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SOME INCOMPLETABLE MODAL PREDICATE LOGICS

M.J. CRESSWELL

Abstract

A system of modal logic is said to be complete iff it is characterized by
a class of (Kripke) frames. This definition can be used for both propo-
sitional and predicate logic. Many well-known complete propositional
logics have incomplete predicate extensions. This paper discusses the
predicate extensions of a number of systems of modal propositional
logic, including the four systems KW(G), K1.1(S4Grz), D4.3Z and
S$4.3.1(S4.3Dum). I shew that arithmetic can be interpreted in the pred-
icate extensions of all these systems, and therefore that none of them
can be recursively completed. I initially consider systems with the Bar-
can Formula, and then point out why the results also apply to systems
without it.

This paper discusses the predicate extensions of a number of systems of
modal propositional logic, including the four systems KW, K1.1, D4.3Z
and S4.3.11. These are all logics with an independent interest. KW (also
known as G) is the logic of ‘provability’. In modal terms it is the logic
characterized by finite transitive and irreflexive frames. It is K +

W LlpDp)DlLlp
K1.1 (also known as S4Grz) is the logic of finite partial orderings (where R
is transitive, reflexive and antisymmetrical) and so is the reflexive counter-
part of KW, Itis K +

JI LWp2DLp)Dp)Dp

D4.3ZisD +
IThese are the names given on p. 362f of Hughes and Cresswell 1996 (NIML). In that

appendix (pp. 359-368) there is some discussion of naming conventions in modal logic. The
notation and terminology of the present paper is that of NIML.
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4 Lp D LLp
Lemo L((p N Lp) D q) v L((g /\ Lq) D p)
Z LLp D p) D (MLp D Lp)

D4.3Z is the logic of discrete irreflexive linear time, where L means ‘it will
always be the case that’. S4.3.1 (also known as D, the ‘Diodorean’ Sys-
tem?) is the reflexive counterpart of D4.3Z and is the logic of discrete time
where L means ‘it is and always will be the case that’. It is S4 +

DI L(Lp O q) v L(Lq D p)
NI L(L(p D Lp) D p) D (MLp D Lp)

(D1 is also known as Lem, and N1 is also known as Dum.) N1 is a member
of all of these logics.? Since they all contain 4, R is transitive in any frame

2D here must not be confused with the D of D4.3Z. Thar Dis K + Lp D Mp. S4.3.1 has a
long history which is told in Chapter 2 of Prior 1967. In Prior 1957 Arthur Prior set out a
semantics which was in fact the semantics for discrete reflexive linear time, and conjectured
that the correct modal system for this was S4. It was soon discovered that the correct system
for this semantics was stronger, and eventually it was established to be $4.3.1.

3N1 is sometimes given in the form NI': L(L{(p D Lp) D p) > (MLp D p). NI is a
theorem of all the logics studied in this paper but N1’ is not, for the reason given in footnote
9. In extensions of T, N1"is immediate from NI. Given 4, NI may be derived from N/’ as
follows:

(g2p)D((pDr)Dq)Dp)

Lp2DLp) D p) D (((pDLp)DLpDLp) Dp)

L{L(p 2 Lp) D p) D Li(p D Lp) D L(p D Lp)) D p)

L(L(p 2 Lp) D p) O L(L((p 2 Lp) D L(p D Lp)) D Lp)
L{L(p D Lp) D p) D L(L((p 2 Lp) D L(p D Lp)) D (p D Lp))
LIL(p D Lp) D L(p D Lp)) D (p D Lp)) D (ML(p D Lp) D (p D Lp)) [N
L(L(p D Lp) D p) D (ML{p D Lp) = (p D Lp))

MLp 2 ML(p D Lp)

(MLp 2 p) D ((ML(p O Lp) D (p D Lp)) D (MLp D Lp))
L(L(p D Lp) D p) D (MLp D p) [NI

L(L(p D Lp) D p) D (MLp D Lp)
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for each of them.*

A system of modal logic is said to be complete iff it is characterized by a
class of (Kripke) frames, and it is now well known (see for instance
pp- 265-271 of NIML) that many complete propositional logics have in-
complete predicate extensions. Where this is so the question arises of what
extra axioms of modal predicate logic might be added to achieve com-
pleteness. The present paper continues the investigations begun in Cress-
well 1998 concerning the problem of completing modal predicate logics,
and establishes that in the case of the logics just mentioned recursive com-
pletion is impossible. It should be stressed that an incompletability result is
stronger than an incompleteness result, since Cresswell 1998 shews that
many incomplete modal predicate logics can be completed by the addition
of simple schemata.’

