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ASSAYING SUPERTASKS

Teun KOETSIER and Victor ALLIS

1. Introduction

A supertask usually is an infinite sequence of acts that is completed in a
finite time. This paper is motivated by recent philosophical work in which
supertasks are used in the discussion between finitists and infinitists. We
believe that some of the arguments based on supertasks are flawed. At the
same time supertasks play a modest but legitimate role in the (informal)
mathematical literature. In this paper we develop a general perspective on
supertasks that enables us to understand, on the one hand, why the
supertasks that occur in a heuristic or didactic context in mathematics are
harmless, and, on the other hand, why certain arguments based on super-
tasks are flawed. Theories concerning infinity are often based on certain
extrapolations from the finite to the infinite: properties that generally hold
in finite situations are assumed to hold in infinite situations as well. Contra-
dictions concerning infinity are often caused by careless extrapolations.
This happened in set theory at the beginning of the century. It still occurs
with supertasks. Below we will show that the arguments given by Faris
(1996) and Van Bendegem (1995-7) in the finitism-infinitism discussion
are based on careless extrapolations. We argue that a simple but consistent
theory of supertasks can be based on two rather natural extrapolations: the
simple continuity principle and the general continuity principle. We also
consider another argument in the finitism-infinitism discussion. Unlike
Faris and Van Bendegem, who use supertasks to create doubt with respect
to infinitism, Earman and Norton (1996) use the notion of supertask to
defend infinitism. In this case too we will attempt to show that the argu-
ment is not convincing. Finally we briefly comment on a “Newtonian”
supertask on which Perez Laraudogoita (1996, 1998) and Alper & Bridger
have quite different opinions.

The paper can be read as a critical survey of several rather recent quite
different contributions on supertasks. The final conclusion is disappointing.
Although supertasks are a tricky subject, that easily leads to flawed argu-
ments, at this moment it does not seem to be related to important theo-
retical developments.
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2. The Problem
2.1. Supertasks: five examples

In section 2.2 we will define the problem that we intend to solve. However,
we will introduce the problem by means of some examples of supertasks.
Probably the best known example of a supertask is related to the paradox
called “The Dichotomy”, which we owe to the Eleatic philosopher Zeno.
Consider a mass point or the centre of gravity of a person moving along a
closed segment PQ from point P to point Q.

P *Q

We can abstract a supertask from this motion as follows. In an initial situa-
tion S the mass point is in position P. During its motion from P to Q the
mass point executes a series of acts defined in the following way: Act A,
consists of starting the motion and touching the midpoint M; of PQ, act A,
is moving on and touching the midpoint M, of M{Q, act A3 is moving on
and touching the midpoint M3 of M,Q, etc. Clearly the subsequent touch-
ing of the midpoints can be construed as a process of “cutting up” PQ in
infinitely many subsegments. We will call this supertask “Zeno’s super-
task”. The execution of Zeno’s supertask takes place in a finite time: when
the mass point reaches Q the entire supertask has been executed. Moreover,
during the execution of the supertask not only PQ, but also the time inter-
val involved is subdivided into infinitely many subsegments: to each mid-
point corresponds a particular moment in time at which it is reached. The
movement starts in P at, say, 1 minute before 12 p.m., the first midpoint is
reached at 1/2 minute before 12 p.m., the second midpoint at 1/4 minute
before 12 p.m., etc. When Q is reached the time is exactly 12 p.m.

In mathematical textbooks, one occasionally comes across other super-
tasks, usually in an informal or a heuristic context. We will consider two
examples. The following supertask is described by Boolos & Jeffrey (1980,
p. 14) in order to illustrate the notion of an infinite enumerate set, like, for
example, the set of all natural numbers: “If a set is enumerate Zeus can
enumerate it in one second by writing out an infinite list faster and faster:
he spends 1/2 second writing the first entry in the list, 1/4 second writing
the second, 1/8 writing the third; and in general he writes each entry in half
the time he spent on its predecessor. At no point during the one second
interval has he written out the whole list, but when one second has passed,
the list is complete”. This is obviously a supertask. In the initial situation
So the god Zeus possesses a piece of paper and a pen. Act A} consists of
writing down the 15! number, Act A, consists of writing down the 27d num-
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ber, etc. After one second infinitely many acts have been executed and all
numbers have been written down on the piece of paper. We will call this
supertask the “Boolos & Jeffrey supertask”.

Another example is known as the “Lakes of Wada”. It is used to explain
in an informal way the existence of curves in the plane that separate in each
of their points three regions in the plane (such remarkable curves were
discovered at the beginning of the century by the Dutch mathematician
L.E.J. Brouwer). Imagine an island in the ocean on which there are two
lakes. We carry out a project on the island during which the three different
kinds of water are kept separated. On the first day we construct dead end
canals starting from the ocean and from the two lakes in such a way that
each point of dry land is at a distance of less than 1 kilometre from the sea
and from the water of both lakes. The three kinds of water remain sepa-
rated. On the second half day we extend the canals in such a way that each
dry point is at most at 1/2 kilometre from the three kinds of water. On the
following quarter day we continue until each dry point is less than 1/4 kilo-
metre from the three kinds of water. After two days of work the island will
have been turned into a curve that has the amazing property that it separates
the three kinds of water —they do not mix, while at the same time each
point of the curve can be approached arbitrarily close from each of the
three kinds of water.!

Faris, in a book (1996) in which he concentrates on the correct interpreta-
tion of the Greek sources concerning Zeno's paradoxes, gives the following
argument to show that Zeno’s supertask cannot be executed. Suppose
Zeno’s supertask can be executed and it is possible to touch in a finite time
one by one all the points in an infinite sequence of points. Then, he argues,
also the Boolos & Jeffrey supertask can be executed. However, he con-
tinues, then we can slightly elaborate Zeus’ task, requiring the god, when
he is enumerating the set of natural numbers, to make the entries on paper
squares of equal size, that form together an infinite tape of sufficient
length. The tape runs through a simple machine that can transport the tape
over one place to the left whenever Zeus gently pulls it; the machine con-
tains an aperture through which always one square of the tape is visible on
which Zeus can make an entry. Immediately after making an entry Zeus is
supposed to bring the tape in the next position. Faris argues that at this
point in the argument one can see that the initial assumption that Zeno’s
supertask can be executed in a finite time leads to a contradiction. After all,
immediately after the infinite enumeration by means of the machine, from
Faris’s point of view, there must be a square in the aperture of the machine.

