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AMBIGUITY-ADAPTIVE LOGIC

Guido VANACKERE*

1. Introduction

The opinion that the strict formalism of formal logics is not able to capture
the flexibility of natural languages, is widespread but not quite correct. The
adaptive logics developed by Diderik Batens capture in a natural but strict-
ly formal way meaning change of logical constants.! The ambiguity-adap-
tive logic presented in this paper deals in an analogous way with meaning
change of non-logical terms.

The idea behind adaptive logics is that, if a set of premises turns out to be
abnormal with respect to a logic L (in that it conflicts with presuppositions
of the logic), it usually is advisable not only to allow for the abnormalities,
but also ‘to stay as close as possible to L’, in other words, to presuppose all
sentences normal unless-and until proven otherwise.

All abnormalities with respect to Classical Logic (henceforth CL) surface
as inconsistencies. When one wants to apply CL to a domain that might be
abnormal with respect to CL, the most general approach is to use an incon-
sistency-adaptive logic.2 In specific situations the abnormality of a domain
can be more specific than inconsistency. Sometimes triviality can be avoid-
ed by allowing for other abnormalities than inconsistency itself, e.g., ‘in-
completeness’, or ‘A&B is true whereas A is false’. In these situations, the
application of another abnormality-adaptive logic is more suitable.3

The adaptive logic presented in this paper, is special in that it deals with
abnormalities concerning non-logical terms (henceforth NLT), namely am-

*Iam extremely indebted to Diderik Batens and Kristof De Clercq, for their large
amount of interesting comments on earlier versions of this paper. Research for this paper
was supported by the Fund for Scientific Research-Flanders, and indirectly by the INTAS-
RFBR contract 95-365.

ISee, e.g., 11, 3], [41, [5].
2The logics ACLuN1 and ACLuN?2 are well known (see, e.g., [5]).

3 [3] and especially [4] contain a plea for developing logics that are adaptive with respect
to other kinds of logical abnormalities —results are forthcoming.
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biguities. An ambiguity-adaptive logic is suitable when we have good
reasons to believe that the cause of inconsistencies is to be found in the am-
biguity of some NLT, and not in the properties of the logical negation (or
of another logical constant). Actually, I think this is a very common solu-
tion to inconsistencies we meet in every day life. If, for instance, both p
and ~p are derivable from a set of premises, it is very natural to explain this
inconsistency by assuming that the two occurrences of p have a different
meaning. A well known historical example: when the litteral explanation of
terms occurring in the bible, became inconsistent with the results of new
scientific theories, the obvious solution was to interpret some terms in a
metaphorical way. Another example: when confronted with the statement
that a penguin has been flying, one supposes that the penguin has been
transported by a plane, because the usual interpretation would be inconsis-
tent with the statement “penguins do not fly”.

That a text is ambiguous means that at least two occurrences of the same
word have different meanings. This suggests at once that it is natural to
apply an adaptive strategy if ambiguity arises. We do in general consider
all occurrences of a word as unambiguous unless and until proven other-
wise. This is natural were it only because the alternative would render all
ambiguous texts unintelligible. So, in accordance with the adaptive ac-
count, we shall allow for ambiguities, but only where the premises require
us to do so. That a logic is able to do so, is rather obvious within the adap-
tive logic research tradition, but is presumably unheard of in other circles.

Adaptive logics ‘oscillate’ between a ‘normal’ or upper limit logic and an
underlying or lower limit logic in which some presupposition(s) of the nor-
mal logic is (are) given up. The upper limit logic of ACL2, the logic pre-
sented in this paper, as well as the upper limit logic of the adaptive logics
studied thus far by Diderik Batens, is CL. The lower limit logic of ACL2
gives up the classical presupposition that two occurrences of a NLT always
have the same meaning; it does so by giving a maximally ambiguous inter-
pretation to a considered set of premises. Hence the lower limit logic is CL,
applied to the maximally ambiguous interpretation, whereas the upper limit
logic is CL, applied to the normal interpretation.4

