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ANNOTATED LOGICS Q7 AND ULTRAPRODUCTS

Jair Minoro ABE and Seiki AKAMA

Abstract

In this paper, we study annotated predicate logic Q7 based on the ultra-
product method. We can generalize some model-theoretic results in-
cluding L6s’ theorem in a paraconsistent setting.

1. Introduction

Annotated logics are a class of non-classical logics with significant
applications to the foundations of logic programming. They are quite good
underlying logics to deal both with incomplete and inconsistent informa-
tion. Adequate motivations and relevance for the study of these logics are
described in [1, 2, 5, 13]. Their foundational aspects were addressed by
several authors: N. C. A. da Costa, V. S. Subrahmanian, H. Blair, C. Vago,
M. Kifer, E. L. Lozinskii, J. M. Abe, and among others (see [1, 2, 5]).

In [8], an axiomatization of annotated logics at a predicate level was
proposed. A detailed investigation was done by Abe in [, 2], including
axiomatization, semantics, and completeness theorem of these logics.

In this work, we study annotated logics based on the well known method
of constructing models by the notion of ultraproduct. Throughout this
paper, usual conventions and notions of set theory are assumed without
extensive comments.

2. Paraconsistent, Paracomplete and Non-Alethic Logics

In what follows, we sketch the non-classical logics discussed in this paper,
establishing some conventions, definitions and historical aspects.

Let T be a theory whose underlying logic is L. T is called inconsistent
when it has the theorems of the form A and —A (the negation of A). If T is
not inconsistent, it is called consistent. T is called trivial if all formulas of
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the language of T are also theorems of 7. Otherwise, T is said to be non-
trivial. Note that in trivial theories the extensions of the concepts of for-
mulas and theorems coincide.

A paraconsistent logic is a logic that can be used as the basis for incon-
sistent but non-trivial theories. A theory is called paraconsistent if its
underlying logic is a paraconsistent logic. Issues such as those described
above have been appreciated by many logicians. In 1910, the Russian
logician Nikolaj A. Vasil'ev (1880-1940) (Vasil’ev’s imagirary logic) and
the Polish logician Jan Lukasiewicz (1878-1956) (Lukasiewicz’s three-
valued logic) independently glimpsed the possibility of developing such
logics. Nevertheless, the Polish logician Stanislaw Jaskowski (1906—1965)
developed a paraconsistent logic at a propositional level in 1948. His sys-
tem is known as discussive propositional calculus. Some years later, the
Brazilian logician Newton C. A. da Costa (1929-) constructed for the time
hierarchies of paraconsistent propositional calculi C,, 1 = n = w, of
paraconsistent first-order predicate calculi (with and without equality), of
paraconsistent description calculi, and paraconsistent higher-order logics
(systems NF,, | = n = w). A survey of paraconsistent logics is to be found
in [3].

Another significant class of non-classical logics are paracomplete logics.
A logical system is called paracomplete if it can function as the underlying
logic of theories in which there are formulas such that these formulas and
their negations are simultaneously false. Intuitionistic logic and several
systems of many-valued logics are paracomplete in this sense.

As a consequence, paraconsistent theories do not satisfy the principle of
non-contradiction, which can be stated as follows: of two contradictory
propositions, i.e. one of which is the negation of the other, one must be
false. And paracomplete theories do not satsify the principle of the ex-
cluded middle, formulated in the following form: of two contradictory
propositions, one must be true. Finally, logics which are simultaneously
paraconsistent and paracomplete are called non-alethic logic.

Various kinds of real problems need these non-classical logics. For
instance, the paradox of set theory, the semantic antinomies, some issues
originating in dialetics, and in the theory of constructivity have been dis-
cussed in the literature. However, one most amazing applications was obit-
ained in the recent years in Computability Theory and Artificial Intelli-
gence: most applications of these non-classical logics in computer science
are related to situations where inconsistencies and overcompleteness arise
naturally. Most often, this occurs in deductive database, logic programs,
and other formalisms for representing data, knowledge and beliefs (see, for
instance, [5, 6, 7, 11, 12, 14]).
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3. Annotated Predicate Logics QT

In this section, we define the annotated piredicate logics Q7. The symbol 7
={| 7|, =, ~ ) indicates some fixed finite lattice called lattice of truth-
values. We use the symbol = to denote the ordering in which 7 is a com-
plete lattice, L and T to denote, respectively, the bottom element and top
element of 7. Also, /A and \/ indicate, respectively, the greatest lower bound
and the least upper bound operators with respect to subsets of | 7|. We also
fix an operator ~: | 7| = | 7| which will work as the “meaning” of the
negation of the system Q7.

The language L. (which is abbreviated by L) of 07 is a first-order lan-
guage (with equality) whose primitive symbols are the following:

1. Individual variables: a denumerably infinite set of variable symbols.
Logical connectives: — (negation), /A (conjunction), \/ (disjunction)
and — (implication).

