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PARACONSISTENT PROBABILITY THEORY AND
PARACONSISTENT BAYESIANISM*

Edwin D. MARES

Abstract

This paper presents a theory of probability based on the paraconsistent
logic D4. The resulting probability functions are then used to define
two sorts of Bayesian updating. One sort of updating merely uses the
simple rule of conditionalisation. The other sort adds a wrinkle to the
simple rule so that agents’ beliefs become more consistent as well as
more complete through updating.

1.  Introduction

Paraconsistent logic has become an entrenched part of logic and an active
field of research. But, despite there being some interesting and important
literature on the use of paraconsistent logic to do history and philosophy of
science and mathematics, to develop a doxastic logic and to treat belief
revision! there has been relatively little work done on integrating paracon-
sistent logic into mainstream epistemological theories. The present paper
does just that. It attempts to meld paraconsistent logic and Bayesianism.

Before we launch into the formal development of a paraconsistent theory
of probability, we need a few definitions. A paraconsistent logic is a logic
that does not make valid the rule schema

A
A

B
This is the rule of ex falso quodlebet (EFQ). Different paraconsistent logi-
cians have had different reasons for rejecting EFQ. Strong paraconsisten-

* Thanks go to Graham Priest for useful comments on an earlier draft.

1See, for example, Batens [1985], Jennings and Schotch [1989], Mortensen [1995] and
Fuhrmann [1991].



376 EDWIN D. MARES

tists hold that there are true contradictions. Weak paraconsistentists, on the
other hand, believe that sometimes people have inconsistent beliefs, that
we tell inconsistent stories, and so on, but there are no true contradictions.
Weak paraconsistentists think that we need a paraconsistent logic to under-
stand commitments made by people with inconsistent beliefs, made within
inconsistent stories, etc.

Among weak paraconsistentists, some are “adjunctivists” and some are
“non-adjunctivists”. An adjunctivist holds that if someone states or believes
that A and states or believes that B, then he or she is committed to the
conjunction A A\ B.2 Typically, non-adjunctivists hold that a person cannot
believe contradictions like A A — A, but instead can only believe both A
and —A. Thus, in most cases at least, non-adjunctivists think that one can
have contradictory beliefs but not believe in contradictions.

Integrating non-adjunctivist paraconsistency into a Bayesian framework
would seem to be reasonably simple. We would take an agent to have a set
of probability functions. Where A and its negation are both believed, the
agent has some probability functions that give A a high probability and
others that give it a low probability. We then model his or her beliefs using
these two sets of probability functions. Where the agent has many inconsis-
tent beliefs this can become quite complicated, but the basic principle is not
difficult.

It might seem odd to use an adjunctive paraconsistent logic as a basis for
a probability theory. For, the probabilistic conception of belief and com-
mitment is itself non-adjunctive. Just because A and B each have high
probability does not mean that A A B also has high probability. Thus, belief
(and assertibility) on the probabilistic conception is non-adjunctive. The
virtue in using an adjunctive logic lies in the ability of giving contradic-
tions such as A A —A high probability. Thus, we are able to model some-
one’s believing in a contradiction. Using a purely non-adjunctive approach,
we always give contradictions a null value.

In the present paper, I use an adjunctive paraconsistent logic as a basis
for a theory of probability. I then put this theory of probability to work. I
present two rules of conditionalisation and briefly develop two variations
of Bayesianism. One of these versions of Bayesianism is an epistemologi-
cal counterpart of a very strong paraconsistency and the other is an
epistemology suited to the weak paraconsistentist or, with minor mOdlflCEl—
tions, to a more mild form of strong paraconsistency.

2There are grades of adjunctivism. Jennings and Schotch hold a position inbetween
adjunctivism and non-adjunctivism. See, e.g., Jennings and Schotch [1989].
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2. Paraconsistent Probability

In this section we set out a theory of probability based on a paraconsistent
logic. This is not the first time this has been done. In [1987], Priest presents
a very similar theory.> What is novel about my approach is the way it the
theory of probability is applied in section three below.