1The example is well-known in topology. The construction of the canals can be defined
very precisely. We paraphrased Vilenkin’s description (1995, pp. 110-111).
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According to Faris, there are now only two possibilities. If this square is
not empty, the item in it must be the last item that Zeus wrote down. If it is
empty Zeus can transport the tape backwards until he runs into the last item
that he wrote down. Both cases contradict the fact that an infinite enumer-
able set has no last element. From this contradiction Faris draws the con-
clusion that Zeno’s supertask cannot be executed.

A similar argument is given by Van Bendegem (1995-97), who starts
from Faris’ argument, but simplifies Zeus’ task by substituting one piece of
paper for the machine and the tape. Whenever Zeus counts an element of
the infinite set, he is expected to write a sign on the paper and immediately
afterwards erase it. After the execution of the whole task, the question is,
from Van Bendegem’s point of view, what there is on the paper. If there is
a sign on the paper, it corresponds to the last element in the set, which is
impossible. If the paper is empty, that must be the result of the erasure of
the sign corresponding to the last element of the set, which is also im-
possible. The argument purports to show that the existence of an actually
infinite sequence of points in a finite segment, which underlies Zeno’s
supertask, is a problematic concept.

2.2, Supertasks: the problem

Many mathematicians and physicists believe that the Dichotomy from the
point of view of modern science no longer represents an interesting prob-
lem. Moreover, they consider the Boolos & Jeffrey supertask and the Lakes
of Wada as harmless thought experiments that merely illustrate concepts.
However, from a philosophical point of view there is more to it. In a pos-
sible interpretation of the Dichotomy the core of the paradox is precisely
the fact that Zeno’s supertask is abstracted from the motion. In this inter-
pretation Zeno considered the execution of an infinite number of acts in a
finite time logically impossible and drew from that the conclusion that mo-
tion is impossible. Two elements in this argument are important. The first
one is that Zeno’s supertask essentially depends on the assumption that ac-
tually infinite sets exist. Finitists in the philosophy of mathematics reject
that assumption. The second element is that it is in general not clear what
the “execution of an infinite number of acts” amounts to. What is the situa-
tion in the world after the execution of an infinite number of acts in a finite
time? It is obvious from Faris (1996) and Van Bendegem (1995-97) that
these two elements are still worth some further analysis. Faris and Van
Bendegem both start from the assumption of the existence of an actually
infinite set that underlies Zeno’s supertask and by slightly changing the
supertask derive contradictions. For them these contradictions generate
doubt with respect to the possibility of the execution of Zeno’s supertask.
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They even interprete the possibility to derive the contradictions as an argu-
ment in favour of finitism. :

After almost two and a half thousand years Zeno’s spirit still haunts us!
We believe that the arguments of Faris and Van Bendegem are flawed. Yet
the question is what precisely is wrong? At the same time we believe that
there is nothing wrong with the Boolos & Jeffrey supertask, the Lakes of
Wada and Zeno’s supertask. But also here the question is why not?

This is how we will approach these questions. The following definition is
our starting point. A supertask consists of a well-defined initial situation Sy
and an infinite sequence of well-defined acts Ay, Ay, A3, etc. that are such
that for all natural numbers j the execution of Aj in the situation S;.; is pos-
sible and leads to a well-defined situation S;. During the execution an infi-
nite sequence of situations Sy, Sy, S3, etc. is generated. Below we will first
concentrate on the first element: actually infinite sets in mathematics. Then
we will turn to the second element, the question: What does the completion
of a supertask in a finite time amount to? We will analyse the arguments
given by Faris and Van Bendegem and subsequently we will show how
supertasks can be discussed without running into contradictions.

3. Extrapolations and Actual Infinity in Mathematics
3.1.  The actual versus the potential infinite

In the “Discorsi” Galilei described the following paradox. If we consider
the set of natural numbers, {1, 2, 3, .....}, then one notices that there are less
natural numbers that are squares than there are natural numbers. However,
if we look at the following one-to-one correspondence,

1 2 3 4 5 6 7 8 9
I e D B B
I 4 9 16 25 36 49 64 81

it is clear that the set of squares and the set of all natural numbers must be
equally numerous. The contradiction that Galilei derived disappears when
infinite sets are handled with sufficient care. In the nineteenth century
Georg Cantor created set theory, the theory of infinite sets. In set theory the
fact that the squares are a non-trivial subset of the natural numbers does not
contradict the fact that, at the same time, there is a bijection between the
two sets. Actually the existence of a bijection between a set V and a subset
W of V that is unequal to V, is characteristic of infinite sets. In principle, in
axiomatic set theory the statement:
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(A) “There is a set V with the property that there exists a bijection be-
tween V and a subset W of V for which W # v’

can be used as “Axiom of infinity”, as the axiom that guarantees the exis-
tence of infinite sets. An important question in the philosophy of mathe-
matics can be phrased with respect to (A). (A) guarantees the existence of
an actually infinite set. The question is: “Is (A) a sensible assumption”? We
will call those who believe that the notion of an actually infinite set makes
sense ‘infinitists’. Those who oppose the actually infinite we will call ‘fini-
tists’. For finitists infinity only makes sense as a potential infinity.

In order to make the opposition between infinitists and finitists clearer,
we consider the following thought experiment in which series of strokes
are used to define the natural numbers. We start with one stroke | , which
represents the number 1. We get the number 2 by adding a stroke | |. By
continuing in this way we can generate the set of natural numbers: |, [ I, | | I,
FEEL TETEL ete. A finitist will now emphasise the fact that in this way we
never actually get all the natural numbers. He will argue that the set of nat-
ural numbers defined in this way is only infinite in the sense that one can
always go on generating bigger numbers; it is potentially infinite. An infi-
nitist will agree with the fact that we never actually get all the natural num-
bers in this way, but he will argue that this simple process generating the
natural numbers is so clear and well-defined that the set of all the series of
strokes that we could ever get in the process can be considered as an ac-
tually infinite given whole. In this way the infinitist can use the thought ex-
periment in support of the Axiom of Infinity.2

3.2. Extrapolations from the finite to the infinite

Galilei’s paradox is a good example of what can happen when one studies
actually infinite sets. For arbitrary finite sets V and W the following two
statements are both true:

(B) If Wis a non-trivial subset of V, the number of elements of W is nec-
essarily smaller than the number of elements of V.

(C)  If there exists a bijection between W and V, they necessarily possess
the same number of elements.

