, the algebra A is isomorphically embedded to the set-algebra
(2%,u,n,D.X).

Let 27 = ({0,1},A,\/,D,1) be a two-element Peirce algebra.
Proposition 2.3. L2°=Lp + {((p D q) D p) D p}.

Proof. 1t is clear that Lp + {((p D ¢) D p) D p} C L2*. To prove the
inverse inclusion we show that there is only one subdirectly indecompos-
able Peirce algebra, 27. As is known, every variety is generated by its sub-
directly indecomposable algebras.

Let A be a Peirce algebra with more that two elements. We show that for
any a € A there exists a filter F, # {1} on A witha & F,.

Takean 1 # a € A. Thereisalsoab € A with | # b # a. If b £ a, then
a & F (b), where F (b) = {xlx = b} is a filter generated by b. Assuming b
= a we consider an element a D b. Using Proposition 2.2 we infer that ¢ %
adbandaD b # l,ie,a@& F{aDb)and F{a D b) # {1}.

We have thus constructed a collection {F,la € A} of filters on A such

that
) Fa=11),

acA
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and F, # {1} for all a € A. The latter means that A is subdirectly decom-
posable.
The proposition is proved.

Let 2 = ({0,1},,/,A,D,0,1) be a two-element Heyting algebra, which is a
characteristic model for the classical logic, L2 = Lk. And let 2' = ({0,1},
V»/\,D,1,1) be a two-element j-algebra.

Proposition 2.4.]7, Ch.V, Sec. 3, Ex.1] The logic Lj has exactly two max-
imal extensions, LK and L2'.

Proof. Consider an arbitrary extension L of Lj and its characteristic
model A, L =LA.If —1,=1,, then forevery | # a € A, the set {a,14} is
the universe of a subalgebra isomorphic to 2'. Consequently, LA C L2'. If
La= 7114 # 14, then the subalgebra { L,,1,} is isomorphic to 2, whence
LA C Lk.

The proposition is proved.

Proposition 2.5. L2' = Lj+ {—p,((p D g) D p) D p}.
Proof. Obviously, —p and ((p D ¢) D p) D p are identities of 2', and so
L2' D Lj+ {—p((p D9 Dp) Dp).

The inverse inclusion can be stated similar to Proposition 2.3.
The proposition is proved.

We call L2' a maximal negative logic and denote it Lmn.

3. Exactly constructive systems

In the introduction, we have just said a few words about the constructivity
concept of [4]. For the sake of space we will not reproduce the system of
notions given in [4]. We give only definitions of constructive and exactly
constructive systems, which are equivalent to propositional versions of re-
spective notions in [4] and are reworded in a form the most convenient for
our purposes.

Definition 1. Let L be a formal system in the propositional language
{\V,/A\,D,L}. The system L is called exactly constructive (constructive), or
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shorter, ek-system (k-system) if and only if for any formulae ¢, and ¢,, the
following conditions hold:

(1) LE(pNe¢) e (=)LFgandLt ¢);
(i) LF(@ve) = (=)LEgorLtE g);
(i) LF(gD ¢) = (=) (LF ¢ implies L - ¢)).

As we can see from Definition 1, every classical tautology constructed
via connectives \/,/\,D is provable in an arbitrary ek—system, and we then
have the following

Proposition 3.1. Any ek—system L admits all axioms and inference rules
of the system L) and the Peirce law ((p D q) D p) D p.

We only note that the reductio ad absurdum (¢ O ) D ((¢ D — ) D
— () is a partial case of the transitivity law for implication

(2P DOUeD WD L)D(eD L))

Proposition 3.2. Any consistent ek—system admits all axioms and infer-
ence rules of the system LK.

Proof. Let L be a consistent ek—system. We check that formulae — ¢ D
(pD¢P)and 72D g,ie, (¢ L)D(¢D¢and ((¢ D L)D 1)D
¢, are provable in L.

By assumption, L ¥ 1. Assuming L F ¢ we have L ¥ ¢ D L by Defi-
nition 1, and hence, L+ (¢ D L) D (¢ D ). Now, let L ¥ ¢. Then
formulae ¢ O rand also (¢ D L) D (¢ D ¢) are provable in L. Thus, we
have LF (@2 1) D (¢ D ).

We consider the formula ((¢ D 1) D 1) D ¢. If ¢ is provable in L, we
immediately have L+ ((¢ D L) D 1) D ¢. Assume L I ¢. Successively
applying Definition 1 (iii) we then have LF ¢ D L, L¥F (¢ D 1) D L,
and finally, LF ((¢ D L)D 1) D e.

The proposition is proved.

Proposition 3.3. Any weakly consistent ek—system L, which is not con-
sistent, admits all axioms and inference rules of the deductive system LMN
for the maximal negative logic.