Our language is a standard propositional language with the operators /\,
\/, 7, parentheses and propositional variables p, g, r, ... The standard
formation rules apply. We use upper case roman letters for metavariables.

Our logic is an elegant many-valued logic based on Dunn’s four-valued
semantics (see Dunn [1969] and [1976]). This semantics was originally
used the model the first-degree fragment of the relevant logic E, but it has
come into more general use in the literature on paraconsistent logic.4 We
call our logic ‘D4,

On Dunn’s semantics, a valuation takes a wff to a subset of the set {r,f}.
Thus, a wif can take the values {t}, {f}, {t,f} and &. If ¢ is in the value of a
wif A, then A is said to be true. If fis in its value, then A is said to be false.
Dunn gives the following truth and falsity conditions for the connectives:

* A /A B is true if and only if A is true and B is true. A A B is false if
and only if A is false or B is false.

* A/ Bis true if and only if A is true or B is true. A \/ B is false if and
only if A is false and B is false.

* 1A is true if and only if A is false. — A is false if and only if A is
true.

Clearly, the D4 truth conditions generalise the classical truth conditions for
the connectives.

Following standard practice in probability theory, we will construct a
probability space from a set of points and an algebra of propositions. This
algebra, however, will be not be a Boolean algebra as usual, but rather an
algebra corresponding to D4. A D4-ser algebra I'is a structure (Prop, U,
N, F) such that Prop is a set of sets of points closed under union and
intersection. U and N are standard set theoretic union and intersection and
Fis a DeMorgan complement on Prop. Prop contains UProp and &J. More-

3In addition, Leslie Roberts has been developing probabilistic semantics for paraconsis-
tent logics. See, for example, her “Maybe, Maybe Not: Probabilistic Semantics for Two
Paraconsistent Logics” presented to the Australasian Association for Logic conference,
Sydney, 1998.

4The difference between our use of Dunn’s four valued semantics and his original use of
it is that we use a different semantic entailment relation.



378 EDWIN D. MARES

over, the DeMorgan complement satisfies the following postulates. Where
¢ and i are propositions,

 of" = ¢ (period two);
» (UProp)f =&,
o (& npF = (oF U YF) (DeMorgan’s Law).

A paraconsistent probability space (PPS) is a quadruple (Sit, Prop, F, Pr)
such that Sif is a non-empty set of points (called ‘situations’), (Prop, U, N)
i1s a D4-set algebra of subsets of Sit (such that UProp = Sit), and Pris a
function from Prop into [0,1] satisfying the definitions and postulates
below:

CP Pr(y/p) = Pr]()r‘*:;‘;"), where Pr(¢) # 0;
Pr1  Pr(Sif) = 1; Pr() = 0;

Pr2  Pr(¢ U i) = (Pr(¢) + Pr(y) - Pr(e N ¢);
Pr3  If ¢ C o, Pr() - Pr(p) = 0.

Pr3 is not redundant; since Prop is not closed under standard set-theoretic
complementation, we cannot use the usual proof to derive Pr3 from Pr2.

This probability function is very similar to a finitely additive Kolmogo-
rov function, but there are some interesting differences. Because negation
here is paraconsistent and the set of propositions is not necessarily a sigma
algebra, we cannot derive that Pr(¢f) = 1 - Pr(¢). Also, for similar reasons,
for any given classical tautology, we cannot derive that the probability as-
signed to it is one.

A paraconsistent probability model (PPM) is a quintuple {Sit, Prop, F,
Pr, V) such that (Sit, Prop, F, Pr) is a PPS and V is a function from
propositional variables to propositions. V in turn determines a homomorph-
ism, | |, from formulae to propositions such that [A A Bl = 1Al n |BI, |A v Bl
=I|Al U IBland | - Al = IAIF,

We also define a semantic entailment relation = between sequences of
wffs and wffs such that Ay, ..., A, = Bifand only if 141 n ... N IA,| C IBI.
From this definition and Pr3, we immediately obtain the following fact:

Fact 1 IfAy, ..., A, & B, then Pr(lA|l n ... nIA,]) = Pr(B).