2N.B. In this context the thought experiment should not be interpreted as a supertask. The
infinitist does not need the assumption that the natural numbers are all actually created by
means of series of strokes. For the infinitist it is enough that everything the we can ever get
in the course of the thought experiment is well-defined. This is an important point. The no-
tion of supertask requires the notion of an actually infinite set; the converse is not true.
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Infinite sets are not empirically given; one cannot observe their properties
or by physical manipulation literally show what their properties are. It is
our opinion that we attribute properties to actually infinite sets through a
process of extrapolation from the finite to the infinite; if all finite sets pos-
sess a certain property a first inclination is to assume that all infinite sets
possess this property as well.3 Galilei’s paradox shows what happens when
this is done carelessly. (B) and (C) are true for all finite sets. However, if
one extrapolates these properties to infinite sets, the result is an inconsis-
tency. Cantor, the father of set theory, had a good intuition for what can
and what cannot be extrapolated from the finite to the infinite. The axio-
matic treatment of set theory by Zermelo, Fraenkel and others led to a
situation in which it became very clear what transfinite set theory consists
of, and infinitist mathematicians are on the whole quite confident that Zer-
melo-Fraenkel set theory (ZF-set theory) is consistent.

Another area that offers examples of careless extrapolations from the
finite to the infinite is the history of the theory of series or infinite sums.4

3This is not a new idea. Bernays called it the method of analogy: extending to the inac-
cessible, relations that we can only verify for the accessible (Bernays, 1935).

4Sainsbury (1995, pp. 9-10, footnote) gives a nice example. Consider the following proof
of the equality (D): (1/(1-x))=1+x+x>+x3+x* + ... as follows. The infinite sum is multiplied
by 1 and by x, which yields the two sums

E): 1-(Itxe 4042 + ) = Lexe Bt +

(x4 428 + ) = e ed +

Subtraction of the two sums yields (F): (1-x)-(1+x+x2+x>+x% + ...) = 1. Division by (1-x)
then yields the required result. The argument is based on several extrapolations: laws that
hold for finite sums are assumed to hold also for infinite sums. For example (E) is based on
an extrapolation of the distributive law for finite sums

d'(b1+bz+b3+ wby) = a-b1+a-b2+a-b3+ .. @by

to infinite sums, while (F) is based on several other extrapolations: a distributive law on
the left hand side and an associative law on the right hand side. It is easy to derive paradoxi-
cal results from (D). For example, Euler substituted x=2 in (D) and drew the conclusion that
(G): -1 = 142+4+8+16+ ... (Koetsier, 1991, p. 211). Another well known paradoxical impli-
cation of (E) requires the substitution of x=-1, which yields (H): (1/2) = 1-1+1-141-1+1- .....
Sainsbury remarks that mathematicians consider the above given proof of (D) as highly sus-
pect. We do not share this opinion. The proof is only incomplete. Missing is a notion ‘infi-
nite sum’ defined in such a way that the validity of the extrapolations can be proved. This
can be done in different ways. We owe the best known solution to Cauchy (1789-1875): in
his theory an infinite sum (or series) only makes sense if it converges to a limit. What this
means can be precisely defined. The proof of (D) is all right if one restricts oneself to con-
vergent infinite sums and adds one further restriction: the convergence of the infinite sums
should be absolute. If the convergence is absolute all needed extrapolations can be proved.
In Cauchy’s theory (G) and (H) can no longer be derived. However, there are other solu-
tions. Euler (1707-1783), for example argued that an infinite sum is simply a formal expres-
sion. An infinite sum makes as such always sense in Euler’s theory, whether it converges or
diverges (which means by definition that it does not converge to a limit). However, in
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Actually this history yields also examples of supertasks. For example,
Euler wrote that a divergent infinite sum is not a real sum.> What did he
mean? In the case of a finite sum, the number that it is equal to can, in prin-
ciple, always be found through actual addition. In the case of a convergent
infinite sum, like 1/2+1/4+1/8+1/16+1/32+ ... actual addition brings us
only nearer and nearer to the number 1, the limit of the sum. Although we
can never add together the actually infinite set of terms, the fact that we can
get arbitrarily close to 1, suggests that the infinite sum as a sum is really
equal to 1. Euler must have meant this: a converging infinite sum is not
only a formal expression, but can be interpreted as a real sum.® There is an
interesting extrapolation involved. If in a finite sum the terms are really
added we get the number it is equal to. Extrapolation yields: If in an in-
finite sum the terms are really added we get the number that it is equal to.
Of course, we, finite human beings, cannot actually add an actual infinity
of numbers. But why wouldn’t an infinite being like God be able to do
this? Obviously, if an infinite sum is seen in this way as a real sum, the
sum is interpreted as a supertask. This idea of an infinite sum as a real sum
is one of the extrapolations that was lost in the process of refinement that
the calculus underwent in the course of the centuries.

4. Extrapolations and the Completion of a Supertask
4.1. Extrapolations leading to contradictions

From now on we will consider actually infinite sets and in particular the
actually infinite set of the natural numbers as unproblematic. We will con-
centrate on the following general question: Given an arbitrary supertask,
what is the situation in the world at the moment of the completion of the
execution of this supertask? In the case of Zeno’s supertask the answer
seems obvious: The masspoint has reached the endpoint Q of the segment.

Euler’s view a divergent infinite sum is not a real sum and that explains (G) and (H): they
are no real equalities, they are merely formal truths. From a modern point of view Euler’s
theory lacks precision, but at the end of the nineteenth century Frobenius (1849-1917) and
others launched a theory of divergent series that made many of Euler’s arguments rigorous.

SKoetsier (1991, p 211).

61n a letter to Goldbach, d.d. August 7, 1745, Euler wrote that the value of a divergent
series should not be called ‘sum’, because usually the word ‘sum’ refers to a value that is
obtained through a real summation (“als wenn die Summ durch eine wiirkliche Summirung
herausgebracht wiirde: welche Idee bei den seriebus divergentibus nicht Statt findet”). Jus-
kevic & Winter (1965), p. 218.
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Yet the general question concerning the situation in the world after the
completion of the execution of a supertask is not so harmless. Since the
1950s repeatedly papers dealing with supertasks appeared in the literature.”
However, from our point of view there has been insufficient attention for
the fact that arguments purporting to show that after the complete execu-
tion of a particular supertask a certain situation occurs, are always based on
extra assumptions that are not explicitly given with the definition of the
supertask. These assumptions are always extrapolations from the finite to
the infinite of some sort. Unless such extra assumptions are explicitly
given, there is a serious risk to run into contradictions. The situation is
comparable to the situation in early set theory or to the situation in the early
theory of infinite sums.

