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CURRY ALGEBRAS Pt

Jair MINORO ABE

Abstract

In this paper we present an algebraic version of the annotated logics Pt
[Da Costa 91] by means of the concept of Curry Algebra [Barros 95].
The algebraic structure obtained is called Curry Algebra Pt. We study

some basic properties of that algebra, showing a completeness result
for the logics Pr.

1. Introduction

Annotated logics is a new class of non-classical logics introduced by Sub-
rahmanian [Subrahmanian 87]. Deeply meaningful applications have been
made subsequently in Al as well as in Computer Science. Many authors
have dedicated themselves to study those systems from a foundational
point of view: N.C.A. da Costa, C. Vago, V.S. Subrahmanian, J.M. Abe,
among others. This logics has proved to be a powerful tool to deal with in-
consistencies and paracompleteness in a non-trivial manner. Such concepts
have become more and more common in several contexts in Al, Robotics,
and other fields of applications, as can be observed.

Logics that serves as an underlying logic of inconsistent but non-trivial
theories are called paraconsistent logics. Logics that serves as underlying
logics of theories in which propositions p and —p (the negation of p) are to
be encountered, and in which both are false, are called paracomplete
logics. Logics that is both paraconsistent and paracomplete, is called non-
alethic logics. Thus, in these terminologies, the annotated logics Pris para-
consistent, and, in general, paracomplete and non-alethic logics.

One question naturally arises: the algebraic version of that logics. In this
paper we introduce the Curry Algebra Pr that algebraises the annotated
systems Pr. Some basic results are presented. Curry systems constitute a
very promising field of research, but few people have paid due attention to
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this theme; among whom we can single out H.B. Curry, C.M. Barros,
N.C.A. da Costa, J.M. Abe, and some others.

2. The annotated logics Pt

In this section we summarize the annotated logics P7. References for this
section are [Da Costa 91] and [Abe 92].

P7is a family of propositional logics. It is defined as follows throughout
this work: 7= (|1], = ) will be somewhat arbitrary, but fixed, finite lattice
of truth values (many times we identify 7 with its underlying set |7]). The
least element of 7 is denoted by L, while its greatest element by T. We
also assume that there is a fixed unary operator ~: |7] - |7 which consti-
tutes the “meaning” of our negation. \/ and /\ denote, respectively, the
least upper bound and the greatest lower bound operators of .

The language of P7is composed by the following primitive symbols:

1. Propositional symbols p, g, ... (with or without numerical subscripts)
2. Each member of 7is an annotational constant: w, A
3. The connectives —, /A, \/, and =

4. Auxiliary symbols: parentheses.

g eee

Formulas are defined as follows:

1. If p is a propositional symbol and A is an annotational constant, then p),
is an (atomic) formula.

2. If A and B are formulas, then (—A), (A A B), (A \v B), and (A - B) are
formulas.

Among several intuitive readings, the atomic formula p) can be read as it is
believed that p’s truth-value is at least A.

We introduce some definitions.

1. The symbol of equivalence ‘"’ is introduced as usual.

2. Let A be a formula. VA=A - (A - A)A = (A - A)) is called

strong negation of A.

3. == pa=—kp,is called a hyper-literal. A formula other than
\‘ﬂ_"

k—times

hyper-literal is called a complex formula.
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Definition 2.1. An interpretation I is a function I: P - 7. To each inter-
pretation /, we associate a valuation V: F — 2, where P is the set of vari-
able symbols, F is the set of all formulas, and 2 = {0,1} (where 2 = {0,1} is
the two-element Boolean algebra), defined as follows:

1. If p) is an atomic formula, then:

a) Vip))=1iff I(A) = A

b) Vi(p,) = 0 otherwise

¢) Vi(—kpy=Vi(=klp_ ) k=1

2. If A and B are formulas, then:

a) VAANB)=1iff V{A)=V(B)=1

b) ViAvB)=1iff Vi{A)=1o0r V{(B)=1
c) VA - B)=1iff Vi(A)=0or V{(B) = 1.
3. If Ais a complex formula, then:
Vi(—A) =1 - V[(A).

Now we present an axiomatization of P7. In the sequel, A, B and C are
whatever formulas, F and G are complex formulas, p is a propositional
symbol, and w, pj, 1 = j =< n, are annotational constants.
(=1) A-(B-A)
(=2) A->B->0C)->((A->B)~>(A->C0)
(=»3) (A->B)->A)->A
(»4) A,A - B/B(Modus Ponens, abbreviated by MP)
(A1) (ANB) - A
(™) @AANB)->B
("3) A->(B-=(ANB))
(Vi) A->(AvB)
(v2) B-=(AvB)
(V3) A->0->(B->C) - (AvB) - 0)
(m1) F->G6G)>(F-> —G)~» P
(m2) F->(0F-A4)
(73) Fv~F
(r)  p1
(1) (kpp o (=klp k=1
(13) Pu = P, Where u = A
(74) Puy NPuy /N oo APy, = py, where ,u,v,u,
i=1

We can introduce usual syntactical concepts as proof, deduction from
hypotheses, etc.

