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INTERVAL SEMANTICS FOR DESCRIPTION OF CHANGE

Volodymyr NAVROTSKYY

Abstract

The aim of this paper is to give a description of change in the frame-
work of tense logic. Some different examples of using the intervals are
considered. The main principles of a logic of inconsistent reasoning are
presented in tense interval paraconsistent semantics.

Duration is the most important feature of time. There arise a lot of prob-
lems when we have to deal with objects, which do not possess a temporal
extent. In his lecture “The Theory of Continuity”” Bertrand Russell consid-
ered the philosophical aspect of the problem of continuity in the following
words: “Space and time are treated by mathematicians as consisting of
points and instants, but they also have a property, easier to feel than to de-
fine, which is called continuity, and thought by many philosophers to be
destroyed when they are resolved into points and instants” (Russell: 135).

First of all it looks disputable to construct a period of time with instants
which have not any duration. Aristotle used the intervals to analyse the
problems of time and change. He insisted upon the continuity of move-
ment, ascribed the attribute of continuity to time and assumed the infinite
divisibility of the periods of time into parts (Physics: 219 a 10, 218 a 5).
According to his interpretation of inconsistency one part of the changing
thing is in one state, the other part is in another state (Metaphysics: 1005 b
20; Physics: 234 b 15). The inconsistent propositions correspond to differ-
ent periods. However, Aristotle considered the change of quality to occur at
once. He solved the problem of transition by assuming that the moment of
transition was taken as the first moment of the next state (Physics: 253 b
25,263 b 15-30).

Some recent investigations in different areas show that the moments are
inapplicable to the study of the phenomenal continuums: for a number of
quality changes there are no subdivision of object temporal existence
which might separate clearly the state before change from the state after it.
It is not possible to determine the last moment of a prior state and the first
moment of a posterior one. Predicates in natural language are not valued
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relatively to moments of time (Hamblin: 414; Needham: 49). The begin-
nings and the ends of many states and processes are present somewhere at
the intervals of time and have no presence at fixed points. In so far as there
exists a vagueness of the boundaries between different states of being,
propositions describing the states before and after change are either both
true or their truth status is not determined.

J.N. Woodger in the thirties has built an original axiomatic theory with
an elementary reldjon “to be a part” both in spatial and temporal senses
(Woodger: 55). In tdrms of this relation and of the relation of time prece-
dence the concepts of sum of parts, of moment, of organised units (such as
a cell or an organism), of instant part of an organised unity were defined.
These means allowed to formalise the biological relations, which arise
from the model of cell division. The special kind of continuous change, a
branching continuum, has been formally expressed.

J.-M. Laforge used as an initial concept “to be a fragment of a physical
aggregate” (F) and the concept of the territory of a physical compound (T)
for the description of physical space-time: “The territory is what complete-
. ly overlaps a class of objects having a common mathematical or other well-
defined property” (Laforge: 35). A propositional calculus extended by the
constants F and T is considered as a logic of territories. A transformation of
a physical compound, realised in the breaking up and a subsequent joining
up of the parts, can break a topological structure of a physical compound,
but doesn’t break an invariance of F and T.

In terms of F and T the pseudo-topology of a physical compound is built.
The concept of boundary, dividing set of points, is replaced by the concept
of pseudo-boundary. The pseudo-boundary of a fragment A of a certain
physical compound is a class of fragments that intersect A and its comple-
ment. An object belonging to the pseudo-boundary of the fragment A has
properties of the objects from the fragment A and from its complement.

The temporal structures in two theories mentioned above contain the mo-
ments. C.L. Hamblin proposed an axiomatic theory of the intervals of time.
An irreflexive, antisymmetric and transitive “later-then” relation was taken
as a primitive constant (Hamblin: 415-419). The attempt to justify that
Hamblin’s “later-then™ relation is something more than simply an order
relation has led to another variant of the interval theories. Needham’s aim
was to build a theory of linear order in such a manner that the direction and
the distinctions of future and past would be inexpressible: “Such a theory
of linear order expresses no more than that certain times lie between others,
the fundamental order concept being that of three-place betweenness rela-
tion. The procedure adopted in the theory presented here is to define a
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betweenness relation in term of which the linear ordering of time is ex-
pressed. A dyadic order relation can than be defined on the basis of the be-
tweenness relation” (Needham: 51).

