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HANDLING INCONSISTENCIES IN MULTI-DIMENSIONAL LOGICS

Ingolf MAX!

The main aim of this paper is to show how different types of inconsisten-
cies can be handled within some subsystems of multi-dimensional logics.
But there are several subtopics: (1) With respect to a quite simple notion of
non-disjunctive paraconsistency 1 demonstrate that a very small change of
our familiar classical propositional logic —only using two-dimensional
negations instead of the classical one— yields non-disjunctive paraconsis-
tent systems. The validity of the law of excluded middle and the law of ex-
cluded contradiction can depend on a sort of correctness. (2) It will be
shown how well-known systems of paraconsistent logic can be equivalent-
ly reconstructed within such synractically extended systems of classical
propositional logic. This investigation includes tautological/first degree
entailments and two systems between classical logic and da Costa’s system
1. (3) Using my results regarding the formal explication of notions like
causal relation and complementarity the relation between the application
of a logic and the appearance of inconsistencies within this logic can be
discussed. After defining several types of inconsistencies a summary of the
so far considered inconsistencies is presented. (4) A short outlook indicates
how the fixed number of dimensions can be given up. Here we find another
direction of formulating paraconsistent systems —open for future research.

I introduce a syntactically extended system of classical propositional
logic which contains a new generalized type of n-ary variable functors "
as an essential part. If the arguments of such variable functors are m-tuples
of classical formulae, and if this well-formed formula is a part of another
formula X then it is admissible to substitute for this complex formula
another well-defined m-tuple of classical formulae. Let us begin with the
two-dimensional case.

Iy very much thank the anonymous referee for his useful advice and suggestions.
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1. System PL

L.1.  Primitive symbols

(1 p,g,r. s pil, .. propositional variables
@) 2, A\ V,D, = classical functors
3) [ } operator forming pairs of classical formulae
4) Vi nz=1,1=<i=4¥, form of n-ary variable functors
(5) 0 ( ] parentheses

1.2.  Formation rules

(I) A propositional variable standing alone is a formula of <.

(2) If X, Y are formulae of <, then =X, (X A Y), (X VV Y), (X DY), and
(X =Y) are formulae of P¥.

(3) If A, B are formulae of % formed without reference to the formation

rules (3) and (4) (i.e. usual classical formulae), then ‘g
of P,

(4) If Xy, X,, are formulae of P then VX ... X,, is a formula of P,
(5) Xis a formula of PZ iff its being so follows from (1)—(4).

i1s a formula

1.3.  Types of formulae

CL-formulae A, B, C, D (i.e. classical formulae) are those formulae which
were exclusively formed by means of formation rules 1 and 2.

An E-formula € (i.e. elementary formula) is a formula of the form g ’

An F-formula ¥ is a formula of the form V' [g‘ } [’2,"}
1

An F'-formula F'is a formula of the form V" X| ... X,,, where X| ... X,, are
either CL-formulae or E-formulae.

Example: V3p[;] (g Ds)

An NC-formula f (i.e. a non-classical formula) is a formula of P which
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is neither (a) a CL-formula nor (b) an E-formula. Every F-formula and F*-
formula is an NC-formula, but other examples are — — [‘Z } = [‘3 }
—|V3[p}[ d } P2 1 ere.

qaiL s JLPs
1.4.  Reduction rules
Roughly speaking, reduction rules should support a complete reduction of

any non-classical formula & to a formula of the form
mula of a special kind).

é] (i.e. an E-for-

I use the following abbreviation of X = X[Y/Y2]: ¥| = Y».

Both “X = X[Y/Y>]” and “Y| = VY;” are read as “From X to infer
X[Y1/Y2]", where by X[Y/Y>] we mean that formula which is the result of
substituting any formula Y for the formula ¥ in all of its occurrences in X.

(1)  Reduction rules for classical functors:

o <[4~
02 [8)0[5] - 429

A AAC A CAA

[B]/\C=>[B/\C] C/\[B]g[CAB
(1.3) Disjunction, implication, and equivalence as in 1.2.
(2)  Reduction of F'-formulae to F-formulae

SF ¥ = @'[A,{j’}], for all classical formulae A; (1 = i = n) occurring
in %', ’
Starting with an F'-formula of the form V" X ... X,, we arrive at an F-

formula of the form ¥ [g‘ } oy [A”ji.
1

n

Example: V3p[ ; ] (gDs) = V{g}[ ; :Hgiﬂ
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(3)  Reduction rules for variable functors
The general form of substitution is
SR X = X[F/[€],

where by X[#/€] I mean the result of substituting the E-formula € for the
F-formula ¥ in all occurrences of F in X.

The special form of V-substitution is
A A D" A--A L BB
w 1]... n 1 | n ,
[BJ {BJ:[W A,---A,,,B,---BJ

where @21 P21 are 2n-ary classical functors.2
1.5.  Semantics
VALIDITY OF CL-FORMULAE
Definition I The classical formula A is classically valid (is a tautology)
[symb.: & A] iff the truth-value of A is | for all truth-values of the proposi-
tional variables.
VALIDITY OF E-FORMULAE
Definition 2 The E-formula [’é] is E-valid [symb.: = [‘g]] iff - A and + B.
Theorem 1| = [g] iff - (A A\ B).