We need only check that L + ¢ O L, but this is the case, because L is
provable in L by assumption.
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Proposition 3.4. If L is a consistent ek—system, it does not have the struc-
tural property.

Proof. By Proposition 3.2, L  p v = p. In view of L being exactly con-
structive, either L + p, or L F = p. Any way, the structural property con-
flicts with the consistency of L, which proves the proposition.

As we can see from the proposition, the set of theorems of a given exact-
ly constructive system is not generally a logic. However, for several impor-
tant classes of exactly constructive systems sets of theorems provable in all
systems of the class are actually logics, i.e., they are closed under substitu-
tion and modus ponens. We denote by 7., ., the class of all consistent ek—
Systems, 7, ... the class of all weakly consistent ek—systems, which are
not consistent, finally, 7,, denotes the class of all ek—systems.

For a class 7 of formal systems, let L(7) == {¢l¢ € Thm(L) for all L €
T}.

Theorem 1. The following equalities hold:

L. L(T(‘[JH.E’I() = Lk,
2' L(Tn‘.('(m,gk) = Lmn,
3. L(r,)=Lkn Lmn.

Proof. 1. For an arbitrary consistent ek—system L, define a mapping
V:iA{po pi,..} = 0,1} setting V(p,)=1 if L - p; and V(p,) = 0 otherwise.

Treating {0,1} as a two-element implicative lattice and using Definition
1, we can show that the equivalence

V)=l ==Lt g

holds for every formula ¢ in the language {A,\/,D}. Putting V(L) = 0, we
have V(—¢) = V(¢ D L) = 1 iff V(¢) = 0. The latter means that L ¥ @,
ie,LF @D L, because L ¥ L and L is an ek-system. We have thus
proved the equality Thm(L) = {¢lV(¢) = 1} with V treated as a 2—valua-
tion.

At the same time, for any effective 2—valuation V, the set of formulae L,
== {¢lV(¢p) = 1} forms a consistent ek—system. It can be easily deduced
from Definition 1. The effectiveness condition is needed, because ek—sys-
tems must be formal.

Obviously, Lk = L2 = ﬂ {LyIV is an effective 2—valuation}, and the
first equality is proved.
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2.For L € 7, define 2'—valuation V by the rule V(p) = 1 iff L - p,.
For any 2'-valuation, V(L) = 1, whence V(—¢) = 1 for any ¢. In addition,
any formula of the form — ¢ is inferable if L, by Proposition 3.3. These
facts and Definition 1 immediately imply the equivalence

V(p)=1 == Ltg

for all @ As above, every effective 2'-valuation V, which is not identically
true, gives a weakly consistent ek—system L,== {¢lV(¢) = 1}. It remains to
note that Lmn = L2' ﬂ {LIV is an effective 2'-valuation}, thus
proving the second equation.

3. The equality L(7,;) = Lk n Lmn is an immediate consequence of the
above consideration.
The theorem is proved.

Denote EK == L(7,,). The set of formulae EK is a logic as an inter-
section of two logics. The next section is devoted to the investigation of
this logic.

4. The logic EK

Let Lo=Lj + {@li €I} and L, = Lj + {;}j € J) be finitely axiomatizable
extensions of the minimal logic. Their intersection Ly N L, is also finitely
axiomatizable, Lyn Li=Lj + {¢; v 1}4;’ eljel } where l;lis obtained
from i; by substitution of pr0p0s1t10nal variables in such a way that ¢; and
¢ have no propositional variables in common. Similar result is well-
known for extensions of the intuitionistic logic [9]. However, it is not hard
to verify that it remains valid for minimal logic. By definition, EK is an
intersection of two finitely axiomatizable extensions of Lj: Lmn = Lj +
{—p, ((p D ¢q) D p) D p} and Lk, which can be represented as Lj + { —p
D(pDq),((p2Dg) D p) D p}. We have thus proved the following

Proposition 4.1.
EK=Lj+{(® 29)Dp)Dp, 7pv (gD (gD},

The problem of finding the most natural axiomatics for EK remains open
yet.
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Lemma 4.2. The formulae p \y —p, = (p A —p), 2 (pAqg)=(—pvV
—g), and D (p\/ q) = (—p A —q) belong to EK.

These formulae are classical tautologies, which can be easily deduced in
the maximal negative logic using the scheme — ¢.

Lemma 4.3. EK does not contain — —p D pand —p D (p D q).

Proof. 1. Assuming EK + = —p D p, we have Lmn + — —p D p. But
Lmn I = —p, hence Lmnf p, and the structural property implies that any
formula is provable in Lmn, a contradiction.

2. Arguing as above we obtain Lmn + —p D (p D g), whence Lmn  p
D q. Substituting —p for p in the latter formula we again have Lmn F g, a
contradiction.