3. For each n, zero or more n-ary function symbols (n is a natural
number).

4. For each n, zero or more n-ary predicate symbols (n is a natural
number).

5. Quantifiers: V (for all) and 3 (there exists).

6. Equalty symbol: =

7. Annotated constants: each member of 7 is called an annotated con-
stant.

8. Auxiliary symbols: (, ).

In the sequel, we suppose that 0T posseses at least one predicate symbol.
We define the notion of term as usual. Given a predicate symbol P of arity
n, an annotational constant w and #n terms #1, f2,..., t;, an annotated term is
an expression of the form P (#y,...,t,). In addition, if # and 1, are terms, £
= t; is an atomic formula. We introduce the general concept of formula in
the standard way. An annotated atom P, (f1,...,t,,) can be read “it is believed
that P(¢,...,t)’s truth-value is at least u”.

In general, we follow standard terminology and the notation as in Men-
delson [13] with the obvious adaptations. We will employ them without
extensive comments.

Definition 3.1
Let A and B be formulas of L. We put
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(A © B)=4,r(A > B) & (B > A)
1A =gofA = (A = A) & (A - A)).

The symbol “e " is called the biconditional and “— +" is called strong
negation.

Let A be a formula. Then, =94 is A, = 1A is —A, and — %A is = (=K
1A4), where k = 0 is the natural number. The convention is also used for ~.

Definition 3.2
Let P(t1,....t;;) be an annotated atom. Then, a formula of the form

_'kP,u(tle---,In)

is called a hyper-literal. A formula which is not a hyper-literal is called a
complex formula.

We now introduce the concept of interpretation for L. An interpretation
M consists of a non-empty set D, called the domain of the interpretation,
and an assignment to each predicate symbol P an n-ary function PM: D —
7and to each function symbol f of an n-place operation M: D" - D.

The concept of satisfiability is introduced as in Mendelson [13]. Let us
denote by 3 the set of all denumerable sequence of D. Then, we can give
an definition of satisfaction as follows:

1. if Pu(1y,....ty) is an annotated atom, then the sequence s = (s1,...,5p,...)
of elements of D satisfies P (t1,....t,) iff PM(s*(t)),....s™(1,)) = p,
that is to say my belief degree of the proposition P(#y,...,t,,) is less or
equal than the given interpretation of that proposition. Here, s*(1;)
denotes the denotation of a term #; with respect to s.

2. s satisfies an atomic formula a = b iff PM(s*(a)) = PM(s*(b)).

3. s satisfies a hyper-literal — kP, (11,...,1,)) iff s satisfies = &1P,
(F1ynnsly).

4. s satisfies A — B iff either s does not satisfies A or s satisfies B.

5. s satisfies A & B iff s satisfies both A and B.

6. s satisfies A \/ B iff s satisfies A or s satisfies B.

7. s satisfies Vx;B iff every sequence s that differs from in at most the i-
th component satisfies B.

8. s satisfies Jx;B iff there is a sequence s’ that differs from in at most
the i-th component such that s' satisfies B.

Theorem 3.3

EL\ sequc)mce s satisfies a hyper-literal — kP#(tl,...,tn) iff 5 satisfies Pk,
Hyeennly).
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Proof: By induction on %, taking into account 3. of the above definition.

Definition 3.4

A formula A is true for the interpretation M (written = 7 A) if every
sequence in ¥ satisfies A. An interpretation M is said to be a model for a set
of formulas if every formula in it is true for M. A formula A is said to be
logically valid if A is true for every interpretaion (that is to say, A is true in
all “possible” worlds).

Definition 3.5
1. We say that an interpretation M is non-trivial if there is a closed
annotated atom such that A is false for M.
2. An interpretation M is said to be inconsistent if there is a closed
annotated atom A such that = 3y A and E 3y —A.

So, an interpretation is inconsistent iff there is some closed annotated
atom such that it and its negation are both true for M.

Given a closed annotated atom A and a family (M;); € ; of interpretations
for L, the set I(A, (Mj)je )= {j E JI=p;A and = py; —A} is called the set
of the possible inconsistent models for A with respect to the family (M;);

e
The set T(A, (M})j e ) = {j € J IF¥p; A} is called the set of possible
worlds not trivializable by A.

Definition 3.6

An interpretation M is called paracomplete if there exists a closed anno-
tated atom A such that s A and )y — A, that is to say A and —A are both
false for M.

Given a closed annotated atom A and a family (M;); € ; of interpretations
for L, the set P(A, (Mj)j e ) = {j € J IF¥p; A and Fpy; — A} is called the set
of the possible paracomplete worlds for A (with respect to the family (M;);
€ J)-

Theorem 3.7
Qr is paraconsistent iff #7 = 2. Here, #7 denotes the cardinarity of 7

Proof: Suppose that #7 = 2 and that there is at least one predicate symbol
p- Let | M | be a non-empty set satisfying #| M | = 2. We then define py; : |
M|t > | M | setting py (@y,..., ay) = L and pps (b1,....b,) = T, where
(a,...an) # (b1,....bp). Then, = pgp (i1,...,in), where i; is the name of bj, j
= 1l,..,n,and = p —p, (iy,...,iy). Likewise, #p(j1,...4n), Where j; is the
name of a;, i = 1,..., n. So, Q7 is paraconsistent. The converse is immediate.
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Theorem 3.8
For all 7 there are systems Q7 that are paracomplete and also systems that
are not paracomplete. If Q7 is paracomplete, then #7 = 2,

Proof: Similar to the proof of the preceding theorem.