Since all NC-formulae can be reduced to E-formulae this theorem means
that validity in P is reducible to classical validity.

VALIDITY OF NC-FORMULAE
Definition 3 Let % be any NC-formula ana{gz} that E-formula which is

the result of the complete reduction of %, i.e. that all occurrences of vari-

2For the sake of simplicity and readability I take the well-known property of definability
of the non-primitive classical functors for granted. Below, instead of &"4, ... A,, B, ... B,
and ¥2"A, ... A,, B, ... B, I use any logically equivalent expressions.



HANDLING INCONSISTENCIES IN MULTI-DIMENSIONAL LOGICS 71

able functors and all occurrences of classical functors and propositional
variables outside the scope of brackets are eliminated:

; A
= % [ B;]_
2. Non-disjunctively Paraconsistent Systems

Definition 4 A (sub-)system is non-disjunctive paraconsistent iff the follow-
ing formulae are not valid:

not valid: M AND NEG-M IMPLIES N [ex falso quodlibet]
not valid: (M OR N) AND NEG-N IMPLIES M~
[disjunctive syllogism].

2.1.  Other classical systems
Obviously, {P, =, A} (P is a metalinguistic variable for propositional vari-
ables) is a functionally complete language of classical propositional logic
“6£. What happens if we try to use other basic expressions instead of P?
Let €¥'= l{g], —, A} be another language (a sublanguage of P %)

using two-dimensional expressions of the form [1‘2] instead of our pure

classical propositional variables. That is not very interesting because it only
duplicates €:

Theorem 2 Let X be any formula of €&£". Then its complete reduction has
the form |: Ax}

= Xiffr Ay
Let us try other “strange” basic expressions of the form [—f,P]: €L =
{[ —}.) P]’ —, A}, They look like contradictions. We call such expressions

implicitly inconsistent ones (4 A indicates that A is classically inconsis-
tent.):
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Definition 5 The E-formula [g is implicitly inconsistent

[symb.: A [;}]1 iff ()4 (AAB), (ii)not 1A, and (iii) not 4 B.

But, nevertheless, using such basic expressions keeps classical logic totally
intact:

Theorem 3 Let X be any formula of €£". Then its complete reduction has

the form [g’( i| But we get By by using the following substitution:
X

Bx=Ayx [P/ —P;], forall P;in Ax.
E XiffrAx

Please note that both the ex falso quodlibet and the disjunctive syllogism
are not valid with respect to implicitly inconsistent basic expressions in a
richer language:
| P } m) b \/[ g } m
[ﬂp q p —q| P
2.2, Non-disjunctive paraconsistent systems using two-dimensional
negations

There is a long and very intensive discussion about what is responsible for
the triviality of ‘€. Maybe, negation is. Therefore, let us try several types
of two-dimensional negations.

Let us first introduce the notion of a product operation with respect to n-
ary variable functors:

Definition 6 A variable functor of the form V" is a product operation iff its
reduction rule has the following form:

vn AI Ar: = ¢” Al'”An
BI Bn IIU’I Bl‘“Bu ,

i.e. such a variable functor acts separately like two different n-ary functors
in each dimension/line.

The two-dimensional approach offers the possibility to give each dimen-
sion (line) an interpretation of its own. One way of explicating this idea is
to call any variable functor which has only an external/classical negation in
its first reduction line an n!-negation.
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Definition 7 A unary variable functor V! is an n!-negation iff its reduction
ritle has the following form:

1| A —A
" =[]
If we take these two definitions above we get the notion of an n!-product
negation:

Definition 8 A unary variable functor V! is an nl-product negation iff its
reduction rule has the following form:

vi| 4 | = |26
B ¥'B|
Remembering the reduction rule for the external/classical negation we can
now state that “—" is an n!-product negation.3 But there are others:

2.2.1. “="asn'-product and logically independent negation

Definition 9 A negation NEG is logically independent of the external/clas-
sical negation — iff

neither NEG-M ENTAILS —M nor =M ENTAILS NEG-M.

The following two-dimensional negation “~" is characterized by a reduc-
tion rule which indicates that this negation is an n!-product negation. Fur-

thermore, it is logically independent* of the external negation —:
A —A . |A A A A
IS R R HERE

B
Now, we consider another sublanguage of P£: P%L- = (P, -, A\, V, D} .5
We use our notion of = -validity.

3Let me add that the external negation is furthermore an n2-product negation, which
shows the uniform behavior of the classical negation in both dimensions.

4Logicians usually divide negations into two main groups: (a) external (classical)
negation and (b) internal (non-classical) negations. But some logicians, e.g. Stelzner (1984,
79) argue for a threefold subdivision adding restricted external negations. But using strong/
restricted negation does not yield true contradictions in any sense.

Sn this system, we have to add other functors like V/, 2 because we lose the interdefina-
bility of classical functors after switching from — to —
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The law of excluded middle (LEM) and the law of excluded contradiction
(LEC) are not valid for this type of negation:

I;’:p\/—p,l.e.{ypvp}.