We list some interesting properties of EK.
Proposition 4.4.

1. EK is decidable;

2. EK is not a k—system;

3. Any k—system L extending EK has a negation constructive in the fol-
lowing sense:

IfLF —(eAY), thenLF —gporLF — .

Proof. 1. We have ¢ € EK iff ¢ is true in 2 and in 2'. Thus, the condition
¢ € EK is effectively verified.

2. The disjunctive property fails for EK. Indeed, p \v —p € EK, but p
and —p are not in EK.

3. This is an easy consequence of the definition of k—systems and the fact
that EK contains the formula —=(p A g¢) = (—p v —¢).

The proposition is proved.

Now, we consider models for EK.

Proposition 4.5. Let A = (A,\\/,D,0,1) be a j-lattice with EK C LA,
i.e., a model for EK. The following properties are then true:

1. A (treated as an implicative lattice) is a Peirce algebra;
2. Aninterval (0,11, is a subalgebra of A in the language (\/,\,D,—);
3. [0,1]4 is a Boolean algebra;
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4. Foranya € A,a =0, we have ma=1;
5. If 0 # 1land [0,1]5 # A, then A contains an element incomparable
with 0. '

Proof. 1. This is implied by ((p D ¢) D p) D p € EK.

All other statements of the proposition can be easily deduced from the
representation theorem for Peirce algebras (see Proposition 2.2). Consider,
for example, the last statement.

5. There exists an element a under 0 by assumption. Take an implication
0 2 a, which is obviously incomparable with (.

The proposition is proved.

Consider the lattice 4' = ({0,1,-1,a},<), where -1 =a=1,-1=0= 1,
and the elements a and (} are incomparable.

It is a Peirce algebra. The operation —x == x D 0 turns it into a j—lattice,
which, as is easily seen, satisfies the properties listed in Proposition 4.5. It
is routine to check that = p\/ (=g D (¢ D r)) is an identity of 4'. Conse-
quently, 4' exemplifies a model for EK. In fact, 4' is a characteristic model
for EK, which can be deduced from the following

Proposition 4.6. Let a j-lattice A be a model for EK. Then either A is a
model for Lmn, or A is a model for Lk, or LAC EK, i.c., A is a charac-
teristic model for EK.

Proof. Let A be a j—lattice and EK C LA. If 0 = =1 =1, then —a =1
for any @ € A by Proposition 4.5.3. The formula ((p D ¢) D p) D p is ob-
viously true in A. Thus, A is a model for Lmn.

Assume 0 # 1, then [0,1], is a nontrivial Boolean algebra. If [0,1], = A,
then A is a model for the classical logic.

Finally, assume that O # 1 and [0,1], # A. In this case, A contains a sub-
algebra isomorphic to 2, whence, LA C L2 = Lk. Consider a filter F (0)
generated by 0 and the corresponding quotient. Since —a = 0 for any a €
A, the lattice A/F (0) satisfies the identity —p = 1. Therefore, L(A/F (0))
Ln. Moreover, ((p D q) D p) D p is an identity of A/F (0) as a quotient of
A. Consequently, L(A/F (0)) = Lmn, and so LA C Lk n Lmn = EK.

The proposition is proved.

Corollary 4.7. 4' is a characteristic model for EK.
As was noted above, 4' is a model for EK. In view of 0 # 1, 4' is not a

model for Lmn. Moreover, L4' # Lk since [0,1],. # 4'. Consequently, L4'
= EK by Proposition 4.6.
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Remark. The lattice 4' is the simplest among characteristic models for
EK. Propositions 4.5 and 4.6 easily imply that any characteristic model for
EK must contain at least four elements. Indeed, unity differs from zero,
there is a third element under zero, and there is a fourth element incompar-
able with zero.

Now we are in a position to state the maximality property for EK.

Theorem 2. Let ¢ be a formula, not in EK. There are three possible
cases:

1. EK + {¢} is inconsistent;
2. EK+ {¢}=Lmn;
3. EK+ {¢}=LKk.

Proof. Assume that EK + { ¢} is not inconsistent and A is its character-
istic model. The inclusion LA C EK fails, since ¢ is not in EK. By Prop-
osition 4.6, we then have either LA = Lk or LA = Lmn.

The theorem is proved.

We call A =(A,\/,A\,D,L,1})a Peirce-Johansson algebra (pj-algebra) if
(A, D,1) is a Peirce algebra and the constant L is interpreted as an arbi-
trary element of A. These algebras provide an adequate algebraic semantics
for the logic EK.

Proposition 4.8. An algebra A = (A,\/,\, D, L,1) is a model for EK if and
only if A is a pj—algebra.

Proof. If A is model for EK, it is a j—algebra satisfying the Peirce law ((p
Dg) D p)Dp,i.e. apj-algebra.