If we interpret our probability functions as agents’ subjective probability
functions, then we take agents’ beliefs to be closed under D4 entailment.
That is, if an (ideal) paraconsistent agent gives high probability to A and A
semantically entails B, then she gives high probability to B as well.
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One might wonder why I did not use the (slightly) simpler logic LP,
which has the same truth conditions as D4, but only three truth values, {t],
{f} and {z.f}. The reason why I did not is two-fold. First, an LP algebra is a
particular case of a D4 algebra. An LP algebra is a D4 algebra that satisfies
the additional postulate that ¢ U ¢f = UProp. Thus the present theory is a
bit more general than one that uses LP as a base. Second, agents on the
present view are not committed to believing in all classical tautologies. If
we were to use LP, then we would have to accept this additional commit-
ment.

In what follows, where no confusion will result, we will write ‘Pr(A)’
instead of ‘Pr(lAl)’.

3. Bayesian Updating

Now we come to the application of our theory of probability. As I say in
the introduction above, my aim here is to integrate paraconsistency into

“Bayesianism. In particular, I want to have a theory of belief updating (or,
rather, a theory of updating one’s degrees of belief) based on paraconsistent
probability.

First, we should interpret our probability functions as representing distri-
butions of agents’ degrees of belief, as in standard Bayesianism. Then, we
need a rule of conditionalisation to govern changes of degrees of belief in
response to evidence. The orthodox Bayesian rule for updating degrees of
belief is simple conditionalisation, that is,

(RC) Pry(B) - Pr(B/A),

where Pr(A) # 0 and where A is a piece of evidence and Pr is the agent’s
probability function prior to learning that A.

We can apply (RC) to paraconsistent probability without really changing
anything. We need only interpret Pr as ranging over paraconsistent proba-
bility functions.

This all seems quite straightforward, but I think there may be a better up-
dating rule. I developed this second rule with weak paraconsistency in
mind, so let me explain it in that context. A weak paraconsistentist might
hold that many people believe in contradictions, but that they should try to
eliminate these beliefs. It would seem reasonable if a weak paraconsisten-
tist were to hold that a person should try to make his or her beliefs more
consistent while updating. Thus, in updating one’s beliefs, on this view, an
agent should develop not only a more complete but also a more consistent
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picture of the world. With this in mind, I developed the second rule of con-
ditionalisation, (RC*):
Pr(BAA)-Pr(BAAA-A)

Pr(A)- (Pr(A A -4) '
where Pr(A) > Pr(A A —A). In updating, as in orthodox Bayesianism., the
agent sets to the probability of the new evidence to one and adjusts her
other degrees of belief accordingly. At the same time, she sets the conjunc-
tion of the evidence and its negation to zero and adjusts the other degrees
of belief accordingly.

This view of updating makes sense, as we have said, from the point of
view of weak paraconsistency. If we assume as, in effect, do orthodox
Bayesians that our means of collecting data is perfectly reliable, then it
would seem right to treat our updating process as a means of resolving our
contradictory beliefs. If we weaken the assumption that we have perfectly
reliable means for obtaining evidence, then we should modify our updating
function or our background theory of probability. We could, for example,
try to develop a paraconsistent version of Jeffrey conditionalisation to treat
evidence of which we are not certain, Or we might attempt to create a para-
consistent version of Popperian conditional probability which allows us to
“revive” propositions to which we had previous given zero probability.