W —(p A—p), i.e.{'" y ;;’)} .

Theorem 4 PXL" is a non-disjunctively paraconsistent system because of

# (0 A p) D guied P> ana

) |-((pvq)A—!Q)Dp
(Vg N-g) Dp,i. 'V((pvq)f\‘!):”’}'

22.2.  “~7 as product and weakened external negation

Here is a characterization of a general form of weakened external nega-
tions:

Definition 10 A negation NEG is a weakened external negation iff

NEG-M = —M V N holds, with

(1) NENTAILS M (logical connection)
(2) M DOES NOT ENTAIL N (non-triviality)
(3) =N DOES NOT HOLD (proper weakening)

It is not surprising that now the law of contradiction does not hold, but the
law of excluded middle holds:

It is not valid — (M A NEG-M),
but possibly valid NEG-(M N\ NEG-M).
Additionally, it holds (M A NEG-M) D N) and (M VV NEG-M)

It is clear that weakened external negations are functionally dependent on
the external negation:

— M entails NEG-M.

We are ready for introducing a special two-dimensional negation of the in-
dicated type:



HANDLING INCONSISTENCIES IN MULTI-DIMENSIONAL LOGICS 75

A —A Al_ A AA—A
p R I P s PN e
Now, we consider another sublanguage of P¥: P¥£™ = (P, ~, A, VV, D}.6

The law of excluded middle (LEM) and the law of excluded contradic-
tion (LEC) does hold for this type of negation:

i Fpv—p
=2y p’l'e‘{l"p\f(pvﬁp)}'

Fpa(pv—p)v—(pa(pv—p))

Theorem 5 PE™ is a non-disjunctively paraconsistent system because of

= ~(pA~p), i.e{ F=ip.a—p]) }

;. _ ; F(pAa—p)Dgq
@A ~p)Dag,L }f(pA(pvﬁp))Dq}and

o Fpveoa—g)op
i;é((p\/q)/\"‘(ﬂDpel"{‘y((pvq)/\(q\/_'q}):).p}‘

2.2.3.  Modality, correctness, and some crossconnections between PE-
and PEL~
As | have shown elsewhere the negation “—"" can be interpreted as presup-
position preserving negation. The truth-valueness depends on the correct-
ness of the considered expression. This correctness is presupposed within
classical logic.? In other words, the possibility of an expression is its pre-
condition for its “sense” or ability of being true or false.
We can define two notions of correctness:

Op=grp NV —p possibility or weak correctness
Op =grp N —p necessity or strong correctness

We get the familiar connection between possibility and necessity:

E Op=-0Op E Op=-C-p.

6ln this system too, we have to add other functors like V, O because we lose the inter-
definability of classical functors after switching from — to ~.

TCp. Max (1987).

8Fres_:,n: (1892, 40) calls this presupposition regarding singular terms “stillschweigende
Voraussetzung” (“tacit presumption”).
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We observe that both the law of excluded middle and the law of excluded
contradiction is equivalent with the same weak correctness:

E Op=@p@V-p) E Op=—(p/—p), therefore
= (o V-p)=—(pAp).
I have already defined necessity/strong correctness using the supposed

expression of contradiction. This kind of necessity is definable in system
P Lo

Up =arp N ~p.
But possibility/weak correctness is not expressible in P¥ ™

There is no expression X in the sublanguage £~ ({P, ~, A, V, D})
with = Op = X. We only get the “strange” result

E ~O-~p.
What about double negation?

E —-—p=p FE P ~meeap = p butE=~p D
Let me finally mention that —leaving our two P ¥-subsystems— that

= —pD~p.

3. Two-dimensional Representations of Many-valued Paraconsistent
Svstems

3.1. Representation Schema of Non-classical Propositional Logics

Let H be any formula of any non-classical propositional logic occurring
variables of the form a; and the n-ary functors/operators of the form N/'.
Then let Xy be the analogous formula relative to H created by means of
biunique mappings of the following form:

A
(i) a;je=| : |ofafixed type, and

]
"
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(i) N = F" with special properties of reduction.
(i11)  Defining an appropriate notion of validity, e.g.

A A
Definition 11| : |isL-valid:=p| : [iff FALFAg, .. F A,

AH’I m
Remember, our notion of = -validity is a subcase of L-validity. Our two-
dimensional framework is rich enough for representing each 4-valued or 3-
valued propositional logic up to equivalence.
For every formula H holds: Xy from a subsystem of P is valid in the
above outlined sense (or another defined sense) iff H is valid with regard to
designated truth-values?.

3.2, Tautological entailment: relevance and paraconsistency

Dealing with many-valued logics it is a well-known semantic tool to estab-
lish one or more designated values. There is a very common metaphysical
misunderstanding which consists in the identification of designated values
with “real” truth-values. In a pure technical respect we need designated
values only to define a notion of validity within many-valued logics. But
there are a lot of intuitive readings of values depending on the intended
field of application of a chosen many-valued logic. 3- and 4-valued logics,
¢.g., can be used to discuss the “logic” of quantum physics, presuppositions
of natural languages, time modeling, vagueness of notions etc.