Assume that A is an arbitrary pj—algebra. Its reduct to the language
{\/,/\,D} is a Peirce algebra, and we need only verify that —p v/ (—¢ D (¢
D r)) is an identity of A. We have —a = L for any a € A, the second dis-
junctive term is equivalent in Lj to (— g /A g) D r, therefore, it suffices to
check that L v/ ((—b A b) D c)=1 for any b,c € A. Due to Proposition
2.2, we may think of L, b, and ¢ as subsets of some set X, which is the
unity of the algebra. We then have

(X\b)y L)AB)De=(hAL)De=X\bA L) ve.

And finally, L v/ (X\ (b A L)) v c =X as was to be proved.
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Corollary 4.9. The logic EK coincides with the Curry logic Le = Lj +
{p>9) 2 p)Dp} 3]

It is clear, that the Peirce—Johansson algebras are distinguished in the
variety of j-algebras via the identity ((p D q) D p) D q.

Now, we make an interesting observation on the structure of the class
Jhn of all nontrivial extensions of the Johansson logic Lj. Let Int == {LIL
€ Jhn, =p O (p O q) € L} be the class of all intermediate logics; let Neg
== {LIL € Jhn, —p € L} be the class of all negative logics, i.e. Neg con-
sists of logics with a trivial negation. Finally, let Par == Jhn \ (Int U Neg)
be the class of all proper paraconsistent logics. Obviously, the class Jhn is
a disjoint union of the classes Int, Neg, and Par. It is well known that L €
Int if and only if Li C L C Lk. Moreover, the following assertion holds.

Proposition 4.10. Let L € Jhn. Then the following equivalences are
true:

(i) L €Negifandonly ifLn CL C Lmn;
(i) L € Par if and only if Lj C L C Le.

Proof. (i) If L € Neg, then Ln is contained in L by definition. At the
same time, L can not be extended to LK, consequently, L C Lmn.

(ii) Let L. € Par, and let A be a characteristic model for L. In A, | # 1,
hence (1,1} is a nontrivial Boolean algebra, which is a subalgebra of A,
and so L. C LK. Further, L & Int, therefore, the quotient A/F (L) is non-
trivial and has the greatest element L, hence it contains the two-element
subalgebra isomorphic to 2'. The latter means that L. C Lmn. Thus, L C
Le =Lk N Lmn.

The proposition is proved.

As we can see from the last assertion, the class Jhn decomposes into
three disjoint intervals, one of which, Par, contains logics that are really
paraconsistent. Two other intervals demonstrate degenerate cases of para-
consistency. The class Int consists of consistent logics, L is the least ele-
ment in the models for such logics, and the class Neg consists of logics
with identically true negation, L is the greatest element in their models.

In conclusion, we say a few words on the semantics for Le. The charac-
teristic model 4' shows that Le is a finite-valued logic, and the number of
truth values is four. We give a representation of the algebra 4' which makes



MAXIMAL PARACONSISTENT EXTENSION OF JOHANSSON LOGIC 119

the truth values of Le more sensible. From this point on, we use boldface
notation for elements of 4': 1, 0, -1, and a.

Consider the Peirce algebra 27 X 27, whose elements are pairs of classi-
cal truth values, 0 and 1, and operations \/, A, and D are classical on each
of the components. The operation —a ==a D (0,1) turns 2 X 2 into a pj—
algebra € isomorphic to 4'. Thus, the truth values of 4' correspond to the
pairs: 1 = (1,1),0 = (0,1), -1 - (0,0), and a = (1,0). In Le, every state-
ment is thus characterized by the pair of parameters, which are classical, in
some sense.

However, the question what means for a statement of the logic Le to
have a truth value (a,8), a, B € {0,1}, remains open. At first glance we
may understand this pair of truth values, for example, as follows. The first
component is a propositional characteristic of the statement, “true” or
“false”, and the second components is the measure of definiteness, with
which the statement has its propositional truth value. Thus, the unity 1 =
(1,1) is the definite truth, and the contradiction L = (0,1) is a definitely
false statement. In ‘€, we have —(1,0) = (1,0) D (0,1) = (0,1), which agrees
well with our intuition. Indeed, it is natural to consider as definitely false
the statement that indefinite truth leads to a contradiction. But this interpre-
tation of truth values for Le is not satisfactory. For example, it is question-
able to assume that the negation of indefinitely false statement is definitely
true, however —(0,0) = (1,1) in €. It is also impossible to explain in this
way the equality a\/ L =(1,0) \/ (0,1) =(1,1).

Of course, this is only a preliminary remarks to the semantic study of
paraconsistent extensions of Johansson logic. However, the semantics for
Le described above contains a key allowing to construct natural formal
semantics for a wide class of logics in Par, which will be considered in the
subsequent works.
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