E. Lemmon introduced the notion of truthfulness relatively to the inter-
vals as additional to the notion of truthfulness relatively to the moments.
The basic relation of this logic of space-time zones is the four-dimensional
relation “‘part-whole.” The usage of a space-time structure allows to justify
the distinctions between simple and continuous tenses of verbs, between
perfective and imperfective aspects of verbs, and to construct a logic of
certain tense adverbs (Lemmon: 101).

A next step in the creation of the logic of space-time zones is a temporal
interval logic. Usually the temporal logic calculi presuppose the concept of
a time moment as a starting abstraction. An evaluation of the formulas is
carried out relatively to the moments that are ordered by an earlier-later
relation. A truth-value change of a formula testifies to a change in a state of
affairs. The change of truth-value is considered here as instantaneous.

The first approach to the formal explication of change by that means is
von Wright’'s formalism (Wright: 28-30). The values of the formulas are
determined relatively to temporal structures with a discrete order of mo-
ments. An event is considered in this formalism as a pair of states of af-
fairs, i.e., as a transition state. It is represented by the formula ATB. A and
B designate propositions about states, T is the binary copula “and next.” In
von Wright's semantics the formula A is a semantic consequence of the
formula ATB, while the formula B is not (Humberstone: 190). In virtue of
the discreteness of a temporal structure there is no intermediary moment
between the last moment of A’s truth and the first moment of B’s truth. So
in this approach the moment of the transition coincides with the last mo-
ment of A’s truth or with the first moment of B’s truth. On the other hand,
if the order of moments is dense, there is always a moment between A’s
and B’s truth. Then the formula ATB is true at the moment, which is differ-
ent from the truth of A and the truth of B (Humberstone: 192).

The introduction of two operators of negation was the first step in the
construction of tense interval logic: “The strong negation of a formula
would be true with respect to an interval if the formula itself was false
through all subintervals of the interval, while the weak negation would be
true merely if it was not the case that the formula negated was true with
respect to the interval in question (even if it was true for some subinter-
vals)” (Humberstone: 172). The interval model is a triple (7, C, | I, where
T is a class of time intervals: t, u, v, ... t,u, v ...; C is a mereological
subinterval relation; | | is an interpretation function: | I: F X T — {01} (Fis
a set of the formulas, 0 and 1 are the values “false” and “true” respective-
ly). A propositional variable a is true relatively to an element of the model
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(T, C, |'l) if and only if lalt = 1. A peculiarity of the interpretation of the
propositional variables is the assumption of the steadiness of truth-value:
lalt = 1 entails lalt' = 1 for any t' C t. This assumption is introduced to ex-
clude the intervals at which a propositional variable is true and false simul-
taneously.

The second stage of this construction is an addition of tense operators
into the formal language. The insertion of the earlier-later relation R into
the above mentioned model turns it into a tense interval model: {T, C, R, |
). The minimal assumptions about the relations between C and R are:

(a) forallt,u,u'€T,ifuRtandu' C u,thenu'R t,

(b) forallt,t,ue T,ifuRtandt'Ct,thenu R/,

(c) forallw,t,u € T,ifu C tand u R w, then either t R w, or for some v

€ T,v C wand v C t. The assumptions (a) and (b) reveal a sense of
u R t, (c) expresses the uninterruptedness of intervals (Humberstone:
184). An additional condition for an interpretation of the formulas is
the infinite divisibility of intervals. This concept was introduced to
express the continuity of time (Physics: 218 a, 263 a 10-15).

The infinite divisibility gives us intervals that combine the features of
dense and discrete structures. In interval structures infinite divisibility is
equivalent to the density of momentary structures. The discreteness of the
intervals consists in the absence of an interval between two given intervals.
This peculiarity of the interval structures may be used in the modelling of
dynamic systems, if we consider the arising and disappearing of objects as
momentary events, while their coexistence is a process which lasts in time.
Such systems belong to a class of continuous-discrete systems. They are
characterised by discrete and continuous types of changes. Namely, these
systems behave as the continuous ones in the periods, which are between
the discrete events.