4The fact that both the upper limit logic and the lower limit logic are identical, viz. CL, is
quite unusual. Lower limit logics of other adaptive logics result from the weakening of the
meaning of one or more logical symbols. The lower limit logic of the inconsistency-adap-
tive logics ACLuN1 and ACLuN2, namely CLuN, is obtained by dropping the axiom (4 D
B) O ((A O ~B) D ~A) from the CL-syntax. If the abnormality is incompleteness, the lower
limit is obtained by dropping the axiom A \/ ~A; if the abnormality is ‘A&B is true whereas
A is false’, the lower limit logic is obtained by dropping the axiom (A&B) D A.
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In the maximally ambiguous interpretation, any two occurrences of a
NLT are taken to have a different meaning. In the normal interpretation all
occurrences of a NLT have the same meaning everywhere. The ambiguity-
adaptive logic ACL2 starts from the maximally ambiguous interpretation
and reintroduces the normal interpretation to as many occurrences of NLT
as possible. The reintroduction of the normal interpretation of a NLT is not
possible if it leads to a contradiction. Such NLT will be said to be ‘ambig-
uous with respect to the premises’. The underlying idea is very natural:
some term occurring in a set of premises is only considered as ambiguous,
if interpreting it as unambiguous renders the premises inconsistent. ACL2
makes this idea more precise, as it specifies which specific occurrences of a
NLT can be interpreted normally and which cannot.

The maximally ambiguous interpretation is formally obtained by giving a
different index to every occurrence of a NLT in the premises. Whenever
the premises require A to be ambiguous, we obtain for some i the abnor-
mality ~(A = A’) —or we obtain a disjunction of such abnormalities. We
call this kind of abnormalities ambiguities. Needless to say that A = A and

Al = Al are theorems of the lower limit logic. Moreover, ACL2 assumes A
= A'! ‘unless and until proven otherwise’.

An important feature of all lower limit logics is the following: the mini-
mal disjunctions of abnormalitiesS that are derivable from the premises,
indicate the possible abnormalities. An adaptive logic based upon such a
minimal logic makes a selection among these possible abnormalities fol-
lowing a well defined strategy. Two strategies are well-known: 1, the relia-
bility strategy, and 2, the minimal abnormality strategy (see, e.g., [2] and
[S]). Kristof De Clercq developed two further interesting strategies (see his
[6]). In ACL2 the minimal abnormality strategy is used. The minimal ab-
normality strategy is the most credulous one: it selects, in general, the
smallest set of abnormalities, which results in the richest consequence set.

The existence of the ambiguity-adaptive logic ACL2 is a strong argument
against the claim that formal logic is irrelevant in the study of theories in
which ambiguous terms (frequently) occur. Together with other adaptive
logics, an ambiguity-adaptive logic helps bridging the gap between logic
and, e.g., argumentation.

5For a definition of a minimal disjunction of ambiguities, see section 3.4. For a definition
of a minimal disjunction of inconsistencies, see, e.g., [5].
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In the second section I introduce the maximally ambiguous interpretation
of the premises on which we apply CL. Proof-theory, semantics and the
soundness- and completeness-theorems of the adaptive logic ACL2 are
given in the third section. In the fourth section, I pay attention to the inter-
pretation of ACL2—consequences and to the intuitiveness of the logic. In
the fifth and final section I comment on the philosophical background and
on possible applications. I hope the reader will be convinced that ACL2 is
the proper instrument to use whenever we accept that some non-logical
terms might have an ambiguous meaning, while we still want to reason
classically.

2. The maximally ambiguous interpretation

Let & be the language of CL, containing D, ~, &, \/, =, V, 3, = and the
members of &, P7, €6, V. ¥ is the set of sentential letters (metavariables P,
Q, Py,...). P is the set of letters for predicates of rank r (» = 1) (metavari-
ables m, 7, ...). € is the set of letters for individual constants (metavari-
ables: B, By, ...). V is the set of letters for individual variables (metavari-
ables: a, ay, ...). (v, 7, ... are metavariables for members of ¢ U V).

Let £ be obtained from &£, by extending ¥, P, € with respectively 9%,
PrE €% Fori=1,2,.,PPE FXiffPE S, e PEiffrecPr, Bie
% iff B € €.

Let £% be obtained from &, by replacing &, P7, 6 by respectively %,
PprE QX

Where t € ¥ U PTU €, tis called a NLT and we define X(r) = {ri € %
U P U L%}, 1 € %(r) is called an indexed NLT. Let the normal set of
well-formed CL-formulas (henceforth wffs) in the language £, W', be de-
fined as usual and let ‘W% be defined in the language $%, and let ‘W be
defined in £, in the same way. In what follows, the language of CL will
be £«. The syntax and the semantics of CL are as usual.