I shall follow NIML in defining the predicate extensions of modal propo-
sitional systems. Where S is a system of normal modal propositional logic
then LPC + S is defined as follows:

S’ If @ is an LPC-substitution instance of a theorem of S then « is
an axiom of LPC + S.

VY1 If « is any wff and x and y any variables and a[y/x] is « with
free y replacing every free x, then Vxa D a[y/x] is an axiom of
LPC + S.

N If a is a theorem of LPC + S then so is La.

MP If @ and « > S are theorems of LPC + S then so is 8.

There is a problem of nomenclature here. The name N/ actually comes from Sobocinski
1964, p. 305, though Sobocinski’s N/ is in fact my NI'. Sobocinski refers to a formula
easily shewn equivalent to NI as MI: I(I{p 2 Lp) O Lp) D (MLp O Lp). He calls S84 + MI,
S4.1.1 and conjectures that it is stronger than S4.1, which he axiomatizes as 54 + N/’
(where N1'is his N1.) Schumm 1971 proves by semantic means that S4.1.1 = S4.1. Volume
II of Segerberg 1971 also notes that all these formulae are equivalent in S4. Segerberg refers
to N1'as Dum, to NI as Dum |, to L(L(p D Lp) D Lp) D (MLp D p) as Dum, and to MI as
Dums. On p. 108 Segerberg comments “To be certain, it remains to find a syntactic proof,
but that task is left for somebody else.” The proof given here is similar to an unpublished
proof discovered independently around the same time as Schumm’s by K.E. Pledger.

4A derivation of 4 in KW is given on p. 150 of NIML. A derivation of 4 from J/ is given
in van Benthem and Blok 1978, and it is in fact easy to shew that J/ fails on a non-transitive
frame. (If wiRw, and woRw; but not wiRw; make p false at w; and w4 but true everywhere
else in the frame.) Lp D L(L(p D Lp) D p) is a trivial theorem of K, and therefore T (Lp D
p) is a trivial consequence of J1. K1.1 is therefore an extension of S4.

SGhilardi 1989 and 1991 contains incompleteness results for very wide classes of logics
which contain the logics discussed in the present paper. Ghilardi’s results concern systems
without BF, and Cresswell 1998 shews that in at least some cases the systems he establishes
to be incomplete can be easily completed by simple schemata.
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V2 If a D Bis atheorem of LPC + S and x is not free in « then
a D VxB is a theorem of LPC + S.

S + BF is LPC + S with the addition of the Barcan Formula, BF.
BF VxLa D LVxa.

A (BF-) model for a language & of modal LPC is a quadruple (W,R,D,V)
in which W is a set (of ‘worlds’), R a relation on W, D another set and V a
function such that, where ¢ is an n-place predicate, V(¢) is a set of n+1-
tuples each of the form (uy, ..., up,w) for uy, ..., uy € D and w € W. In such
a model an assignment u to the variables is a function such that, for each
variable x, u(x) € D. Every wff can be given a truth value in a world with
respect to an assignment w. For atomic wff the principle is that V
(@x1..xnw) = 1if (u(xy), ..., w(xp),w) € V(¢) and 0 otherwise. The truth
functional operators work accordmg to their truth tables, and V wlLaw) =1
if V,,(a,w’) = 1 for every w'such that wRw', and 0 otherwise. Where w and
p both assign members of the domain D of individuals to the variables I
call them x-alternatives iff they agree on all variables except (possibly) x.
For V we have:

[VV]  Vu(Vxaw) = 1iff V,(a,w) = 1 for every x-alternative p of .

A wif ais valid in (W,R,D,V) iff V (a,w) = 1 for every w € W and every
assignment w. A wif is valid on a frame (W,R) iff it is valid in every model
based on (W,R). For systems without the Barcan Formula a model is a
quintuple (W ,R,D,Q,V) in which W,R and D are as before, and Q is a func-
tion from members of W to subsets of D. Q(w), usually written D,,,, is the
set of individuals which ‘exist’ in w. Models for these systems satisfy the
inclusion requirement, that if wRw' then D,, C D,,. [VV] becomes

(VY] Vu(Vxa,w) =1if Vpla,w) = 1 for every x-alternative p of
such that p(x) € D,, and 0 otherwise.