We will use the supertasks defined by Faris and Van Bendegem to illus-
trate our point. It is very important that, logically speaking, because of its
infinite character, the definition of a supertask implies nothing whatsoever
about the situation in the world after its complete execution. In order to
draw conclusions about the end effect of a supertask on the world we need
extra assumptions. One could object here and say: surely in the case of
Zeno’s supertask the moving masspoint reaches the endpoint Q of the seg-
ment and that means that immediately after the execution the position of
the masspoint will coincide with Q? The answer is that indeed the mass-
point reaches Q. But that is not implied by the definition of the supertask. It
requires the extra supposition that the motion is continuous8 in Q. This sup-
position is fulfilled in this case, because we introduced Zeno’s supertask
starting from a continuous motion on the closed interval PQ. However, it is
easy to imagine, at least mathematically, a discontinuously moving mass-
point that executes Zeno’s supertask in a finite time, gets arbitrarily close
to O, but never actually reaches Q.

Let’s consider Faris’s supertask. During the execution of the supertask
Zeus is sitting behind the machine with a pencil, watching the aperture,
marking and shifting the tape. At each instant there are entries on all
squares of the tape that have already passed through the machine. During
the execution of the supertask Zeus could move the tape backwards at each
instant and check his last entry. Faris now assumes without hesitation that
this can be “extrapolated”: he assumes that it all still holds after the com-
pletion of the execution of the supertask. The result is a contradiction, that

7See Salmon (1970) and Earman & Norton (1996) for references.

8We use the word “continuous’ in its technical sense. Roughly this means in this case that
there are no instantaneous changes of position.
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is not caused by the assumption of the existence of an actually infinite set,
but by Faris’s implicit extrapolations.

The abstract structure of what Faris actually does is this. He notices that
during the execution of the supertask all the time there is a last entry that is
either in the aperture or which can be shifted back in the aperture by mov-
ing the tape backwards, and he concludes that after the completion of the
supertask, this must still be the case. This is like assuming that because all
initial segments of IN no matter how big are have a last element, also IN as
a whole must have a last element. Van Bendegem’s argument is flawed in
precisely the same way. It is not the assumption of the existence of actually
infinite sets that causes the contradiction, it is the introduction of implicit
extrapolations from the finite to the infinite. It is important to discuss these
extra assumptions. Too often, when supertasks are being discussed there
are implicit extra assumptions, that cause inconsistencies. If these inconsis-
tencies are considered to be mere curiosities, no harm is done. However, if
they are used in reductio ad absurdum arguments one commits a fallacy.

4.2. Interpretations

A supertask always concerns a series of acts that are executed somewhere
in some environment in the course of time by an individual or by a ma-
chine. Often we are dealing with physical notions, but not necessarily. A
supertask can also concern more or less precisely defined “mental construc-
tions”. In order to say something about the effect on the environment of a
supertask we must precisely define what we are talking about. We must
give a precise interpretation of the supertask. We can, for example, inter-
pret a supertask in terms of a physical theory. It is always necessary to give
a precise interpretation of the terms that occur in the supertask. One must
also leave out elements that are irrelevant. For example if our goal is pri-
marily logical we can abstract from the moving mechanisms and simply
assume that in one way or another the motions can be brought about.

In the next section we will interpret the supertasks involved in terms of
classical kinematics. We interpret all supertasks described so far in terms
of objects moving in a euclidean space. We will not consider the cause of
the motion and restrict ourselves to the geometrical possibility of the mo-
tion.

4.3.  Extrapolations: the Simple Continuity Principle
In this section we will show that if a supertask can be interpreted kinemati-

cally there are certain natural extra assumptions concerning the ultimate
effect of the execution of certain supertasks. Under the kinematical inter-
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pretation we can reason as follows. It often occurs that we can give a parti-
tion of the world which is such that during the execution of the supertask
each part of the partition comes to rest at some time before the moment of
the complete execution of the task. Then it is very natural to assume that
the situation in the world at the moment of the complete execution is the
union of the situations in the parts of the partition at the moments they
came to rest. This is a simple continuity principle. We consider it as a mere
explicitation of what completion of a supertask minimally amounts to. It
amounts to the assumption that the whole sequence of intermediate results
can be considered as existent: a natural consequence of the belief in actual-
ly infinite sets. Let us look at the example of the Boolos & Jeffrey super-
task: in a finite time Zeus writes down all the natural numbers. Of course
Zeus needs infinitely many disjoint places Py, P2, P3, etc. for the infinitely
many names of the numbers. For all these places there is a precisely de-
fined moment at which Zeus writes down the corresponding number. It is a
simple and natural extrapolation to assume that the number remains there
until Zeus is finished, which boils down to an application of the simple
continuity principle. In precisely the same way we can handle the Lakes of
Wada. If the acts of the supertask are defined more precisely —which is
possible— there are for each point on the island only two possibilities:
either there is a precisely defined moment at which it becomes part of one
of the three regions, or it remains dry.

4.4. Extrapolations: the general continuity principle

The simple continuity principle is not enough to handle Zeno’s supertask,
because the simple continuity principle does not yield the position of the
mass point immediately after the execution of Zeno’s supertask. Applica-
tion yields that after the completion of the supertask all midpoints M1, M2,
M3, etc. have been touched, nothing more, nothing less. The simple conti-
nuity principle boils down to the assumption that things that stop moving
during the execution of a supertask in a certain position at some time before
the completion are at the time of the completion still at that position. The
question is what to assume concerning things that do not stop moving at a
certain moment in time before the completion? As far as we know, in this
respect there is only one rather natural assumption available. If one as-
sumes that during the execution of the supertask the motions can be de-
scribed by means of continuous functions of time, it is a very natural extra-
polation to assume that the motions will still be continuous at the moment
of the completion. This implies that if the acts of the supertask correspond
to an increasing, converging sequence of moments in time, the positions of
the rigid bodies at that sequence of moments in time converge to their posi-
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tions at the moment of completion of the supertask. This is a general conti-
nuity principle. Above we saw that the definition of Zeno’s supertask in it-
self does not imply that the masspoint actually winds up in the endpoint O
of the segment. Because it excludes discontinuous motions, the general
continuity principle yields that immediately after completion of the super-
task the masspoint is located in point Q.