Usually it is presumed that expressing different intuitions with regard to
the values of a many-valued logic necessitates different systems or formu-
lations (e.g. functionally incomplete ones) of such logics. Then we can
observe a highly emotional discussion about the “right” or “intuitively ac-
ceptable™ negation, conjunction, disjunction etc.

The discussion about the “right” semantics for the system Efdem of tauto-
logical entailment shows the opposite case. In accordance with Ander-
son/Belnap we call an n-valued matrix “characteristic for a calculus when
a formula A is provable just in case it assumes designated values for every
assignment of its variables.”!! They also mention that there is a proof by

9Max (1994) provides a more general result.

10My index 4, is to indicate that this system does not contain expressions with nested
arrows, i.c. all entailment expressions are first degree entailments.

I Anderson/Belnap (1975, 161).
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Smiley (in correspondence) showing that the 4-valued matrix discussed
below is characteristic for Efge.

Nevertheless there are several variant readings of these 4 values, and we
are aware of alternative semantic results using, e.g., algebraic or lattice
theories. Given the Smiley matrix I am going to show that it allows at least
two two-dimensional intuitive readings of the 4 values (using only = -
validity) and that these differences can be made syntactically explicit in my
two-dimensional approach.!?

3.2.1.  Language of Egy,

PRIMITIVE SYMBOLS

(1) pi form of propositional variables
(2) e Nes Ve =0 propositional functors
FORMATION RULES

(1) A propositional variable standing alone is a formula.
(2) If Hy, H, are formulae in which “—,” does not occur, then — H|,
(Hy Ne Hp), (H1 V., Hp), and (H| -, H») are formulae.

3.2.2.  Semantics of Efge

H| -~ ,H H A H|1234 H V. H,|1234 Hy >,H,|1234
1| 4 1 1234 1 1111 I 1234
2l 2 2 2244 2 1212 2 1133
3l 3 3 3434 3 1133 3 1212
41 1 4 4444 4 1234 4 1111

Designated value: 1.

We have several intuitive readings of this 4-valued truth-tables. But it is
also a fact that such one-dimensional truth-tables cannot be used for ex-
pressing a variety of readings explicitly. Let us assume that “1” is the
candidate for the value which I want to call “intuitively designated value”.

I2This section is a condensed and modified version of parts of my paper Max (1996).
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Let us begin with an identification of formally and intuitively designated
values.

Now we can read the four truth-values as ordered pairs of the classical
values 1 and 0: <k,I> with k,I € {1,0}. For the sake of brevity I write only
“KkI”. Let us assume the following biunique mappings:

1 < 10 (true) 2 < 11 (both) 3 00 (none) 4 = 01 (false)

Then, we obtain the following reading of the Smiley truth-tables:

[g ﬂe[A] [g] /\e[g] 10 1100 01

10 10 1100 01

B r B 11110101

0 | oo 00 0001 00 01

01 10 01 010101 01
[A]v [D] 10 11 00 01 [g] ae[g| 10 1100 01
101010 10 10 10 1100 01
i 10111011 1 10 10 00 00
00 10 10 00 00 00 10111011
01 10 11 0001 0l 1010 10 10

We observe that the negation —, does nothing else than switching the
components/sides. The conjunction A, produces a classical conjunction of
the first components but a disjunction of the second ones. In case of the
disjunction V, we get the opposite: disjunction of the first components and
conjunction of the second ones. The implication — , yields a classical im-
plication in the first case but a negated replication in the second case.

Therefore, it is very natural to take variable functors characterized by the
following reduction rules.

~e[3] = [4 8] ve[5] - [535)

C AnC A C A>C
/\E[D] = [va} [B "E[D] = [—(DDBJ
The structural correspondences should be immediately obvious. Con-

Junction, disjunction, and implication are product operations. Negation pro-
duces a switch of both dimensions.

5




80 INGOLF MAX

Now we define another notion of validity:
iefinivion. 12 The Edormnla [g] i Tlloatid lomBe &= [g]] iff
(YrAand  (i)4B

It is obvious that &= jg-validity corresponds to the designated value 10
because it refers to a first classically valid column and a second classically
inconsistent column.

Theorem 6 (Classical style representation)
S [g] iff (AN —B).

Let % Ffde be the following subsystem of P ¥: P Ffde = ﬁp}il — g NEs
Ve =2 E} 2

. : Ay
Definition 13 Let Xg be any formula of P $fde, le[ BX* } be that E-formula
E
which is the result of the complete reduction of Xg, i.e. that all occurrences
of variable functors and all occurrences of classical functors outside the
scope of brackets have been eliminated:

5 Ay
EuXeilf=o| gt |-
XF
Definition 14 Hf4e¢ is fde-valid [symb.: ~ fde HIde) iff the value of Hf4¢ is |
with regard to the Smiley-matrix for all values of the propositional vari-
ables.

Theorem 7 & 4e Hfde jff = Xtfder
where the biunique mappings concerning the translation of formulae are:

1
p’:’[ﬁ}:\ Tlg® TR Ne & NE Ve Vg —2ee —op
ol

To prove this theorem it has to be shown that (1) there is a biunique con-
nection between the 4-valued truth-tables and the truth-tables of the two-
dimensional expressions, and that (2) the reduction rules of variable opera-
tors act in a syntactic manner like the 4-valued truth-operation in a seman-
tic way.