In [Da Costa 91] and [Abe 92] it was proved that the axiomatization
above mentioned is sound and complete with regards to the semantics dis-
cussed.



8 JAIR MINORO ABE

Some remarkable results of the systems Pt are: a) The set of formulas
together with the connectives V, A\, \/, and - have all properties of the
Classical Propositional logic (see theorem 2.1 below).

b) The set of all complex formulas with the connectives —, A, \/, and
- have also all properties of the Classical Propositional logics. So, the in-
consistencies appear among hyper-literals, or equivalently, among atomic
formulas. This is a nice property, so in applications, for instance in data
bases, the conflicting information is among hyper-literals; we hardly need
inconsistencies among complex formulas.

c) Pris a paraconsistent logic and, in general, paracomplete and non-
alethic logics.

Definition 2.2. In P7: we define A = B by setting A - B, and A = B by
setting A = B and B = A. = is a quasi-order and = is an equivalence rela-
tion.

Theorem 2.1. The strong negation possesses all properties of the classical
negation; for instance, let A, B, and C be formulas whatsoever. We have:

I. F(A—>B)-> ((A- VB)—> VA)

2. FA- (VA - B)

3. FAAVA) - B

4, FA - VVA

5. FVVA - A,

We also have I (A A VA) - B.

3. Pre-Algebraic Structures

In order to obtain algebraic versions of the majority of logical systems the
procedure is the following: we define an appropriate equivalence relation
in the set of formulas (v.g., identifying equivalent formulas in classical
propositional logic), in such a way that the primitive connectives are com-
patible with the equivalence relation, i.e., a congruence. The resulting quo-
tient system is the algebraic structure linked with the corresponding logical
system. By this process, Boolean algebra constitutes the algebraic version
of the classical propositional logics, Heyting algebra constitutes algebraic
version of some Intuitionistic propositional logics, and so on.

However, in some non-classical logics, it is not always clear what “ap-
propriate” equivalence relation there can be; the non-existence of any sig-
nificant equivalence relation among formulas of the calculus can also take
place. This occurs, for instance, with some paraconsistent systems (see,
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v.g. [Mortensen 80]). Indeed, as pointed by [Eytan 75], even for classical
logics, it may not always be convenient to apply these ideas.

Definition 3.1. A system (R, =, =) is called a Curry pre-ordered system if
1. = is an equivalence relation on R

2. x=x

3. xsyandy=zimplyx=z

4. x=y,x'=xandy =yimplyx' = y"

Definition 3.2. A system (R, =, =) is called a pre-lattice if (R, =, <) isa
Curry pre-ordered system and
1. inf{x,y} # & and sup{x,y} # .

Definition 3.3. A system (R, =, =, -) is called an implicative pre-lattice if
1. (R, =, =)isa pre-lattice

2. xN(x->y)=y

3. xAy=ziffx=sy- z

The context of the ‘operation” ‘A’ and “\/” is clear; the reader can see, for
instance, [Barros 95].

Definition 3.4. An implicative pre-lattice (R, =, =, -) is called classic if
1. (x = y) = x=x (Peirce’s law).

4. Curry Algebras Pt

The algebraic structures considered here are those in [Barros 95] and
[Curry 77].

Let us consider a non-empty set S and a finite lattice (in the usual sense)
7= (|7, =) together with an operator ~: |7| = |7|. Let $* be the set of all
pairs (p, A) where p € S and A € |7]. We will consider now the set
S§* U {—, A, v, = }. Let $** be the smallest algebraic structure freely
generated by the set §* U { —, A\, \/, =} (we do not write the details; they
follow usual method of obtaining free structures). Elements of $** are
classified in two categories: hyper-literal elements are of the form —4(p, A)
and complex elements are the remaining elements of §**,

Now we introduce the concept of a Curry algebra Pr.

Definition 4.1. A Curry algebra Pt (abbreviated by Pr-algebra) is a struc-
ture RT= (R, (|7}, =, ~), =, =, >, =) and, for p E R, a € R**, and x, y
complex elements of R**:
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R** is a classical implicative lattice with a greatest element 1
— is a unary operator —: R¥* — R¥*

X=2y=(x-> "y - —x

X="x—->a

Dy =1

xy x=1

—k(p, A) = =kI(p, ~A), k= 1

p = Athen (p, ) = (p, A)

@ ADNA @, )N A (P Ay) = (p, A), where)\ﬁl

90! 21 [On LNGLAT 0 B =

Theorem 4.1. A Pr-algebra is distributive and has a greatest element, as
well as a first element.