A wif is valid in a model (W,R,D,Q,V) iff for every world w € W, Vu
(a,w) =1 for every assignment u such that u(x) € D,, for every variable x
Where S is any normal propositional modal 10g1c let (S + BF)* denote
the class of all wff of modal LPC valid (in the sense defined for systems
with BF) in every frame for S, and let (LPC + S)* denote the class of all
wif of modal LPC valid (in the sense defined for systems without BF) in
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every frame for S.° The problem of completing S + BF or LPC + § is the
problem of specifying a set of axioms which can be added to S + BF or
LPC + S in order to obtain (S + BF)* or (LPC + S)*. Cresswell 1998 shews
that, where S is complete, these extra axioms must be de re wff of modal
predicate logic which are not simply instances of theorems of some under-
lying modal propositional logic. The completeness proofs offered for the
propositional versions of KW, K1.1, D4.3Z or $4.3.1, typically use finite
models and so cannot be applied to predicate logic.” In fact, the situation
cannot be remedied, and it is the purpose of this paper to shew that arith-
metic can be interpreted in the predicate extensions of all these systems,
and therefore that none of them can be recursively completed.? I shall ini-
tially consider systems with BF, and then point out why the results also
apply to systems without BF.

Let £, be a language of modal LPC with identity (see Chapter 17 of
NIML) containing a monadic predicate ¢. The intended arithmetical BF
model of £ 4 is a quadruple (W# R¥,D? V¥), the nature of which differs
slightly for each of KW, K1.1, D4.3Z and S4.3.1. In all the models D¢ is
Nat, the set of natural numbers and W# is { @} U Nat, i.e. the natural num-
bers together with the least infinite ordinal w. The difference comes in R®.
First take KW. Among the frames for KW is the frame in which R¥ is >.
This frame is generated by w. Although W is infinite, the frame contains no
infinite chains and if @R%w then w € Nat and so there are only finitely
many worlds between w and 0. For K1.1 and S4.3.1, R¥ is =, and for
D4.3Z, R¢is > U {(0,0)}. In all these interpretations V¥(¢) = {{n,n): n €
Nat}. Le. ¢ s true at n of n and n alone, so that ¢ is a coding of W¢ in D®,
except for w.

For the rest of this paper I will assume that S is KW, K1.1, D4.3Z or
S4.3.1, though the results will in fact apply to any normal modal propo-
sitional logic which admits any of the frames just mentioned and contains 4

6From corollary 13.3 on p. 247 of NIML it follows that {W,R) is a frame for S + BF
(LPC + S) iff {W R) is a frame for S.

TA completeness proof for KW is given on pp. 150-153 of NIML, and for K1.1 in
Cresswell 1983, and by other authors referred to on p. 157 of NIML. Completeness proofs
for D4.3Z and S4.3.1 are found in Segerberg 1970 and Goldblatt 1987. In this paper I do not
consider the ‘provability’ semantics for KW, but treat its semantics solely in terms of
(Kripke) frames.

8The result for D4.3Z is proved in a related though slightly different manner to that of the
present paper in Cresswell 1999. For a discussion of earlier work of this kind see the appen-
dix to the present paper.
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and N1.° Now suppose that (W,R) is any frame for S generated by w* and
(W.,R,D,V) is any BF model based on {W,R). Since R is transitive w = w*
or w*Rw for all w € W. Say that a = w iff {a.w) € V(¢). Say thata <* b
iff, for every w such that w*Rw, if b = w then there is some w’' € W, such
that @ = w'" and wRw', but not vice versa, i.e. there is some w such that
w*Rw and a = w and there is no w' € W, such that » = w' and wRw'. Note
that both = and <* depend on (W,R,D,V) but writing ~(W.R.D.;V) and
<{W.R,D.V) ig rather too much of a mouthful. Note also that if @ <* b then
there is some w such that a = w.

Def< x <@y =g (L(¢y D Mex) N M(ex A\ ~Mey))

Theorem 1 u(x) <* w(y) iff V ,(x <® yw*) = 1.