Only to sketch this proof I show the pseudo-two-dimensional value-
tables of the above mentioned variable functors:
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3] ({3 - [4] AelB| |0 nonon
70 | o/ 770 170 171 0/0 071
11 11 /1 /1 1/1 071 0/1
00 | oo 0/0 0/0 0/1 0/0 0/1
0/1 1/0 0/1 0/1 0/1 0/1 0/1
Al., [C A c
[B] Ve[o] 1/0 1/1 0/0 0/1 [B] —>£,[D] 1/0 1/1 0/0 0/1
170 170 170 1/0 10 170 170 171 0/0 071
11 10 1/1 1/0 1/1 /1 1/0 1/0 0/0 0/0
0/0 1/0 1/0 0/0 0/0 0/0 1O 1/1 1/0 1/1
/1 1/0 1/1 0/0 0/1 0/1 1/0 1/0 1/0 1/0

The use of the notation “k/1” is to indicate that we do not have real two-
dimensional values here, but only pseudo-values. It would be much better
to have a vertical dash showing that the left part of each column represents
the truth-table of the first dimension of any expression and the right part of
each column the second one.

If we neglect product operations, reduction rules of variable functors act
in such a way that, informally speaking, they put both lines together in each
reduction step. This corresponds to the functional dependency of both di-
mensions of the 4 truth-values read as ordered pairs of classical values.

But we are also ready to separate formally and intuitively designated
values: We keep the intuitively designated value 10 but use our familiar
= -validity. Now, this type of validity corresponds to the combination 1/1.
We need only a small change: There is another implication operator:

A C A>C
[B] *E'[D] - [D:A}
Theorem 8 Fy, Hide jff FXHfde,
where the biunique mappings concerning the translation of formulae are:
pf'=>|:p:jl =; & —p Ne ® Ag Ve VE S, —p
P>

i
Theorem 9 Both the system P¥/de and the system P Ffde’ = ﬁp ; } g,
NE, VE, = g} are non-disjunctively paraconsistent: )



82 INGOLF MAX

HIGHEEH
“ol[g]ve[ 5] { 7] 2]
#[a]re =] e 1]
d ([ EH R HREH

Using another mapping of values we get a more classical looking version
of first degree entailments:

10

le= 11 2= 10 3 01 4 < 00

Pepsie = [[p,}, ~gn AV, D) with =4 = [

2
Theorem 10 g, H4 iff WXpypge,
where the biunique mappings concerning the translation of formulae are:

pi(:)|:p§:| T.e g Np & N \/e@\/ Rl
P

The system P £ comes close to our system P£-. The only differences
are (1) the use of two-dimensional basic expressions instead of proposi-
tional variables and (2) another type of negation: — g instead of —.

3.3.  Two-dimensional representation of three-valued systems between
€& and da Costa’s €

Mortensen (1989} investigates two distinct paraconsistent systems —called
%0.1 and 6 ,— which have an adequate 3-valued semantics!3:

H |~ H —oH H AH)| 123 Hi V. H)|123 Hy > .H)|123
1] 3 3 1 113 1 111 1 113
2| 1 2 2 113 2 111 ) 113
3] 1 1 3 333 3 113 3 111

Designated values of € 1: 1, 2 and of € »: 1.

13System %0, was also called | by Sette (1973), and F by da Costa/Alves (1981). Cp.
also da Costa (1974).
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0.1 and ‘€ o differ only with respect to their negations and designated
values.

Considering the expressive power of two-dimensional systems there are a
lot of equivalent reconstructions of these two systems. Several subsystems
of P& can function as an adequate simulation of arbitrary 3-valued sys-
tems. Furthermore, it is possible to use pseudo-4- or pseudo-3-valued basic
expressions.

3.3.1.  Two two-dimensional representations of ‘€ |
Here is one possible system regarding the following biunique mappings:
1= 11 2« 10 3 00

PPCor = {[Pl v Pz}, =1 AV, D} with ﬂc[ﬁ] = [:g].

i

P A D,

Definition 15 The E-formula [g] is 1-valid [symb.: = [g]] iff FA.

Theorem 11 +¢1 HC iff = Xy
where the biunique mappings concerning the translation of formulae are:

P AP
Here is another two-dimensional representation of ‘6 | using only implicit-
ly inconsistent expressions:

i i
piﬁlip'.vpzl —zE ey Ne = N Ve o V S D,

1l = 10 2< 00 3= 01

@SEC’O.] = 4:[)] T\_‘lp%}, —l'Cl, VANRAVAS —>'} with
AP

—el [g] = [ﬁ] ﬁ] "'[g] = [ﬁ(ﬁfBD;—{)D) ;
[f-}] /\'[g] = LFEBA/:DD) : [’gl L g] = [ﬁ(fgvvﬁf)m :

Furthermore, we have to use a “strange” kind of validity: [él is inconsis-

tently valid iff B is a classical contradiction (ﬁ[g])!
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3.3.2. A two-dimensional representation of 6 »