We will make some further remarks about the general continuity prin-
ciple and Zeno’s supertask. Zeno’s supertask is related to the Dichotomy.
One version of the Dichotomy runs as follows: Motion from P to Q is im-
possible because it requires the passing of infinitely many midpoints.
Sometimes the argument is rebutted by pointing out that in mathematics

1/2+1/4+1/8+1/16+1/32+ ... =1

This rebuttal holds water, but it is too brief. The full rebuttal boils down to
the argument that there is a consistent theory of motion in Euclidean space.
In this theory a uniform motion along a segment of length 1 in a period of
time equal to 1 is modelled by a linear function: f: [0,1] — [0,1] with f#)=t.
Indeed, in this model we have

1/2+1/4+1/8+1/16+1/32+ ... = 1,

with respect to both an infinite series of subsegments in space and an infi-
nite series of subperiods in time. In the model the infinite sum is not inter-
preted as a supertask. From the model Zeno’s supertask can be abstracted,
but in order to describe motion we do not need supertasks. On the other
hand, there is conceptually no objection against an interpretation of the mo-
tion in terms of Zeno’s supertask. Because the linear function f that de-
scribes the motion is continuous on [0,1], the model then guarantees the
validity of the general continuity principle. We can then show that the com-
plete execution of the supertask means arrival in Q. In the same way the
arithmetic supertask expressed by

1/2+1/4+1/8+1/16+1/32+ ...,

can be related to the model of uniform motion. The supertask can be de-
fined as follows: Act A consists of adding the first two terms and for j=>2
act A; consists of adding the j-th term of the infinite sum to the result ob-
tained so far. We can interpret the numbers as the lengths of the segments
that the moving mass point is covering and then the moving mass point
plays the role of an analogous computer that calculates the infinite sum.



ASSAYING SUPERTASKS 303

The basic idea of the general continuity principle is once more clear from
the last remarks. Zeno’s supertask ‘is abstracted from a continuous motion.
Application of the general continuity principle requires that a given super-
task can be interpreted in terms of continuous motions. The supertask must
be interpreted in such a way that during the execution and at the moment of
the completion of the execution all moving points describe continuous
curves. All moving points are then describing segments PQ of curves. For
all these individual points the supertask is interpreted as a continuous mo-
tion from a point P to a point Q. For all these points we are actually dealing
with Zeno’s supertask.

Clearly we do not believe that the notion of the execution of Zeno's
supertask in a finite time is inconsistent. The reasons are the following.
This would require a proof of inconsistency. Such a proof does not exist.
Moreover, if the notion were inconsistent this would imply the inconsis-
tency of the mathematical model of motion that is used (and not the impos-
sibility of motion), which would in its turn imply the inconsistency of a
major established part of infinitist mathematics.®

In Allis & Koetsier (1991) the simple continuity principle and the general
continuity principle were used to study some other supertasks concerning
balls that are moved in and out of an urn. Moreover, in Allis & Koetsier
(1995) a more abstract version of the simple continuity principle was
given. Yet, although these principles are rather natural assumptions, the
class of supertasks that can be handled by means of them is restricted. If we
have two different points P and Q in space and we consider the supertask
for which in Sg a masspoint is in P and for all i act Ap;.| consists in moving
the masspoint from P to Q and for all i the act A; consists in moving the
masspoint from @ to P, then the simple and the general continuity principle
cannot help us: the situation after completion is not determined.

5. Some More Supertasks
5.1. Ball-supertasks

Let us look at another supertask. In this supertask Sq consists of an urn
containing one ball. The ball has the number 1 on it. For all natural
numbers j act A; is defined as follows: the number on the ball is multiplied
by 10 by writing an extra zero on it. We call this supertask the “Ball-
supertask Nr 1”. What is the situation after the complete execution of the

9The consistency is relative with respect to the consistency of Zermelo-Fraenkel set
theory.
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supertask? Before reading on the reader might wish to think about the
following answer: the urn will contain a ball with a 1 on it followed by
infinitely many zeroes on it. The answer looks quite reasonable and indeed
it can be justified by means of the simple continuity principle. However, let
us consider a slightly modified supertask. Also now Sy consists of an urn
containing one ball with the number 1 on it. Also here for all natural
numbers j act A; is defined as follows: the number on the ball is multiplied
by 10 by writing an extra zero on it. However, the difference is that the
inside of the urn is more precisely defined. It consists of infinitely many
numbered places. The numbers are all the powers of 10, i.e. a number of a
place is a 1 or a 1 with a finite number of zeroes behind it. Moreover, the
task is more precisely defined: there is a rule that says that numbered balls
in the urn must always be positioned on a spot that has their number. We
call this supertask Ball-supertask Nr 2.

The only difference in the definition of the Ball-supertasks is that in Nr 2
the individual executing the task gets more precise instructions than in
Nr 1. Ball-supertask Nr 2 can be executed as easily as Ball-supertask Nr 1.
The difference looks negligible. However, it isn’t. If we naively attempt to
tell what is in the urn at 12. p.m. it seems that the ball, which never leaves
the urn, must have a 1 with infinitely many zeroes on it. On the other hand,
that same naive approach tells us that the ball cannot be in the urn at all,
because although during the execution the ball has all the time a clear posi-
tion in the urn, after the execution all those places are empty: the ball with
infinitely many zeroes on it has disappeared!

The conclusion should be clear: don’t approach such situations naively. It
is possible to give a more precise definition of Ball-supertask Nr 2 in such
a way that in combination with the general continuity principle the situa-
tion immediately after completion of the task is unambiguously deter-
mined. It can be done as follows. By definition the urn consists of a con-
verging sequence of points (P;) in the plane. The index i runs through all
powers of 10: 1, 10, 102, 103, etc. The ball is a flat disc which has initially
the number 1 on it. In the course of the execution of the supertask zeroes
are added to this 1, the zeroes are getting smaller and smaller in such a way
that infinitely many of them can be added. During the execution of the
supertask the centre of the disc is moved from point to point in the se-
quence (P;). If this is the supertask that we are talking about, then the gene-
ral continuity principle implies that after completion of the supertask the
centre of the disc coincides with the limit point of the sequence (P;) and,
moreover, the disc has a 1 on it with infinitely many zeroes behind it. The
stipulation that a ball must always be on a spot with the same number im-
plies that the limit point cannot coincide with one of the points of the se-
quence. If the urn is by definition equal to the sequence (P;), the conclusion
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is that the ball, although it never leaves the urn during the execution of the
supertask, winds up outside of the urn at the moment of the completion.

5.2. Bifurcated supertasks in relativistic space times

Faris and Van Bendegem are not the first who attempted to raise doubt
with respect to the notion that a finite segment really consists of infinitely
many “chopped off” wholes by relating it to supertasks. Hermann Weyl
wrote: “If one admits this possibility, then there is no reason why a ma-
chine should not be capable of completing an infinite sequence of distinct
acts of decision within a finite amount of time” (1949, p. 42). Because in
Weyl’s view the essence of the infinite is the incompletable, he rejects this
possibility. In a recent paper on supertasks, Earman & Norton (1996) give
a response to Weyl, based on results from relativity theory. In a very origi-
nal manner they interpret supertasks in terms of the general theory of rela-
tivity. The thus interpreted supertasks are called bifurcated supertasks. A
bifurcated supertask consists of two components. The first component is a
supertask that is executed by an individual, the Slave, in an infinite time.
The second component is an external observer, the Master, who has access
to the Slave’s entire history, but experiences only a finite lapse of time.
Earman and Norton argue that in general relativistic space-time it can occur
that the entire infinite world line of a Slave, can indeed be contained within
the chronological past of a single event on the world line of a Master. This
is a very interesting fact, as Earman and Norton rightly argue, because it re-
lates the problem of the supertasks to relativity theory. And in particular, it
relates the problem of the supertasks to the problem of communication in
relativity theory. The Slave executes a supertask and, of course, never fin-
ishes it, in his space time. However, in the space time of the Master, from a
certain moment on, she has access to “the outcome of the Slave’s infinite
labours” (Earman & Norton 1996, p. 249).