An impossibility of point fixation of the arising or disappearing of an
object demands an alternative approach to the analysis of changing sys-
tems: the arising and the disappearing are considered as uninterrupted pro-
cesses. In this case, however, a problem of setting a boundary between the
transitional states and a period of stable existence, remains unresolved.
N.C.A. da Costa characterises the fundamental character of such a problem
in the following words: “Here a countless set ... of continuums, temporal
and nontemporal, would be mentioned, which arouse the same problem,
such, for example, as a drawing of the hard boundary between children and
adults, between the alive and the dead, and also between the other pairs of
relevant changeable qualities in everyday language and even in empirical
sciences” (da Costa N.C.A., 1982: 121).

L.A. Zadeh and his followers made a considerable contribution to the
solution of this problem. A formal theory of fuzzy objects was developed
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for the study of the situations wich are vaguely defined. The fuzzy formal
theories are based on the concept of a fuzzy set. A set M is fuzzy, if there is
at least one object wich belongs to M in a degree wich isn’t equal to 1. An
apparatus of fuzzy programming was built on the basis of the theory of
fuzzy sets. The possibility appears of task solutions related to decision
making under parameter vagueness (e.g., of the duration of an operation
fulfilment in some modelled control systems). In this case fuzzy program-
ming methods are used for the solution of a task to determine the relevant
controlling impact.

In the situations of transition from the state of affairs S to the state of af-
fairs S; there is a subinterval when both the description of S; and the de-
scription of S; are true and false at the same time. The resources of classi-
cal logic are insufficient for a formal expression of the inconsistent descrip-
tions. Now a number of logical calculi with inconsistent propositions in
their languages has been built. In these calculi the inconsistency does not
spread out over the whole theory, and doesn’t destroy it. So the claim of
consistency is relative in some sense.

A theory is simply inconsistent for an operator of negation ~ if and only
if for some expression C, C and ~C are theorems of that theory. A theory is
inconsistent if and only if it is inconsistent for some of its operators of
negation. A theory is contradictory if and only if it is an inconsistent theory
and A A\ B is a theorem when A and B are theorems too. Every contra-
dictory theory contains theorems of the form A A ~A. A theory is trivial or
absolutely inconsistent if and only if each of its formulas is a theorem of
that theory (Pefia: 238-239). _

In logical systems of inconsistent propositions non-derivability of some
formula is not an earmark of consistency. The existence of such a formula
testifies only the nontriviality of the system. Nontriviality is not related
here to the absence of inconsistency as in classical logic. Classical two-
valued Frege-Russell logic eliminates any paradoxical expression out of its
formalisms. The logic of paradoxes has a different task: to infer all possible
consequences from paradoxical expressions.

Two main approaches maintain this strategy: either a localization of the
usage of the law of non-contradiction or its validity preservation. Paracon-
sistent logic realises the first approach. It is assumed that not all paradoxes
are antinomies, and that not all paradoxes destroy a formal system. These
are true paradoxes. The paradoxes, which are untrue on the basis of the
paraconsistent logic principles, are selfinconsistent statements. Their atten-
dance in a formal system testifies to its triviality. The second approach is
represented by fuzzy contradictory logic. It treats some paradoxes as false,
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and others as true and false simultaneously: “... every contradiction or an-
tinomy... is false, although some contradictions are true, since some sen-
tences may be both true and false” (Pefia: 240). An antinomy in such a case
is not an earmark of the triviality of a formal system.

A formalisation of inconsistent reasoning needs a modification of an
operator of negation. One of the ways to do this is through a weakening of
classical negation. Such a modified operator does not submit to the law of
contradiction. This method is justified by the fact that the classical operator
of negation is not an adequate representation of the natural language nega-
tion. However, in order to keep the logical power of a formal system it is
better not to weaken it by removing or by localising the law of non-contra-
diction and the law of excluded middle.

A principal advantage of the inconsistent fuzzy theories in comparison
with ordinary fuzzy theories is the appreciation of the logical validity of the
law of non-contradiction and the law of excluded middle. Contradictory
infinitely-valued fuzzy logic gives a possibility to study the situation of
fuzziness without a weakening of the logic by removing those laws. They
are valid for each operator of negation, which functions in such a logic.