Proof: Suppose that p(x) < w(y). Then for any w such that w*Rw, if
Vuley.w) =1 there will be some w'such that wRw"and V wlexw) =1.So
Vuley D Mex,w) = 1, and therefore V,(L(¢y D Mex),w*) = 1. But also
there will be some w such that V ,(ex,w) = 1 with no w' such that wRw' and
Vuleyw) = 1. So Vy(ex N ~M@y,w) = 1, and therefore V (M (@x A
~M@y),w*) = 1. Suppose V  (L(@y D Mex) N M(ox N ~Mey),w*) = 1.
Then if w*Rw, V (¢y D Mex,w) = 1, and therefore if w(y) = w there is
some w’ such that u(x) = w"and wRw'. But also there is some w such that
w*Rw and V (@x N ~Mey).w) = 1. So u(x) = w and there is no w' such
that w(y) = w'and wRw'". So w(x) <" u(y). W

Theorem 2 <" is irreflexive and transitive.

Proof: Given theorem 1 it is sufficient to establish that both ~(L{¢x D
Mex) N M(ex A ~Mex)) and (L(gy D Mex) N M(ex A ~Mey) A L(gz D
Moy N M(@y N ~Mez)) O (L{gz 2 Mex) A M(ox N\ ~Mgz)) are theorems
of S + BF. This follows straightforwardly from the following theorems of
K4:

(a) ~(L{p D Mp) A\ M(p "\ ~Mp))
(b) (L(g D Mp) A\ L(r D Mg)) D L(r D Mp)
(¢) (L(g D Mp) AM(g N ~Mr)) D Mp N ~Mr) R

We may define successor and zero as follows:

9This includes all systems between K47 and K4.3W and between S4.1 and K3.1, as these
systems are defined on p. 362 of NIML, and all systems between K4Z and D4.3MZ, where
M is LMp 3 MLp. (But note that in the table on p. 367, S4.3 is wrongly given as containing
S4.2.1 and S4.2 is wrongly given as containing S4.1. Also K3 is wrongly given as con-
taining K2.1.) In the arithmetical frame in which R is > or > u {{0,0)} the wff N7’ described
in footnote 3 will fail at @ if p is made false at w but true everywhere else.
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Defs  Sxy=gf (x <Py A ~Tz(x <Pz A\ 7 < y))
Def0  Ox =gt L(gx D Lox) -

Let Ax be the conjunction of the following wff:

Ax® NxVyL((ex A @y) Dx=y)
Axlin Nx¥y(x <fy\/y <P xy\ x=y)
AxS VWxTyx<Py

AX0 Fx0x

AxP ¥x(~0x D JySyx)

Where (W®,R¢ D¢ V¥) is the intended arithmetical interpretation of &£, for
any of the four systems being discussed, and ¢ is any assignment, then e
(Ax,w) = 1. Now let S be KW, K1.1, D4.3Z or S4.3.1, and suppose that
(W.R) is any frame for S generated by w* and that (W,R,D,V) is a BF
model based on (W,R), and for some assignment o, Vs (Ax,w*) = 1. By
theorems 1 and 2 therefore <™ will be transitive, irreflexive and weakly
connected in the sense that if b # ¢ then either b <* ¢ or ¢ <* b. For every a
€ D there is a b such that a <* b and therefore D is infinite. Further there-
fore, for any a € D there is some w such that a = w. From Ax® we have
mmmediately:

Theorem3 Ifa# banda~wandb =~ w'thenw # w'".

The irreflexiveness of <* gives us that if a <* b then a # b, and so, from
theorem 3 and the definition of =, we have:

Theorem 4 1f b <" a and @ = w then there is some w’ € W such that b =~
w', wWRw'and w # w".

Theorem 5 1f V ,(0x,w*) = 1 then there is no a such that a <* u(x).

Proof: Given that V ,(L(¢x D Lex),w*) = 1 suppose that p(x) = w. Then
Vu(Lex,w) = 1. Now suppose, for reductio, that a <* u(x). By theorem 1,
where p is just like p except that p(y) = a, Vo((L(ex D Mey) A M(gy A
~Mex)),w*)=1. 50 V(ex D Mey,w) = 1 and so there is some w' such that
wRw'and V(gy,w’) = 1. But V(@x,w) = 1, and so, by Ax¥, Vplx=yw") =
1, and so p(x) = p(y). But then a = u(x), contradicting the reductio assump-
tion. W

Given Ax!in and theorem 5 if V,(0x,w*) = 1 then u(x) is unique, and so,
from Ax9, there is a unique member a of D (call it 0*) for which there is no
b such that b <" a; and by AxP, for every a € D except 0* there is a unique
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b such that b <" a, and there is no ¢ such that b <* ¢ and ¢ <* a. Let N be a
subset of D such that a € N iff a = 0* or 0* <* a and there are only finitely
many b such that 0% <" b <" a. Let A = D—N.