Definition 4.2. Let x be an element of a Pr-algebra. We put
Vi=x - ((x > x) A 2 (x - x)).

Theorem 4.2. In a Pr-algebra, Vx is a Boolean complement of x; so
xvVx=landx A Vx=0.

Theorem 4.3. In a Pr-algebra, the structure composed by the underlying set
and by operations A\, \/, and V is a (pre) Boolean algebra. If we pass to the
quotient through the basic relation =, we obtain a Boolean algebra in the
usual sense.

=~),=,=,-,)bea P*r—a]gebra, and

=, ~), =, =, -, V) the Boolean algebra obtained as in the theorem
above Any Boolean algebra that is 1somorph1c to the quotient algebra of
(R, (7, =, ~), =, =, », V) by = is called Boolean algebra associated
with the Pf—algebra

Hence, we can establish the following Representation theorems for P7-
algebra.

Theorem 4.4. (Representation Theorem) Any Pr-algebra is associated with
a field of sets. Moreover, any Pr-algebra is associated with the field of sets
simultaneously open and closed of a totally disconnected compact Haus-
dorff space.

Proof. It follows from the definition aforementioned and the classical
representation theorems for Boolean algebra by Stone.

This is not the only way of extracting Boolean algebra out of Pr-algebra.
There is another natural Boolean algebra associated with a Pr-algebra.
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Definition 4.4. Let (R, (|1, =, ~), =, =, -, —) be a Pr-algebra. By RC we
indicate the set of all complex elements of (R, (|1, =, ~), =, =, », 7).

Then the structure (RC, (|7], =, ~), =, =<, -, —) constitutes a (pre)
Boolean algebra which we call Boolean algebra c-associated with the P7-
algebra (R, (|7, =, ~), =, =, -», ).

Thus, we obtain a second Representation theorem for P7-algebra.

Theorem 4.5. Any Pr-algebra is c-associated with a field of sets. Moreover,
any Pr-algebra is c-associated with the field of sets simultaneously open
and closed of a totally disconnected compact Hausdorff space.

Theorems 4.4 and 4.5 show us that Pr-algebra constitute interesting gener-
alizations of the concept of Boolean algebra. We finish this section with
some open problems. How many non-isomorphic Boolean algebra asso-
ciated with a Pr-algebra is there? And, how many non-isomorphic Boolean
algebra c-associated with a P7-algebra is there in order to establish connec-
tions between associated and c-associated algebra?

5. Filters and Ideals

Definition 5.1. Let (R, (1], =, ~), =, =, -, —) be a Pr-algebra. A subset
F of R is called a filter if:

l. x,yEFimplyxAy€EF

2. x€FandyER,implyx\yyyEF

3. xEF,yER,andx=y,implyy € F.

We have the dual definition of ideal. A subset I of R is called an ideal if:
I. x,ye€limplyxyyeEl

2. x€landy€E€,implyxAy€eEl

3. x€l,LyER,andx=y,implyy € L

Lemma 5.1. Let (R, (|7, <, ~), =, =, -, —) be a Pr-algebra. A subset F of
R is a filter iff:

I. x,y€EFimplyxANy€EF

2. xEFandyER,andx=y,implyy EF

3. xEF,yER,andx=y,implyy € F.

Also we have: a subset / of R is an ideal iff:
l. x,y€limplyx\y/y€EI
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2. x€l,LyER,andx =y, implyy €
3. xel,LyER andx=y,implyy€E L
Proof. Again, the proof runs as the classical case.

Filters are partially ordered by inclusion. Filters that are maximal with re-
spect to this ordering are called ultra-filters. It is easy to prove that every
filter in a Pr-algebra can be extended to an ultra-filter.

Theorem 5.1. Let F be an ultra-filter in a Pr-algebra. Then:
l. xANyeEFiffx€eFandy€EF
2. xyy€EFiffxeForyeF
3. x> yEFIiffx&ForyeEF
4. Ifpy, and py, € F, then p) € F, where A= A| \/ Ay
5. —kpyeFiff =klp ,EF
6. Ifxandx - yE F,theny E F.
Proof. Let us show only 4. In fact, if p), and p A, € F, then by 8) of Defi-
nition 4.1 and Lemma 5.1, it follows that py € F, where A = A; \/ A,.