Where I' C W, let £°(I) be such that A € Z°() iff

(i) ACwWZ,

(i) each element of ¥% U P U 6 occurs at most once in 4, and

(iii) deleting the superscripts from the elements of $% U P& U ¥ that
occur in A, results in I".6

6The simplest convention for a set of premises in an actual proof, is to replace the i-th
occurrence of a NLT ¢ in I" by ¢ If, for instance, p has seven occurrences in I', the inter-
preted set of premises A € £°(I") will contain pl,..., p7, in that order.
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Our lower limit logic will be CL applied to A € ¥°(I), for some I'. As
usual, all CL-theorems are derivable from the empty set, and hence also
from any A € Z°(I'). Obviously, Cncy, (4) contains formulas in which
some # € %(#) occurs more than once.” For instance: A ¢y, i\ ~¢ for all ¢
€ Y%, Remark that Cncr(4) also contains formulas in which NLT that are
not indexed, occur. For instance: A Fopa=a.

In what follows ¥(A) will be the set of all formulas B € W« that at most
differ from A € W in that some or all NLT occurring in A are indexed in B.
Hence for every B € %(A), A is the result of omitting all indices occurring
in B. Remark that A € ¥(A).

I’ requires an ambiguous interpretation iff I"is inconsistent whereas no A
€ X°(I) is.3 Let us take a simple example. Let I'= {p&Pa, a = b,
~(p&Pb)}, and let A € X°(I) = {p!&Plal, a? = bl, ~(p2& P2b2)}. Clearly
I'is inconsistent, whereas A is not. Remark that, for instance, ~(p = pl) v
(p = pl)is a CL-theorem. In view of this theorem we can replace a wff
A(p!) by A(p) v ~(p = p!). Hence, we can derive (in view of (A&~A) v/
B/B):

AtcL~p=pHhv~p=p?

In an analogous way we can derive:
A tep ~(¥x)(Px = Plx) v ~(Vx)(Px = P2x) v ~@a=al) v ~(a=a?) v
~(b=b") v ~(b=12).
Obviously, at least one disjunct of each formula is true, and hence some
NLT behave ambiguously with respect to the premises.

3. ACL2

The plot for my ambiguity-adaptive logic is as follows. The upper limit
logic is CL, combined with the normal interpretation I" of the premises.
The lower limit logic is again CL, but this time combined with a maximally
ambiguous interpretation 4 € &°(I') of the premises. The ambiguity-adap-
tive logic ACL2 supposes that no abnormalities (ambiguities) are true, un-
less and until proven otherwhise. If I"is consistent, I' ¢y A iff A Facr0 B,

Note that this should be considered as a result of a technical operation: there is no need to
assume that the natural sentence of which p is the formalisation actually has 7 different
meanings. When one accepts that some occurrences of some NLT might have different
meanings, the most general approach exists in ‘suspecting’ all occurrences of all NLT.

Tcn x2(I'} stands for the consequence set of I'in the logic XL.

8"is inconsistent iff A, ~A € Cngy (I for some wif A, as usual.
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for every B € ¥(A), and hence also I' k¢ Aiff A Fpcpo A If Tis inconsis-
tent, Cngcr2(4) constitutes an interpretation of the premises that is as nor-
mal (i.e. unambiguous) as possible.

For examples of ACL2-proofs, I refer to Sections 4 and 5.

3.1. DAM-formulas

The set of ambiguities o« is the smallest set that fulfils these conditions (for
alli=1,2,.):

(i) ForeveryPEY. ~(P=P)eE A. _

(i) For every m € P": ~(Va))...(Va,)(7ay...qr = maj..a,) € A,
where aj,...a, are the first r members of V.

(iii) Forevery B € 6: ~(B=p)) € A.

Let 7Pi be ~(P = Pi), let 27 be ~(Vay)...(Va,)(ma)...ap = may..q),
and let 73 be ~(8 = BY). It is clear that every 7 € $% U P €% corres-
ponds to exactly one 2! € s and vice versa. The following lemma expres-
ses that no ambiguity entails another —which is exactly what we expect:
ambiguities are generated by the double meaning of NLT and not by the
formal mechanism of the logic.