Theorem6 N=D

Proof: Suppose that a & N, i.e. that a € A. Then a # 0* and so by Ax0
and Axlin, 0* <* @ and so there are infinitely many b such that 0* <* b <* q,
so that if b € A then by AxP there is some ¢ € A such that ¢ <* b. It is
sufficient to shew that, under the reductio hypothesis that a € A, N1 fails
on {W,R). Now A will divide into two disjoint classes A* and A-, and if b
€ A* there will be ¢ € A such that ¢ <" b, and if b € A- there will be ¢ €
At such that c <" b. Let Way = {w € W: a = w for some a € A*} and let
Wa.={w & W:a=w for some a € A-}. Then, by theorem 3, W4, and
W 4. are disjoint, and by theorem 4, for any w € W 5, there is some w' €
W 4. such that w # w'and wRw’, and for any w € W . there is some w' €
W a4 such that w # w'and wRw".

Let (W.R,V*) be the following model for propositional modal logic
based on (W,R). Make V*(p,w) = 0if w € W, and 1 otherwise. Then
V¥*(Lp,w*) =0, and for any w € Wp (= Way U W), V¥(Lp,w) = 0. Fur-
ther, for any w € Wu_, V¥(p D Lp,w) = 0. So V¥(L{(p D Lp),w) = 0 for
every w € Wy, and so V¥(L(p D Lp) D pw) =1 forevery w € Wu. If w
& Wx then V¥(p,w) = 1 and so V¥(L(p D Lp) D p.w) =1 for every w &
Wa. So VE(L(p D Lp) D p,w) =1 for every w € W, and so V¥(L(L(p D
Lp) D p),w*) = 1. Now suppose 0% = w. Then by Def? if wRw’ 0% = w’,
and so, since 0* & A, w' & W, and therefore V¥(p,w’) = 1, and so V*
(Lp,w) = 1, and therefore V¥*(MLp,w*) = 1, so NI fails at w*. W

Theorem 6 in conjunction with Ax immediately gives:

Theorem 7 (D,<") is isomorphic with {Nat,<)
For that reason we may take D to be Nat, and speak of <* simply as <, 0*
as 0, and so on.

Theorem 8 V ,(Sxy,w*) = 1 iff u(x) + 1 = u(y) and Vﬂx,w*) =1 iff
p(x) = 0.
Proof: From theorems 1 and 7, using DefS and theorem 5. W

We now assume that &, contains two additional predicates ¢+ and ¢*.
These are both three-place predicates, and they represent addition and
multiplication. We require two additional axioms for these predicates
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Axt  VxVy3lzetxyz A VxVyVzWy'Vz'((0y D @*xyx) A ((Syy’ A Szz'
N o*xyz) O ¢txy'z)) _

AxX VxVy3lzeXxyz A VxVyVzVyVz'(0y D o*xyy) A ((Syy' A
¢rzxz' A ¢*xyz) D p*xy2)

Axarith =4 (Ax A Axt A AxX)

Theorem 9 If (W,R) is a frame for S generated by w* and (W,R,D,V) is a
BF model based on (W,R) and for some assignment o, V(Axarithyy*) = 1,
then V  (¢*xyzw*) = 1iff u(x) + w(y) = w(2).

Proof: The proof is by induction on u(y). First suppose that u(y) = 0.
Then V,(0y,w*) = 1 and so Vy(¢*xyx,w*) = 1 and so, from the first
conjunct of Ax, V,(e¢*xyzw*) = 1 iff w(z) = u(x), iff w(x) + 0 = w(2), iff
M(x) + u(¥) = u(2). Second suppose that V(¢*xyzw*) = 1iff u(x) + u(y)
= u(z) for any w such that u(y) = n. Let p be any assignment such that p(y)
=n + 1 and suppose that p(x) + p(y) = p(z). Let u be just like p except that

My) =n, u(y) =n+1, Wz) = p(z) - 1 and w(2) = p(z). Then
Vu(Syy' A Szz'w*) = 1,

Further, u(x) + u(y) = u(2), and so, by the induction hypothesis,
Vu(etxyzw*) = 1

and so, given that Vy(Ax*w*) =1,
Vi(etayzw) = 1

and so
Vo(etxyzw*) = 1.