The construction of a logic that contains true contradictions has allowed
to overcome some defects of the ordinary theory of fuzzy objects. One of
the reasons for the development of fuzzy contradictory formal systems was
the aspiration “To conceive every body as the set of its parts, that is to say:
as an object which is individuated merely by the degrees of membership of
all its parts to it, so that certain relations’ holding between its members (its
parts) is not a further requirement for the body’s individuation, but a mere
result arising from the existence of the body itself; when a body is broken
up and then rearranged, the result may be another body, because (some of)
the parts may belong to the new object to an extent different from the one
to which they belonged to the former body” (Peiia: 242-243).

To study the properties of time the crucial matter is the presence of a
theory of change of objects, which may be represented as a change of a de-
gree of membership of the parts of the changing objects. It is important
namely in that case where an implementation of the relations between the
parts of a body is not a presupposition of its individualization. That imple-
mentation itself is determined by the existence of the body.

This argument shows the usefulness of tense paraconsistent calculi,
which have interval semantics. The sphere of application of existing tense
interval logic is the propositions about states and processes only. The se-
mantics of such a logic is standard in the sense that the propositions, which
are interpreted relatively to the time intervals, submit to the law of non-
contradiction. Contradiction is distributed over the distinct time periods. A
proposition about a state before changing is true relatively to one period
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and a proposition about a state after changing is true relatively to the other
period. A transition itself is excluded from logical description. The problem
to explicate the origin and the end of a state remains unresolved. The
attempts to demarcate clearly the states express an aspiration to eliminate
inconsistency. Tense paraconsistent logic, on the contrary, allows to ex-
press not only a succession of states, but a tie between them as well.

There is a peculiarity in of paraconsistent logic concerning the analysis
of propositions about transition states. The expression “changes value” is
not interpreted as an indication of the absence of a value. It is assumed that
change occupies some time period. The propositions are valued relatively
to its subperiods. They are ascribed a degree of truthfulness in the interval
[0,1]. It agrees with the fact that a changing object both retains, to a certain
degree, the features of its previous state and acquires new ones, passing
through a number of states or phases.

Later 1 will discuss a description of change in the framework of one
branch of temporal logic, namely tense interval logic. The goal is to present
an approach to the construction of tense paraconsistent logic in addition to
the proposals of N.C.A. da Costa and S. French and G. Priest. In accor-
dance with Hamblin’s intention, I consider change as the idea of occupying
an interval of time that has fuzzy boundaries. The description of change
consists in the description of the states overlapping the interval of change.
As a result such description contains inconsistent statements.

In order to give a formal representation of such description I offer to con-
sider a formula to be true relatively to an interval, if and only if its negation
is false over some subinterval. And if a negation of a formula is true over
an interval, then the formula without negation must be false over some
subinterval. The conjunction of two formulas is true over an interval if and
only if there is some subinterval and these formulas are true over all sub-
intervals of that subinterval. The reference to all subintervals is stipulated
by the above intuition about truth of a formula over an interval. Without
this restriction the formulas considered as connected, may be true over dif-

ferent subintervals of the evaluation interval.

- These intuitions are embodied in the semantics of interval paraconsistent
logic. It is defined relative to a model I of the form (T, C, | 1), where T is a
class of time intervals; C is mereological subinterval relation; | I: P X T —
{0,1} is a value function for propositional variables. The function | | is
extended inductively to supply values for the full set of the formulas of the
language of interval paraconsistent logic.
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Definition 1.
The truth conditions for the formulas of the language of interval paracon-
sistent logic are:

TI1. |~Alt=1iff 3t'(t' C t and |Alt' = 0);
T2. |IAABIt=1iff At't' C tand Vt"(ift" C t',
then |Alt" = 1 and IBIt" = 1));
T3. A vBIt=1iff At't' C tand Vt'"(ift" C t’,
then IAlt" =1 or IBIt"” = 1));
T4. 1A D Blt=1iff At'(t' C tand Vt"Gf t" C t',
then |Alt" =0 or IBIt" = 1));
Fl. |~Alt=0iff Yt'if t' C t, then |Alt'= 1);
F2. [AABIt=0iff Vt'(ift' Ct,
then 3t"(t"” C t"and |Alt" = 0 or [BIt"” = 0));
F3. |A v Blt=0iff Vt'(if t' C t,
then 3t"(t" C t"and |Alt”" = 0 and IBIt” = 0));
F4. 1A D BIt=0iff Vt'Gft' Ct,
then 3t"(t" C t'and |Alt" = 1 and IBIt" = 0)).