The system 6> has a two-dimensional version which differs only in one
respect from a two-dimensional version of Egg,: @ #5“. Here is my pro-
posal with respect to the following biunique mappings:

le 11 2 10 3 00

i i

Pplor= PV P2 A v, D),
AP,

L.e. we can use our two-dimensional negation — g which is taken from one

of the equivalent reconstructions of first degree entailments: P&

Theorem 12 v HE iff FXpe, (Xp, € PFC02)
where the biunique mappings concerning the translation of formulae are:

p[ﬁ[ﬁ]‘j\i?} —ee g Ne & N VeV —s.e D,
1 2

The only difference between P £/ and % ¥ Co2 consists in using two
logically independent types of pseudo-4- and pseudo-3-valued basic

expressions: [P:} and {p,_ ¥ pﬂ, respectively.
P>

Pi AP
P2 PPy AP ”
Going back to our basic system P we have, e.g.
2N VY )
Along this line, the basic system ¥ allows to formulate interesting con-
nections within the object language of one and the same logic.
4. Handling Several Types of Inconsistencies

4.1.  Case I: JaSkowski-style discussive conjunction

First, we introduce a JaSkowski-style discussive conjunction!4. This is a
binary variable functor with a reduction rule which indicates a non-sym-

14¢p. Jaskowski (1948) and Urchs (1986).
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metric property of this conjunction. It is based on a kind of possibility of
the second argument!>:

[A C An(Cv D)
g [3] AD'[D] = [3 A(CV D)}
— non-validity of ex falso quodlibet:

p p Flaw FpAa(—=pv—g)Dr
” [‘I} "\ ﬁ[q} 3[ s } he {qu\(ﬂpvﬂq)m}

— non-validity of disjunctive syllogism of the form
p r r Pl Fipvir)a(—rv—=s)Dp
s ([q}v[ ) D D _'|: N } D[g}’ 18 {qus)/\(ﬁrvﬁs):) q

The JaSkowski-style expressions [p} Np __][p} and — [p} Ap [p} are
implicit inconsistencies. 9 ¢ 4 %

4.2, Other cases: causal relation and complementarity

An interesting fact is that using implicit inconsistencies is very often forced
by extralogical interpretations of sublanguages of our system. Prominent
cases are (1) the appropriate formal explication of causal relations and
(2) the formal representation of complementarity in the sense of comple-
mentary notions !0,

4.2.1. A causal relation

In Max (1990) I have shown that the following variable functor rule is an
interesting reading of a causal operator:

8-[5] - (452221

We get a perfectly working logic using such an implicitly inconsistent pro-
cedure:

AANCA(B=DNOABADANANC)but
not4ANCA(—B=D) andnot4 (BA DA —ANC)

]50bvi0usly, it is possible to introduce another Jaskowski-style discussive conjunction

with respect to the first argument: Ay :[ﬁ] Apy [g] = é;} . g;:f)]

]6Cp. von Weizsicker (1955) and (1958).
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42.2. Complementarity

Let us finally mention that it is possible to give a formal explication of
complementarity in the sense of complementary notions using implicitly

!

S EAY )

and [_';p‘ Ap?} (abbreviation: e;"). We call e the complementary
Py APy

. . : " . FA—pl -
inconsistent basic expressions of the forms [p L ? | (abbreviation: ¢;)

E-expression of e', and vice versa. A complementarity-formula is that for-
mula in which at least one pair (e,e’) occurs!7.

Let P£Com be the PE-subsystem {e}, ¢;', =, A, \V, D, =}. This kind of
sublanguage of P has significant differences from the usual P¥:
In PFCom there are some interesting simultaneous substitution rules con-
cerning complementary E-expressions of the form e; and ¢;". Let X and Y be
any formulae of £ Com;

SRCla X = X [e/Y, ej/ Y]

SRC1b X = X [e/ Y, e;1Y]

SRC2 X = X [eile;', ej'le;]

SRC3 X = X [e;/Y] but only with the restriction that ;' does not occur in
X (and vice versa).

In ‘6% we have a uniform substitution just in case that the initial expression
is atomic: A = A[P/B]. But in ?¥ we loose this rule, and in the earlier in-
vestigated subsystems of £ we got a new type of uniform substitution
with respect to their formulae X and Y: X = X [e/Y], there e is any basic ex-
pression of that subsystem. Remember that these basic expressions are
complex with respect to the formation rules but can be handled as atoms
with respect to uniform substitution. In L0 there are two types of basic
expressions, ¢; and ¢;". This fact forces us to take into consideration the e-
context in one and the same formula.