There is a big difference between the supertasks that we discussed above
and these bifurcated supertasks. The former ones are executed in a finite
time in one particular space-time and the interesting problem concerns the
spatial situation at the moment of completion of the supertask. In the case
of a bifurcated supertask the supertask is never completed by the Slave and
the interesting problem concerns the possibilities of communication from
the Slave to the Master about the infinite series of intermediate results. The
assumption that the Slave can transmit an infinite series of zeroes implies
that in principle the Slave could tell the Master what the first odd perfect
number is —if there exists one— but is conceptually unproblematic, at
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least for an infinitist.!? The assumption that the Slave can transmit an infi-
nite series of zeroes and ones to the Master, however, brings back the origi-
nal supertask problem in the space-time of the Master: in order to handle
that series she must herself execute a supertask in a finite time or have a
machine that does it for her!

Earman and Norton believe that such bifurcated supertasks provide an
effective response to finitists like Weyl (Earman & Norton 1996, p. 255).
They concentrate on Weyl's claim that arithmetic assertions are not mean-
ingful if their truth depends on a complete running through an infinite se-
quence of numbers. Their response consists of two parts. The first part runs
as follows. Let us take the conjecture: “All odd natural numbers are imper-
fect”. The Slave checks this for all odd numbers and he transmits a signal
to the Master only if he runs into a counterexample. Earman and Norton
argue that in this case the infinite sequence of acts performed by the Slave
is indeed incompletable —which is in accordance with Wey!’s finitist posi-
tion— however, on the other hand, the Master has the essential access to
the fruits of all these acts: she can know whether the conjecture is true or
false. The second part of the answer concerns the question whether the con-
ception of a bifurcated supertask is acceptable to a finitist, like Weyl. Ac-
cording to Earman and Norton, Weyl ought to have accepted it, because he
worked in general relativity. This is a very weak argument. Indeed, Weyl
was at heart a-finitist,!1 however, as Dieudonné remarked he “never ob-
served too scrupulously the taboos of the intuitionists” (1976, p. 285). Ac-
tually most of Weyl’s work is unacceptable from the point of view of the
intuitionist or finitist. Until Earman and Norton come up with a finitist
theory of general relativity that encompasses bifurcated supertasks, their
argument will not be acceptable to finitists,

Actually the argument given by Earman and Norton is circular: the theo-
ry of general relativity is an infinitist theory, based on the notion of actually
infinite sets. The argument is based on actually infinite sets, so it is not
surprising they get them back at the end. Yet, one must admit that they re-
turn in a most interesting form.

10A natural number is by definition perfect, if it is equal to the sum of its divisors (the
number itself is then not considered as one of its divisors). For example: 6 is perfect because
6=1+2+3 and 28 is perfect because 28=1+2+4+7+14. It is unknown whether there exist odd
perfect numbers.

11gee Van Dalen 1995 for a characterisation of Weyl’s finitist views in comparison with
Brouwer’s intuitionism.
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5.3. A more general notion of supertask

So far we restricted ourselves to supertasks consisting of as many acts as
there are natural numbers. One could call them @-supertasks because the
ordinal number of the sequence of acts is .12 In principle there is no rea-
son to restrict the notion of supertask to such relatively small infinite se-
quences. This is illustrated by another nice example of a supertask occur-
ring in the mathematical literature. It is Boolos’ informal description of the
iterative conception of set (Boolos, 1983). Boolos writes: “A set is any col-
lection that is formed at some stage of the following process [supertask, we
would say —T.K.&V.A.]: Begin with individuals (if there are any). An
individual is an object that is not a set; individuals do not contain members.
At stage zero (we count from zero instead of one) form all possible collec-
tions of individuals. If there are no individuals, only one collection, the null
set, which contains no members, is formed at this Oth set. [...] At stage one,
form all possible collections of individuals and sets formed at stage zero.
Of course some sets are formed that contain both individuals and sets
formed at stage zero. At stage two, form all possible collections of individ-
uals, sets formed at stage zero, and sets formed at stage one. At stage three,
form all possible collections of individuals and sets formed at stages zero,
one and two. [...] Keep going in this way, at each stage forming all possible
collections of individuals and sets formed at earlier stages. Immediately
after all of stages zero, one, two, three, ..., there is a stage; call it stage ome-
ga. At stage omega, form all possible collections of individuals and sets
formed at stages zero, one, two, ... One of these collections will be the set
of all sets formed at stages zero, one, two, ... After stage omega there is a
stage omega plus one. At stage omega plus one form all possible collec-
tions of individuals and sets formed at stages zero. one two, ..., and omega.
[...] Keep on going this way.” (1993, pp. 491-492). Boolos describes here a
supertask that consists of a series of length Q of acts (£21is the ordered class

12Cantor’s theory of infinite sets encompasses the theory of infinite ordinal numbers. The
finite ordinal numbers are the natural numbers. We will briefly and very informally describe
the notion of infinite ordinal number. At heart Cantor extrapolated the fact that every natural
number represents a well-ordered set from finite sets to infinite sets (A defining property of
well-ordered sets is that every non-empty subset possesses a least element.). The smallest
well-ordered infinite set is the set of natural numbers. If we call, by definition, the ordinal
number of this set @, we wind up with the following set of ordinal numbers: 1, 2,3,4,.., 0
(Nota bene: the dots represent all natural numbers bigger than 4.) This set is well-ordered
and its ordinal number is by definition @+1. The result is that we now have the following
ordinal numbers: 1, 2, 3, 4, ..., @, w+1. Going on in this way we get the collection of all
ordinal numbers 2= {0, 1, 2, 3, 4, ..., ®, w+1, W2, w+3, ..., -0, o+, w+rw+2, ... etc.
etc.}. One notices that every number in the sequence is precisely the ordinal number of the
sequence of numbers that precedes it.
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of all finite and infinite ordinal numbers). Starting from an initial situation
So in which there exists a number of individuals, for all i € £ act A; con-
sists of forming all possible collections of individuals and sets formed at
earlier stages. Boolos goes on to show that it is very reasonable to assume
that the axioms of Zermelo-Fraenkel set theory hold for the complete col-
lection of all sets that are formed in this way in the course of the process.
The supertask is merely used as an introduction to ZF-set theory. In the
transition to ZF-set theory expressions as ‘stage’, ‘is formed at’, ‘earlier
then’, ‘keep on going’ are exorcised; ZF-set theory refers to the time inde-
pendent, actually infinite whole of all sets that are formed at some stage in
the process. Boolos’ £2-supertask is informal and not precisely defined. It
is, for example, from a formal point of view not crystal clear what the for-
mation of all possible collections amounts to when infinite collections are
concerned. Yet it is a legitimate informal thought-experiment. Actually in
the case of Boolos’ supertask one can argue that some sort of simple conti-
nuity principle is applied. We will not elaborate this point, but, for
example, when in Boolos’ supertask Actg, is going to be executed, for all
individuals and sets formed at stages zero, one, two, ... holds that they were
formed (for the first time) at some stage before @ and not “touched” after-
wards. Simple continuity then guarantees their existence at stage .