(RC*) can also be integrated into a strong paraconsistent epistemology.
The strong paraconsistent holds, as we have said, that there are true contra-
dictions. A strong paraconsistentist might demarcate the sorts of proposi-
tions ¢ of which it is reasonable to believe both ¢ and its negation. This
paraconsistentist could then restrict (RC*) for use with propositions not in
this class. Or (RC*) can be used to update a proposition the negation of
which has been rejected. Philosophers such as Priest (Priest [1987]; see
also Parsons [1984]) distinguish between asserting the negation of a propo-
sition and rejecting that propositions. In rejecting a proposition, perhaps
among other acts, one refuses to assert it. It would seem reasonable to use
(RC*) to update propositions that are accepted and the negation of which
are rejected; the agent sets the newly accepted evidence to one and its
rejected negation (and the intersection of the two) to zero. Thus, although
(RC*) was created with weak paraconsistency in mind, it can with restric-
tions be integrated into a strong paraconsistent epistemology as well.

In the remainder of the paper we will use the following more general

version of (RC*).
- F
(RCh) B (p) =y TR,

where Pr(a) > Pr(a n of). We shall also use the following definition:

(RC*) Pry(B)~
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Definition 2 A proposition a is Pr-normal if Pr(a) - Pr(a 0 af) > 0.
Fact 3 If Pr is a probability function and « is Pr-normal, P, (af) = 0.
Proof. Suppose that « is Pr-normal.

i

s e * s F
By-«definition, Pr,, [nf )= 208 Imbians fy
Pr{o)-Priamna’ )
Since « is Pr-normal, Pr(a) - Pr(a N af) > 0.
Moreover, Pr(a N of N af) = Pr(a n of).

SO, PI‘;(O{F) = Pr(amaF)—Pr(ocr\a

Fraly _ Priena’ )-Priana’) =0. |
Pr(a)-Pr(amal) Pr(o)-Priona’)

We now show that updating with Pr-normal evidence yields a probability
function.

Lemma 4 If Pr is a probability function and « is Pr-normal, then Pr’; (Sir) =
1 and Pr (&) = 0.

Proof. Easy. 1

Lemma ; IfPrisa probabi'lity function and o is Pr-normal, then Pi(ﬁ U
Y) = Pry(B) + Pry(¥) - Pr (BN ).

Proof. Suppose that Pr is a probability function and « is Pr-normal.

- g *
P * _Pr((puyina)-Pr(fuyinana’ ) f Pr
1 Te(BU ) Pria)-Pr(ana’) »de o

2. Pr((Buyna)=Pr((Bna)u(yna)

3. Pr((Bna)u(yna))=Pr(Bna)+Pr(yna)
-Pr(en Bny,Pr2

4. Pr(Buynana)=Pr(Bnanaf)+Priyn an af))
-Pr(Bn ynanaf),Pr2

5. Pr,(Buy)=

((Pr(Bno)+Pr( ym:x))—Pr(amﬁmy))w((Pr(,BmamaF)+Pr( yr\cxmaF))—Pr{ﬁmyﬁamaF;;
Prie)-Prianal)

£l

1,34
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Pr (BuUy) =

([Pr(ﬁma)+Pr(yr\a))-(Pr(ﬁr‘waﬁo:fHPr(ymo:r\ncF))—(Pr(rxm,ﬁr\y)—Pr(Br\yr\ar\aF))}
Pr(a)—Pr(cxma‘p)

’

5, rearranging
Pr,(Buy) =

((Pr(ﬁﬁa)-Pr(ﬁmtxmaF))HPr(yﬁa)—Pr(ymamaF)}) _ Pr(amﬁﬁy)—Pr(,@myr\amaF)
Pr(o:)—Pr(rxma"') Pr(a)—Pr(ama"')

)

6, rearranging

i
Pr,(Buy)=
Pr(fna)-Pr(frnana’) Pr(yﬁa)—Pr(yr\amaF)]_ Pr(anfny)-Prfrynanal)
Pric)-Priana’)y  Pr(a)-Pr(ena’) Pr(o)-Pr(ana’) 2

7, fearranging . . . .
Pr (B U y)=(PL(B) +Pr (y) - Pr (B n ), 8, def. Pr.