4.3. Types of inconsistency in P£L

We define the following types of inconsistencies with respect to an ex-
tended —n-dimensional— % ¥-system:

]7Cp. an earlier paper of mine: Max (1989),
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Definition 16 Explicit inconsistenc
A A
. | is L-inconsistent: A iff1Ay, 1A, ..., 4A,.

n n

Definition 17 Partial inconsistency
A
par A iff A HA (1 =i=n).

n

87

Implicit inconsistency means that a formula does not contain any contradic-

tion but the conjunctive connection of its parts is classically inconsistent:

Definition 18 Implicit inconsistency
AI

| DA A AL N NAY ) VA not4 A (1 =i = ).

n
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Let me give a summary of the kinds of inconsistencies of the form (e AND
e") of our considered subsystems of P&

type of notion of
subsystem expression inconsistency | validity
¥ pA—p explicit F
PEAP, -, AV, D} pA=p partial =
PLT AP, ~, A\, V, D) p/A~p partial =
_ Gpffde.
P r
{[ﬁ} =g, AE. VE, = E} [‘f] NE _|E[" none =10
o)
- o Ppfde’. , ; oS
_[)5 g AV, D) [i,'] N _lE[i]] implicit =
L~ ]
o gpy.f&fe.
- WP n Iel (= i
[ 20y | e | s |
.72,
- PLPLOL:
Py g PY g e
[ I’iVPE_') : _|C|!/\3\/’:)} [p/\q]/\_lCl[p/\q] pdrlld] = 1
"?i /\f)rz
PLCon; {[”{?””é]
ol A ph ? A ' ' 0 A 2 Sz
! ; ’l’ "3' [L;:M}’] A C][ijM;] implicit =
—Ve AV =
gl
pvaq [rva artic
{ pivpé , O /\, \/, :)} [p/\q] VAN _|E|:"’Aq] partial 2%
p; A [15
appComs
pa—g] A P Ay .
{e,e', =, A\, V, D} [ﬁfmq] - [ﬁp/\q] explicit =
gppCom: .
[f”‘ﬁ‘f] A [_""""] (e /Ne)| explicit =

[eye', =i, M, D

—pAag P A
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4.4. “Family resemblances” of paraconsistent systems

Borrowing Wittgenstein’s notion “family resemblances” I intend to say
something more general about the interrelations between the selected para-
consistent systems with regard to their formal representations in P <. In the
face of missing an absolute and general criterion of “paraconsistent calculi”
I do this by showing some of the similarities and differences.

* The system 2 is a framework which offers the possibility to correlate
several paraconsistent systems within the same object language. Each
system is characterizable by using a special sublanguage of P in con-
nection with a well-defined notion of validity. Looking at the sublan-
guages we find a lot of similarities/resemblances but also many differ-
ences.

* On the one hand, we do not find the “essential” feature of “paraconsis-
tency” within the calculi: neither common basic expressions, common
connectives, nor common notions of validity/inconsistency.

* On the other hand, there are similarities: E.g., ?£C0.1 und ¥ €02 have
the same basic expressions. ?£C0.1 and P pCom have partially the
same basic expressions. We can express e in PF but not in P Ffde’
etc.

* There is no system which is superior to the others.!8 But all the sys-
tems can be correlated to our well-known classical logic. Additionally,
they can be embedded in a system —% %— which is in fact in some
sense equivalent to classical logic.

* This program is based on my expectation that paraconsistency as well
as other “extralogical” motives do not yield a well-founded reason to
leave classical logic but only to extend classical logic syntactically.
Different intuitions should be expressed by different syntactic tools.

5. Outlook: Exploding Dimensions

Regarding intuitive readings there are several reasons for accepting more
than two dimensions. Let me mention only two:

I8This is related to a remark made by the anonymous referee. He expected that the con-
sidered paraconsistent systems “are doing different things and are useful in their different
ways.” My point is that they are not completely different,
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Let [’g.] be any two-dimensional expression with A and B as arbitrary

classical formulae. Further, let us call the upper dimension (A-dimen-
sion) the future-dimension and the lower dimension (B-dimension) the
past-dimension. It leads to the following picture:

|' A '| = future-dimension
time-axis
[ B J <  past-dimension

It is very natural to extend this approach by introducing three-dimen-

A
sional expressions of the form {B} as exemplified in the following
reading: c

Al ¢ future-dimension
B| < present-dimension!?
€] o past-dimension

We can interpret expressions of the form [’g] as explications of an

assertion which asserts A and presupposes B. It is well-known that we
find different types of presuppositions triggered by natural language
expressions. If we accept that “different types” formally means “differ-
ent dimensions” we get more than one presupposition dimension.20

One basic assumption for our P £-systems is the fixed number of dimen-
sions. But another strategy consists in allowing variable functors which
increase (or decrease) the number of dimensions. E.g., it is possible to
introduce another type of negation connected with the following reduction
rule:

A1 |4
A, A

19¢p. Max (1997).

201 am going to follow this line in a research project on Multi-dimensional Representa-
tion of Language Knowledge and World Knowledge: Investigations on Presuppositions and
Negations. Cp. also Max (1998). I am glad to see that the anonymous referee expresses the
same way of thinking by asking “what are all these dimensions doing?”
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The negation —yy looks like a “combination” of the classical negation —
with respect to the dimensions A ... A; and the presupposition preserving,
logically independent negation “—” with respect to the dimension A; in
dimension A;,1. A consequence of this “exploding™ negation is a complete
reformulation of all reduction rules. Now Reduction rules should support a
A
complete reduction of any expression X to E-expressions of the form| :

Let me mention one example: reduction rules for binary classical functors
of the form @2

[ @?AB, |
2l ®AB,
: D= 5
A, B, & ‘dl,fo’rl
_(DZA.J'BHI\‘_

pAr—p
Then, [p} A ﬂM[‘D} yields after this reduction| g A —g |.
q q
qng
This expression is partially inconsistent.