Definition 3.9

An interpretation M is called non-alethic if M is both paraconsistent and
paracomplete. The system QT is said to be non-alethic if there is an
interpretation M for O such that M is non-alethic.

Given an interpretation M, we can define the theory Th(M) associated
with M to be the set Th(M) = Cn(I') where I' is the set of all annotated
atoms which are true for M; Cn(I) indicates the set of all semantic conse-
quences of elements of I'. Then, we obtain the following theorem by the
definition of Th(M).

Theorem 3.10
Given an interpretation M for L, we have:

1. Th(M) is a paraconsistent theory iff M is a paraconsistent interpreta-
tion.

2. Th(M) is a paracomplete theory iff M is a paracomplete interpreta-
tion.

3. Th(M) is a non-alethic theory iff M is a non-alethic interpretation.

In view of the preceding theorem, Q7 is, in general, a paraconsistent, para-
complete and non-alethic logic.

4. Reduced Direct Products, Ultraproducts and Ultrapowers

In this section, we show a well known way of constructing models based
on the ultraproduct method (cf. Bell and Sloman [4]). A filter on a non-
empty set J is a set D of subsets of J satisfying the following conditions:
(WD EDJED;, Q)IfX, YED,thenXNYED; (QDIfXE Dand X C
Y C J, then Y € D. Let (M}); € ; be a family of (normal) models for L and
F be a filter on J. For each j € J, let D; denotes the domain of the model
M;. II; ¢ ; Dj indicates the Cartesian product of the family (Dj)j e J. We
construct the model I1; & y M;/ F, known as reduced direct product. When
F is an ultrafilter, Il; ¢ y M;/ F is called an ultraproduct. When F is an
ultrafilter and all the M;’s are the same model N, then IT;  y M; / F is
denoted by N/ / F and is called a ultrapower.
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Theorem 4.1 (LL6s’ Theorem)

Let F be an ultrafilter on a set J and let M = Il;c yM;/F be an ultra-
product. Then, we have:

I. Lets=((g1)F....(gn)F....) be a denumerable sequence of elements of
Ilje yD;/ F. For each j € J, let 5; be the denumerable sequence
(£1G)s--8n(f).-..) € D;. Then, for any formula A, s satisfies A in M iff
{j € J| s satisfies A in M;} € F.

2. For any sentence A of L. A is true in e s M;/ Fiff {j € J1=p; A)
e F.

Proof: As in the classical case, by induction on the number m of connec-
tives and quantifiers in A: the only new addition to the proof is to take into
account theorem 3.3.

Corollary 4.2
Given a family (M)); e j of interpretations for L, and an ultrafilter F on J, M

= Ill; e y M;/ F is paraconsistent iff there exists annotated atoms A and B
such that

1. T(B.(Mpje ) EF.
2. KA, (Mj); e ) EF.

Proof: Suppose that Il; € y M;/ F is paraconsistent. Then, there are anno-
tated atoms A and B such that

. EyAandE= jy —A, and
2. FyuB.

But (1) iff {j € JI=p; A} € Fand {j € JI=pm; TAY EF.So, {j € JI=p A
and = j; A} € F,and I(A, (MJ)jE NeEF.

Also, {j € J =y, B} € F, 50 {j € J Iy, B) € F, namely, T(B, M) )
EF. '

Conversely, assume that /(A, (Mj)j e ) € F and T(B, Mj;je ) EF.
Then, I(A, Mp;e p=1{jE JI=p;Aand = gy 1AL so {j € T AY
€ Jl=p; 7A} € F. By L6s’ theorem, = p A and = jy —A.

Also, 1f = y B, then {j € J =y, B} € F. So,

TB, (Mp;enl={j €J FyBI N {jEJ =y B} =D

which is a contradiction. So, ¥y B. Therefore, Il; € yM;/ F is paracon-
sistent.
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Corollary 4.3
Given a family (M)); e ; of interpretations for L, and an ultrafilter £ on J,
Il; € y M;/ F is paracomplete iff there exists an annotated atom A such that

P(A, (Mj)je ) EF.

Corollary 4.4
Given a family of interpretations for L, and an ultrafilter on J, Il; e jM;/ F
is non-alethic iff there exists annotated atom A, B, C such that

I(A, Mpjep EF,
(B, (Mpje j) EF,
P(C, Mpjcy) EF.

The present paper reveals that the ultraproduct method can also be ap-
plied to annotated logics to obtain some model-theoretic results. The ultra-
product method is an interesting tool for studying models in classical logic.
It is also promising for annotated logics. We believe that the results in this
paper motivate the use of “paraconsistent logics” in the context of model
theory. There is a sense in which paraconsistent annotated models can
generalize classical models. Future work will thus address further develop-
ments of a paraconsistent annotated model theory started from Abe [2].
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