Lemma 6 If Pr is a probability function, « is Pr-normal, o is Pr-normal and
B C 7, then P,(y) - Pr,(8) = 0.

Proof. Suppose that Pr is a probability function, « is Pr-normal, « is Pr-
normal and 8 C .

1.
2.

3

oo

C v, hypothesis
1‘21‘?( '}’) -)l;% (B) _ Pr(ymx)—Pr(ymamaF) Pr(ﬁma)—Pr(ﬁmamer)
alY o - Pr(anal) Priana’)

(Pr(yn a)-Pr('yﬂamaF))~(Pr(ﬁﬂa)—Pr(Bﬂaﬂ afy)
=Pr(yna)+Pr(Bn anaf)) - (Pr(yn an o) +Pr(B N a)
Pr(yn an af) + Pr(B N a)
=Pr((ynana)uBna)+PriynanafnpBna
Pr(ynanaHuBna)+Priynanaf nBna
=Pr((Bna)uyn(Bna)ua)n((Bna)u af))
+Pr(ynana nBna
Pr(Bnayuyn((Bna)ua)n(Bna)uaf))
+Pr(ynananBna
=Pr(ynan(Bna)ua)+PriynanafnBna)
Pr(yna)=Pr(ynan ((Bn a) u o)), Pr3

(Pr(yn a) + Pr(a n of n B)-Priynan((Bna)ua))
+PrianafnB)=0,7
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9. Pr(a)-Pr(an af) >0, ais Pr-normal

10 (Pr(yma)-ﬂ-Pr(amaFmﬁ)}—(Pr(ymah((,ﬁmo:)uerJHPr(txmaFr\,B))
’ Pr(a)-Priena’ )

I1. Pr(y)-Pr,(B) =

(Pr(ymcr)+Pr(aﬁaFm,ﬂ))—(Pr(ymam((ﬁma)uaF)}+Pr(omaFm,8)) 2-6
Pr(ot)—Pr(amtx"') ’

= 0,89

12. Pr,(y) - Pr,(B) = 0, 10,11
[

Lemma 7 If Pr is a probability function and « is Pr-normal, 0 <Pr_(8) =
1.

Proof. Suppose that Pr is a probability function and « is Pr-normal.

Pr (B) Pr (B N a), def. PI&

Pr (B N a) < Pg(a) lemma 6 above

Pr (a) =1, @18 normal

Prg(B) = 1 1.2,3

Pr (Bﬂ a) PL(Bn an af) =0, lemma 6
Prt L@ -Pr, (anaf) =0, lemma 6

O Ln . by e

7 PI';(B) _ Pra(ﬁma%Pra(ﬁmar\aFi = 5

Ed _* .l-
Pra(a)—an(ama )

Theorem 8 If Pr is a probability function and « is Pr-normal, then Pr isa
probability function.

Proof. Follows directly from lemmas 4,5,6 and 7. ®

4. Concluding Remarks

In sum, we have set out a theory of probability that takes D4 as its base
logic. We put this theory of probability to work by using it to define two
versions of Bayesian updating. Then we showed that the latter, more
interesting version, has one property that it will need if it is to be a useful
epistemological tool. We showed that when updating with a Pr-normal
proposition, we obtain a probability function.
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Clearly we have just scratched the surface of the topic of the relationship
between probability, paraconsistency and epistemology. For example, there
are more interesting variations on Bayesianism. that we should explore. A
paraconsistent version of Richard Jeffrey’s theory (see Jeffrey [1983]) is an
obvious choice for the next step in this project. Moreover, we should exam-
ine paraconsistent versions of related theories, like Bas van Fraassen’s
logic of full belief (van Fraassen [1995]) and Wolfgang Spohn’s ordinal
conditional functions (Spohn [1988]). To modify van Fraassen’s view to
accommodate paraconsistency would require the construction of a paracon-
sistent theory of conditional probability. All in all, there is a lot of work to
do, and there are many more theorems to be proved.

Victoria University of Wellington
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