Suppose that p(x) + p(y) # p(z). Then for some a € D, p(x) + p(y) = a
where a # p(z). So, where v is just like p except that 1(z) = a.

Vi(etxyzw*) = 1.
But 1(z) # p(z) and so, by the first conjunct of Ax*,
Vo(etxyzw*) = 0.

So ¢* represents addition in BF-models based on frames for S in which
Axarith js true at the generating world. W
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Theorem 10 @* represents multiplication.
The proof of theorem 10 is similar to that of theorem 9 but uses Ax* in-
stead of Ax™.

Now consider a first-order (non-modal) language of arithmetic £,
whose only predicates are ¢t and ¢*. Let (Nat,Varith) pe the intended
(arithmetical) model of £, i.e., {a,b,c) € Varith(o+) iff 4 + b = ¢ and
(a,b,c) € Varth(oXyiff g X b = c. It is known that the class of wff valid in
(Nat, Varithy is not recursively axiomatizable.!0 Every wif of £, is also a
wiff of £, and an easy induction on wff of &£, based on theorems 9 and
10 for the atomic cases, establishes the following:

Theorem 11 1f (W,R) is a frame for S generated by w* and (W,R,D,V) is
a BF model based on (W,R) and for some assignment o, Vo{Axa“th,w*) =
I, then for any wif e of Ly, and any p, V(a,w*) = 1 iff\/i“‘h(a) =1.

Corollary 12 1f (W R) is a frame for S generated by w* and (W.R,D,V) is
a BF model based on (W,R) and for some assignment o, V ,(Axarith ) =

1, then for any wif a of £y, V(aw*) = 1 for every w iff « is valid in
(Nat,Varith),

Theorem 13 (S + BF)* is not recursively axiomatizable.

Proof: Let (W¥%* R¢" D¥* V¢*) be (W#,R®,D?,V¥) with the additional
feature that (a,b,c,w) € V¥*(¢") iff a + b = ¢ and (a,b,c,w) € V¥*(¢X) iff
a X b=c. Then for any assignment uV?" (Ax¥ith ») = 1. By corollary
12, if & is not valid in (Nat, Varith) then for some uY $" (@) = 0, and so,
V& (Axaith 3 g @) = 0. But (We* R¢* D", V¢*) is based on an S frame
and so is a model for (S + BF)*, and so Ax&ith 3 « is not a member of (S +
BF)*. Conversely, suppose that Axth 3 & is not in (S + BF)*. Then there
is a model (W,R,D,V) based on an S frame generated by some w* € W,
such that, for some assignment w, V,(Axarith 5 o w*) = 0. Since
VM(AxaT“h,w*) =1 and V(a,w*) = 0, by corollary 12, « is not valid in
(Nat,varithy But then if (S + BF)* were recursively axiomatizable the class
of wff valid in (Nat,Varithy would be recursively axiomatizable. So (S +
BF)* is not recursively axiomatizable. L.e. S + BF cannot be completed. W

The presence of identity is inessential. Given that there are only finitely

many predicates in &£, we may express the identity axioms as a single for-
mula which may be added to Axarith,

105¢e the table on p. 250 of Enderton 1972.
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The results have been established for systems with the Barcan Formula.
This is partly because the semantics for such systems is simpler than for
systems without BF and partly because I regard such systems as philosoph-
ically superior to systems without BF!1. Nevertheless the question of
completeness still arises without BF, and it turns out that the results apply
to such systems. The first point to note is that the intended interpretations
for all the systems satisfy BF, and so a fortiori are all models for the corre-
sponding systems without BF, so that if « is not valid in (Nat,Varith) then
Axarith 3 o s neither in (S + BF)* nor in (LPC + S)*. For the converse the
key fact is that where « is any wif of &Lty then Ax3th D o in £ in-
volves only quantifiers outside the scope of modal operators; and so, no
matter what the domains of worlds other than w* may contain, the quanti-
fiers in Axarith O o refer only to D,,+. Theorem 7 should now state that
(D,y#,<") is isomorphic with (Nat,<) and then theorem 11 still holds even
under the requirement that u(x) € D, + for every variable, and so the truth
of Axarith O o at w* is not affected by allowing models in which the
domains of worlds other that w* differ from D, .