Supertasks do not only occur in informal mathematics. Recently Ham-

kins and Lewis developed what one could call a theory of Infinite Time
Turing Machines (1997).. Hamkins and Lewis consider a standard Turing
machine provided with a tape filled with infinitely many cells that contain
zeroes or ones. The machine becomes an Infinite Time Turing Machine
when it possesses the property that after @ steps of computation the ma-
chine automatically moves to the first cell and goes into the special distin-
guished limit state, while at the same time all cells of the tape assume their
limit value: if the content of a particular cell is eventually one or zero be-
fore the limit stage, then the cell retains the limiting value; if the cell values
goes on alternating between zero and one before the limit stage, then the
limit value is one. The effect of this definition is that if a Turing machine
does not halt after finitely many steps, it will go on after @ steps and if
again it does not halt after another @ steps it will go on to steps 2w, 2w+1,
2w+2, etc. etc. For some interesting properties of Infinite Time Turing Ma-
chines we refer the reader to Hamkins and Lewis’ paper.

In the case of the Infinite Time Turing Machines the idea of a machine
that in the course of time is executing a task is convenient, but, at heart,
superfluous. An Infinite Time Turing Machine defines a recursive function
on £2 and whatever we prove about the machine can be rephrased in terms
of that function, totally independent of the flow of time. The converse is
also true; whenever we have a recursive function on £2 or on an initial seg-
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ment of £2 we can describe the calculation of this function in terms of acts
that are executed in the course of “time”.

Boolos’ supertask and the Infinite Time Turing Machines suggest to us
the following general notion of supertask. A supertask is based on a recur-
sive function of some sort defined on (an initial segment of at least size @
of) (2, that is interpreted as a series of acts, that are to be executed in the
course of “time”. The problem of the completion of a supertask that we dis-
cussed above concerns the values of this function at limit ordinals. The
value at a limit ordinal & is defined in terms of the preceding values and in
a supertask interpretation of a recursive function these preceding values
determine the situation “in the world” at the moment Acty is going to be
executed. From a purely mathematical point of view any definition of these
values is allowed, as long as the resulting theory is consistent. In the case
of physical supertasks everything that we said above about supertasks
based on a recursive function defined on a segment of 2 of length @ also
applies to these generalised supertasks.

6. Newtonian supertasks

In two recent papers Perez Laraudogoita (1996, 1998) discussed some
“Newtonian supertasks”. A representative example is supertask ST1: Denu-
merably infinite particles, P1, P3, P3, etc., of equal mass m are initially at
rest on an x-axis. The x-coordinate of P; is initially 1/2¢. There is a particle
Py, initially at x=1, moving with a constant negative velocity -v. In the
course of time a sequence of elastic collisions take place: Py hits P; and
instantaneously transfers its velocity to P;. Then Py hits P, and instanta-
neously transfers its velocity to P3, etc. Clearly after a period t=1/v all of
the collisions have been completed. Because for £21/v each particle P; is at
rest, the total energy of the system is zero. It appears that the law of conser-
vation of energy has been violated: although during elastic collisions by
definition energy is preserved, the system as a whole is non-dissipative.
Perez Laraudogoita then argues that on the basis of the time-reversal in-
variance of Newtonian systems we must draw the conclusion that systems
of denumerably many particles, that are all at rest initially, can self-excite:
at some arbitrary time a particle spontaneously begins to move at an arbi-
trary velocity. This shows according to Perez Laraudogoita that there exists
indeterminism in Newtonian mechanics. Moreover, in Newtonian mechan-
ics creation ex nihilo becomes possible.

Alper & Bridger (1998) have criticised Perez Laraudogoita’s arguments.
Basically we agree with them, but we believe that some things can be said
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more precisely. We will restrict ourselves to ST1 and we will not go into
the argument on indeterminism in Newtonian mechanics.

First of all we believe that supertask ST1 does not constitute a physical
problem. From a physical point of view pointmasses without dimensions
do not exist; the idealisation is sometimes useful but this is not the case
when we are dealing with infinitely many pointmasses in a bounded area
and the distances between the pointmasses become arbitrarily small. More-
over, in ST1 the total mass is infinite, which is more than according to
modern physical theory is available in the entire universe. The non-physical
character of the supertask is also clear from the fact that one cannot
imagine, not even in the future, an experimental set-up in order to check
what really happens.

So the problem is mathematical. And indeed, classical mechanics can be
seen as a mathematical theory dealing with the motion of mass in 3-dimen-
sional euclidean space. Mass occurs in the form of dimension-less point-
masses or in the form of continuous systems. Rigid bodies are sometimes
considered as systems of pointmasses with the property that the distances
between points do not change, but also sometimes as continuous systems
with that same property. Continuous systems need not be rigid, like in the
case of elastic rods. Continuous systems are defined as a set of points com-
bined with a density function. For an arbitrary system, in principle, equa-
tions of motion can be written down on the basis of Newton’s laws. To-
gether with initial conditions these equations in general uniquely determine
past and future behaviour of the system. This is also the case in the theory
of elastic collisions. However, classical mechanics is less precisely defined
than, for example, Zermelo-Fraenkel set theory. It constitutes from a
modern mathematical point of view a rather informal theory and as long as
theories are informal it is often possible to stretch the implicit meaning of
notions in such a way that paradoxical results are produced. The supertask
ST1 nicely illustrates this.