Definition 5.2. If RT) = (Ry, (71|, =1, ~1), =1, =1, =1, —1) and

RTy = (Ry, (|72|, =2, ~2), =2, =3, =2, =) are two Pr-algebras, a homo-
morphism of Rt into Rty is a map f of R| into Ry which preserves the
algebraic operations, i.e. such that for x, y € Ry:

1. x=yiff fix) =4 Ay)

2. fix = 1y)=2fx) =2/y)

3. (013 = 72fx)

4. If x =1y, then fix) =, fly)

5. fis extended to cope to be also a homomorphism of (|7|, <i, ~) into
(|2}, =2, ~2) in an obvious way (i.e., for instance, fi~] A) = ~3 fIA)).

Theorem 5.2. Let RT| and Ry be two Pr-algebras and f a homomorphism
from R7 into RT. The set {x € R | fix) =3 1;} (the shell of f) is a filter
and the set {x € R} | fix) =5 05} (the kernel of f) is an ideal.

Proof. Like the classical case.

6. Soundness and Completeness Theorems

Theorem 6.1. If the shell of a homomorphism f of Pr-algebras is an ultra-
filter, then

I. fy=landfiy)=1ifffixNy)=1

2. f=lorfly)y=1ifffxyy)=1

3. f=0orflyy=1ifffix->y) =1
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4. fi=kpy =1iff(—klp =1
5. I fipa, Apay) = 1, thenfipy) = 1, where A= A v Ay
6. Iffix)=1andfix » y)=1,thenfiy) = 1.

Proof. It is a simple consequence of the Theorem 5.1.

Definition 6.1. Let F be the set of all formulas of the propositional anno-
tated logic P7 and f a homomorphism from F (considered as a Pr-algebra)
into an arbitrary Pr-algebra. We write f= T, where I is a subset of F, if
foreachA €T, flA) = 1.I' = A means that for all homomorphisms f from
F into an arbitrary Pr-algebra, if f= T, then l4) = 1.

Theorem 6.2. (Soundness) If A is a provable formula of P, then fA)=1
for any homomorphism f from F (considered as a Pr-algebra) into an arbi-
trary Pr-algebra.

Proof. By induction on the length of proofs.

Theorem 6.3. Let U be an ultra-filter in F (the set of all formulas of the
logic P7). Then, there is a homomorphism f from F into 2 such that the
shell of fis U.

Proof. In fact, let us define a function I: P - |1]. If p is a propositional
variable, then we put I(p) =\/ {A € |1}: py € U}. Such function is well de-
fined, so p; € U. Let Vi: F - 2 the valuation function associated to this
interpretation. We assert that V; = X,» the characteristic function of U. If
px € U, then x, (pp) = 1. On the other hand, it is clear that I(p) = A. Thus,
Vipa) = 1. If py & U, then we have Xy Pr) =0.1If I(p) = A, we have
PIp) € U and as pyp) = p) is an axiom, it follows that p) € U, which is
contradictory. So, it is not the case that /(p) = A, and so Vi(pa) =0. By
Theorem 5.1, =4 p) € U iff = %1 p_, € U. Thus, Xy (%) =
Xy (—*1 p_)). Let us show that Xy (4% pp) = Vi (=K p)). We proceed by
induction on k. If k = 0, it is just the above case. Let us suppose that the
property valid for k-1. Then, x,, (=% p)) = x, (=K1 p_y) =V, (=K1 p_y)
= Vi (—kpy). Let us consider an arbitrary formula A. We have just seen
that for atomic formulas the property is valid. So, let us suppose that:

I. Ais = B. Due to the previous case, we can suppose that B is a com-
plex formula. So, X, B)=Vi(B).IfA€ U, then B & U, X, (A) =0 and
Xy, (B)=1.But V;(A)=1-V;(B). So, V; (A) = 0.

2. AisBANC.A € Uiff B, C € U. By the hypothesis of the induction,
Xy (B) = Vi (B) and x,, (C) =V} (C). So, x,, (4) = Vy (A).

The other cases run in a similar way.

Theorem 6.4. (Completeness) Let F be the set of all formulas of the propo-
sitional annotated logic Prand A € F. Let us suppose that fild) = 1 for any
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homomorphism f from F (considered as a P7-algebra) into an arbitrary P7-
algebra. Then, A is a provable formula of Pr.

Proof. If A is not provable, then it is not the case that A = 1 and so, it is
not the case that VA = 0. Therefore there is an ultrafilter U in F that con-
tains VA. By previous theorem, there is a homomorphism f from F into 2,
and thus fAiVA) = 1. It follows that f{lA) = 0, which is a contradiction. This
completes the proof.
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