The negation — y; has something in common with the negation in da
Costa’s systems Cy, ..., C,.

Multi-dimensional systems are very flexible tools. They offer a rich syn-
tax combined with an interesting variety of notions of validity. The recon-
struction of da Costa’s systems and other paraconsistent calculi and the
construction of new —extended— multi-dimensional systems is a chal-
lenge of further research.2!

21 The anonymous referee expresses exactly what I feel:

Still, there’s something very natural about irerating the process of combination and
allowing arbitrarily many dimensions, as this seems like a natural limiting point. I'd
love to see some kind of general embedding result showing that all of the finite
logics can be embedded in a suitable infinitary version with a few basic connectives.

I am still working along this embedding strategy. There should be interesting applications
regarding so-called non-classical logics in general, and especially with respect to modal
logics, tense logics, presuppositional logics etc.



92 INGOLF MAX

REFERENCES

Anderson, A. R./Belnap Ir., N. D. (1975): Entailment. The Logic of Rele-
vance and Necessity, vol. 1, Princeton University Press, Princeton/
London 1975.

da Costa, N. C. A. (1974): On the theory of inconsistent formal systems,
Notre Dame Journal of Formal Logic 15 (1974), 497-510.

da Costa, N. C. A./Alves, E. H. (1981): Relations between paraconsistent
logic and many-valued logic, Trabalhos do Departmento de Mathemd-
tica, Universidade de Sdo Paulo (1981).

Frege, G. (1892): Uber Sinn und Bedeutung, Zeitschrift fiir Philosophie
und philosophische Kritik, C (1892), 25-50.

Jaskowski, S. (1948): Rachunek zddn dla systeméw dedukcyjnych
sprzecznych, Studia Societatis Scientiarum Torunensis, sectio A, |
(1948), 57-77.

Max, 1. (1987): Logische Explikation von Prisuppositionen und Nega-
tionen mittels Funktorenvariablen, Wissenschafiliche Zeitschrift der
Universitéiit Halle 36 (1987) 5, 14-23.

Max, 1. (1989): Komplementaritit und Funktorenvariablen, in: Erfahrung
des Denkens — Wahrnehmung des Ganzen. Carl Friedrich von Weiz-
sdcker als Physiker und Philosoph, ed. by P. Ackermann et al., Akade-
mie-Verlag, Berlin 1989, 163-170.

Max, 1. (1990): Zur Interpretierbarkeit vierstelliger Funktorenvariablen als
Kausalrelationen, Wissenschaftliche Zeitschrift der Universitit Halle
39 (1990) 2, 53-61.

Max, L. (1994): The equivalence between n-dimensional classical logics
and 2"-valued logics, The Journal of Symbolic Logic 59 (1994) 2, 709.

Max, 1. (1996): External, restricted external, and internal negations in a
two-dimensional logic, in: Negation. A Notion in Focus, ed. by H.
Wansing, de Gruyter, Berlin/New York 1996, 59-85.

Max, L. (1997): Dimensions of time, in: Perspectives on Time, ed. by 1.
Faye et al., Dordrecht: Kluwer Academic Publishers (Boston Studies:;
189) 1997, 367-397.

Max, L. (1998): Mehrdimensionalitiit und Widerspruch. Logische Unter-
suchungen zur Philosophie, Wissenschaftstheorie und Linguistik [Mul-
ti-dimensionality and Inconsistency. Logical Investigations on Philoso-
phy, Theory of Science, and Linguistics]. Habilitation, University of
Leipzig, Germany 1998.

Mortensen, C. (1989): Paraconsistency and C, in: Paraconsistent Logic.
Essays on the Inconsistent, ed. by G. Priest et al., Philosophia, Miin-
chen/Hamden/Wien 1989, 289-304.



HANDLING INCONSISTENCIES IN MULTI-DIMENSIONAL LOGICS 93

Sette, A. M. (1973): On the propositional calculus Py, Mathematica Japo-
nicae 18 (1973), 173-180.

Stelzner, Werner (1984): Epistemische Logik. Zur logischen Analyse von
Akzeptationsformen, Akademie-Verlag, Berlin 1984.

Urchs, M. (1986): On two systems of Stanistaw Jaskowski, Journal of
Non-Classical Logic 3 (1986), 25-32.

Weizsiicker, C. F. v. (1955): Komplementaritiit und Logik, Die Naturwis-
senschaften 42 (1955) 19, 521-529.

Weizsiicker, C. F. v. (1958): Komplementaritit und Logik 11, Zeitschrift fiir
Naturforschung 13a (1958), 245-253; Mehrfache Quantelung, Kom-
plementaritat und Logik IIT (together with E. Scheibe and G. Siiss-
mann), Zeitschrift fiir Naturforschung 13a (1958), 705-721.