Yet the problem that we are dealing with does not primarily concern
supertasks. It concerns the mass distributions that we should study or
should not study in classical mechanics. Usually in classical mechanics
mass is concentrated in pointsets that are, topologically speaking, closed.
Under normal circumstances no one would consider a collision in a plane
between circular discs without border. In a way such discs can never touch;
they either are separate or there is considerable overlap. Implicitly in such
cases one always considers the topological closure of a set, the borders are
added and the collision becomes unproblematic. From our point of view
the discussion between Perez Laraudogoita and Alper & Bridger concerns
questions like “What is precisely Newtonian mechanics”? and “Does it in-
clude the system of pointmasses of ST1 or not™?



ASSAYING SUPERTASKS 311

There are several good reasons not to include the system of pointmasses
of ST1. It has a total mass that is infinite in a bounded region. Suppose we
consider the system as rigid. How are we supposed to study its motion?
Where is its center of gravity? Moreover, as Alper & Bridger point out, if
the particle Py is initially at x=-1, moving with a constant positive velocity
+v, it is very unclear how we are supposed to write down equations of mo-
tion. In this case there is a lot of mass in the way of the moving particle,
but at what time does the first collision take place?

When, as in the case considered by Perez Laraudogoita, the particle Py

arrives from the right the problematic character of the system is not imme-
diately clear. The infinite sequence of collisions takes the form of a super-
task and the indeterminacies show up only when one asks the question:
“What is the situation after the completion of the infinite sequence of
acts”? Implicitly Perez Laraudogoita and Alper & Bridger apply the simple
continuity principle: they conclude that after completion the pointmasses
all necessarily have velocity zero. However, Perez Laraudogoita goes much
further: he calculates the total kinetic energy of the particles and concludes
that energy has disappeared. Alper & Bridger, on the other hand, refuse to
accept this, they argue that the equations of motion possess no solution at
t=1/v and they come in this context to the confusing conclusion that “the
paradoxical behavior arises because the infinite systems are analyzed in
terms of potential infinities. The collisions of the particles are considered
separately and sequentially, rather than in terms of completed infinities in
which the system is treated as a whole.” (1998, p. 356). We believe that
this is beside the point. The point is that if we want the question “What is
the situation at t=1/v"? to be answered, we need extra assumptions. We
could, for example, assume that kinetic energy never gets lost and we
could even assume that at #=1/v, this is the kinetic energy of a pointmass
with velocity -v at x=0. After all, mathematically, there is no difference
between a collision and a pointmass “moving through” another pointmass.
The only real restriction with respect to these extra assumptions is that they
may not cause inconsistency. In practice there is another restriction,
because good mathematics is not only consistent, it should be interesting as
well. We do not yet have the impression that Perez Laraudogoita’s
extrapolations lead to really interesting theories. ST1 is a remarkable
supertask, but basically we agree with Alper & Bridger that one should
avoid infinite sets of masspoints of equal mass in bounded areas.
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7. Concluding Remark

From our point of view this paper can be read as a survey of what can be
said in general about supertasks. Careless handling of supertasks easily
leads to paradoxical conclusions and it is useful to understand how and
why that happens. Yet the result is somewhat disappointing. Unlike the ear-
ly theory of infinite sums or early set theory the contradictions that occur in
arguments concerning supertasks do not seem to be related to exciting
theoretical developments. In Lakatos’ terminology: at this moment super-
tasks do not represent a progressive research programme.

ACKNOWLEDGEMENTS

We are grateful to Henno Brandsma, Klaas van Harn, Michael Hartskamp
and Roel de Vrijer for reading and critically commenting on an earlier ver-
sion of this paper. Moreover we thank Klaas Allaart for his comments on
supertask ST1 and Jean Paul van Bendegem for drawing our attention to
the contributions of Perez Laraudogoita and Alper & Bridger.

Department of Mathematics and Computer Science

Vrije Universiteit

De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
e-mail: teun@cs.vu.nl

REFERENCES

Allis Victor & Koetsier Teun, (1991), On some paradoxes of the infinite,
The British Journal for the Philosophy of Science 42, pp. 187-194.
Allis Victor & Koetsier Teun, (1995), On some paradoxes of the infinite
II, The British Journal for the Philosophy of Science 46, pp. 235-247.

Alper Joseph S. & Bridger Mark (1998), Newtonian Supertasks: a Critical
Analysis, Synthese 114, pp. 355-369.

Benacerraf P. & Putnam H. (eds), (1983), Philosophy of Mathematics,
Selected Readings, Second edition, Cambridge University Press.

Bernays, Paul, (1935), On Platonism in Mathematics, In Benacerraf P. &
Putnam H. (1983), pp. 258-271.

Van Bendegem Jean Paul, (1995-97), In Defence of Discrete Space and
Time, Logique & Analyse 150-151-152, 127-150.

Boolos George S, & Jeffrey Richard C, (1980) , Computability and logic,
2nd edition, Cambridge.

Boolos George S., (1983) , The iterative conception of set, In Benacerraf &
Putnam (1983), pp. 486-529.



ASSAYING SUPERTASKS 313

Van Dalen Dirk, (1995), Hermann Weyl’s Intuitionistic Mathematics, The
Bulletin of Symbolic Logic 1, pp. 145-169.

Dieudonné Jean, (1976), Hermann Weyl, Dictionary of Scientific Biogra-
phy 14, New York: Charles Scribner’s sons.

Earman John & Norton John D. (1996) Infinite Pains: The Trouble with
Supertasks, In Morton Adam & Stich Stephen P. (eds) Benacerraf and
his Critics, Blackwell, Oxford, 1996, pp. 231-261.

Faris J. A, (1996) The Paradoxes of Zeno, Aldershot etc: Avebury.

J. D. Hamkins and Lewis (1997), Infinite Time Turing Machines, Manu-
script available on the www: http://scholar.library.csi.cuny.edu/users/
hamkins/

Juskevic A. P and Winter E. (1965) Leonhard Euler und Christian Gold-
bach Briefwechsel 17291764, Berlin.

Koetsier Teun, (1991), Lakatos’ Philosophy of Mathematics, A Historical
Approach, Amsterdam: Elsevier Science Publishers.

Perez Laraudogoita Jon, (1996), A beautiful supertask, Mind 105, pp. 81—
83.

Perez Laraudogoita Jon (1998), Infinity Machines and Creation Ex Nihilo,
Synthese 114, pp. 259-265.

Salmon W. C. (ed.) (1970), Zeno’s Paradoxes, Indianapolis & New York.

Vilenkin N. Ya., 1995 In Search of Infinity, Boston-Basel-Berlin, Birk-
héuser.

Weyl H., (1970), Raum, Zeit, Materie, Vorlesungen iiber Allgemeine Rela-
tivititstheorie, Berlin etc.: Springer Verlag (Reprint of the 5th 1922
edition).