Appendix

The proofs in this paper should be compared with other results of this kind
in modal logic. One is a result by Dana Scott in 1967 that tense predicate
logic is not axiomatizable if time is like the real numbers, and the other is a
result of Kripke’s that the logic of intensional objects is not axiomatizable
if the underlying logic is no stronger than S$4.12 In a mimeographed note
dating from the early seventies Hans Kamp wrote up both these results.
The latter result is also given in NIML pp. 335-342. For that reason it is
possible that the results of the present paper are also known, since the tech-
niques used to prove them are similar to those used by Scott and Kripke.
Scott’s result, in Kamp’s version, does not obviously apply to mono-
modal logic, though van Benthem 1993, p. 11, cites Scott and Lindstrom as
independently obtaining that “The full modal predicate logic over the
integers or the reals (with arbitrary individual domains attached at each
point) is not effectively axiomatizable.” It is a consequence of the results of
the present paper that the modal predicate logic determined by the frame of

1See Cresswell 1991.

121 am grateful to the participants at the workshop on Advances in Modal Logic held in
Uppsala in October 1998 and especially Johan van Benthem for reminding me of the work
of Scott and Kripke in this area. I have also had the advantage of many discussions on these
matters with Rob Goldblatt and Ed Mares.
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the integers with R as <, >, = or = is not axiomatizable, since any model
based on one of these frames which satisfies Axarith will satisfy corollary
1213, But in fact the paper establishes more, since it establishes that the
logic determined by the class of @/l frames for the propositional logic of the
integers is not recursively axiomatizable. (That is why theorem 6 is re-
quired.) A similar situation obtains in the case of the provability semantics
for KW. Establishing that the predicate logic determined by the provability
semantics is not axiomatizable does not by itself shew that the predicate
logic determined by all KW frames is not axiomatizable.

The issue can be seen to be non-trivial if we move to the case of the real
numbers, and take it that the Scott/Lindstrém result applies here. Suppose
that there is a modal system S such that (S + BF)* characterizes the real
numbers. By corollary 13.3 on p. 249 of NIML, % is a frame for S iff F is
a frame for S + BF. Now the propositional modal system for the frame of
the real numbers with = is $4.3 (Segerberg, 1970, p. 308) and so S = S4.3.
But S4.3 + BF is complete, since it is easy to shew that it is characterized
by all reflexive, transitive and connected frames (where a frame is con-
nected iff where wiRw; and wiRws3 then either waoRws or w3Rwa.) The
proof is simply to note that the canonical model for S4.3 + BF, constructed
as in Chapter 14 of NIML, is connected for the same reasons as the canoni-
cal model for $4.3 itself is. (See NIML, p. 130.)

The propositional modal logic of the real numbers with < is a system
Segerberg (1970, p. 309) calls K4.3AD, which is D4.3 + LLp D Lp, and for
K4.3AD + BF the same situation obtains as for S4.3. Corsi 1993 on p. 279
describes it as ‘well known’ that this system characterizes the rationals
with <. The class of frames for K4.3AD consists of frames which are
transitive, serial, weakly connected, in the sense that if wiRw> and wRwj
and wz # ws then either waRw3y or w3Rw», and satisfy the condition that if
wRw' then wR2w'. Of course that is not the class of real number frames, but
it is the class of all frames for K4.3AD, and since the rationals under <
form a frame of this kind then K4.3AD + BF is complete for the class of all
its frames. So the fact that the modal predicate logic of the reals under =< or
< is not axiomatizable could not establish the unaxiomatizability of any (S
+ BF)*.

In certain respects the situation is reminiscent of what obtains in ordinary
first-order logic. Every first-order theory is complete with respect to the
class of all its interpretations, but may well be incomplete with respect to
its intended interpretation, as in the case of any effective axiomatization of
first-order arithmetic. So it is important to bear in mind that the results of

13Where R is < then <¢ should be defined as L{@x D Mey), and where R is =, as L{@x D
Mey) / x # y. In these case® x should be defined as ~3y y <% x.
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the present paper apply to characterization with respect to the classes of all
frames for KW, K1.1, D4.37 or 54.3.1.

Victoria University of Wellington
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