Validity is defined in the following manner:

Definition 2.
A formula A of the language of interval paraconsistent logic is valid iff for
any model / |Alt =1 forevery t € T.

By addition of the earlier-later relation R the model / is turned into a
tense interval paraconsistent model T7: (T, C, R, | I}. The truth conditions
for the formulas of tense interval paraconsistent logic are T1-F4 supple-
mented by the ordinary conditions for the formulas with tense operators “it
will always be the case, that ...” (G), “it has always been the case, that ...”
(H), “it will be the case, that ...” (F) and “it has been the case, that ...” (P).

T5. IGAlt=1iff Vt' € T (if t R t’, then IAlt' = 1);
T6. [IHAlt=1iff Vt' € T (if t' R t, then IAlt'= 1);
T7. IFAlt=1iff IA'E T (tRt"and IAlt'=1);
T8. IPAlt=1iff 3" T (t'Rtand IAlt'=1);
F5. IGAIt=0iff 3’ € T (t Rt'and IAlt’' = 0);
F6. [HAIt=0iff It' € T (t' R tand IAlt'= 0);
F7. IFAIt=0iff Vt' € T (if t R t’, then |Alt' = 0);
F8. IPAlt=0iff Vt' € T (if t' R t, then |Alt' = 0);
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and by the special conditions for the operators “it always be the case, that
...” (L), “it sometimes be the case, that ...” (M).

T9. ILAlt=1iff Vt'(if t' C t, then |Alt'= 1);
T10. IMAIt=1iff 3t'(t' C tand IAlt' = 1);

F9. ILAIlt=0iff 3t'(t' C t and |Alt' = 0);

F10. IMAIt=0iff Vt'(if t' C t, then |~Alt' = 1).

Then = A =L ~A, where “—” is Humberstone’s strict interval negation.
We can use this semantics for the study of many-valued logic. D. Boch-

var has offered a calculus with internal and external connectives. The truth
matrices for some of them are:

I

Al-A +A

0 1 0

1 0 I

% ® 0
I

AnNB:

AB | 0 1 *
0 0o 0
1 0 1 o
* * % #*

where — A is intrinsic negation of A, +A is extrinsic assertion of A (“A is
true”), N is an intrinsic conjunction, * is the value “meaningless”. The con-

nectives —, + and N make a functionally complete system of connectives
(Finn).

Theorem.

Bochvar’s matrices are recoverable by the truth conditions of interval para-
consistent semantics.

Proof. The matrix I is represented by conditions:

1. lAlt=1iff VU'(if t' C t, then |2 Alt' = 0);
2. |=Alt=1iff VU'(if t' C t, then |Alt' = 0);
3. IAlt=0iff Vt'(if t' C ¢, then [ Alt'= 1);

4. | Alt=0iff Vt'Gf t' C t, then |Alt'= 1);
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|Alt = * iff Vt'Gf t' C t, then | = Alt' = 1 and IAlt' = 1);
| = Alt = * iff Vt'(if t' C t, then I Alt’ = 1 and IAlt' = 1);
l+Alt = 1 iff VUGE ' C t, then IAlt = 1);
l+Alt = 0 iff Vt'(if t' C t, then |mAlt'= 1) or
Vt'(if t' C t, then |— Alt'= 1 and IAlt' = 1).

90 1 N

The matrix II is represented by conditions:

9. IAnBlt=1ifflAlt=1and IBlt=1;

10. AN Blt=0iff IAlt=0or |Alt=0;

11. A n Blt=*iff Vt'(if t' C t, then | = Alt'= 1 and |Alt'= 1) or
Vt'(if t' C t, then [—BIt'= 1 and IBIt'= 1).

Thus the interval interpretation of Bochvar’s calculus is derived.
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