Lemma 11 % € 4, 3 C s and % & 3, then 3 b 1, 7.

Proof. Suppose 7 € s, 3 C sd and % & 3. It is obvious that there are
models that verify 3 but falsify ?#. Consider the assignment v such that for
all ?s/ € 3, v(s) # V(&/), and V(r) = V(£); then obviously vi(?s/) = 1 for all
78/ € 3 whereas vpy(?) = 0. 0.

Where 7y, ..., %t, € o, DAM(1y, ..., t,) is called a DAM-formula and
refers to a disjunction of ambiguities. The NLT ¢y, ..., t,, are called the fac-
tors of DAM(#y, ..., #,). In view of the commutativity of the disjunction, a
permutation of DAM(t, ..., #,) results in n! equivalent disjunctions. There-
fore we will consider sets of factors, and use the notation DAM({r, ..., t,,}.

Definition: A DAM-formula B is a DAM-consequence of A € ¥°(I) iff A
FcL B.

il

An example: if A Fcp p? and A by p7, then A bop ~(p = p2) v ~(p
p7). In this case DAM{p2,p7}, (which is the same as 7p2\/ %7 and ~(p
p?) v ~(p = p") ) is a DAM-consequence of A.
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Lemma 2 Where %1, ..., %, € s and 3 C &, 3 bz DAM {1y, ..., t,} iff
some 2 € (1 <i=n). '

The lemma follows immediately from Lemma 1.

Definition: A is ambiguous, iff there are NLT ¢y, ..., t, (n = 1), such that 3
Fer i, ..ot

3.2. Basic theorems

In this section, I introduce two theorems in which an important relation be-
tween the lower limit logic and the upper limit logic is expressed. Let A*
be the result of omitting the indices from all NLT in A; let £2* = {A* |A €
(2}. Remark that B € ¥/(A) iff A = B*, and that if A € ¥°(I) then I'= {A* |
A € A}. Let NLT(I) be the set of NLT that occur in the members of I

To avoid further notational complications, I shall use ~?¢ to express that ¢
behaves normally. For example, ~?p! is equivalent to p = p!. Where ¢ is
not indexed, ~?t is a CL-theorem.

Lemma 3 Where {2 is a finite set of indexed NLT, I'U {~ |t € 2} b1 A
iff I’ FCLA \/DAM(.Q)

Proof:. From the Deduction Theorem, the theoremhood of (A D B) = (~A v/
B), and more standard stuff. (J.

Lemma 4 1f B € ¥(A), then A +¢p By DAM(NLT{B}) and B bcr A v
DAM(NLT{B})).

Proof: Suppose B € ¥(A). Obviously, {~? | t € NLT{B}} kc1 A = B.
Whence the consequent follows by Lemma 3. [J.

Theorem 1 I'tcp A iff for all A € ¥°(I') and for all B € ¥(A), there are in-
dexed NLT ¢y, ..., tp such that A k¢ B\ DAM{ty, ..., t,,}.

Proof: (First direction) Suppose that I' ¢ A, A € Z°(I) and B € F(A).
Consider a CL-proof of A from I'. Let I'" C I contain the premises of the
proof, and let A’ ={D € A |D* €TI}. Obviously 4’ u {~%]|t €
NLT(A")} b, D* for all D* € I"’. So, A U {~7t |t € NLT(A")} +¢r A.
Hence, by Lemma 3, A ¢z A\ DAM(NLT(A")).

As B € ¥(A), it follows from Lemma 4 that A \y DAM(NLT(A")) tcL B v
DAM(NLT(A’) u NLT{B}). Hence, there are indexed NLT t, ..., Iy such
that A bcr B DAM{1y, ..., t,}.
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(Second direction) Suppose that, for all A € ¥°(I') and for all B € Z(A),
there are indexed NLT 1y, ..., t, such that A ¢z B \s DAM({1y, ..., t,}. Con-
sider, for any such A and B, a CL-proof of B\, DAM{1y, ..., t,,} from A. Re-
placing any formula D in the proof by D*, we obtain a proof of B* \/
DAM(1y, ..., 1, }* from A*. As B* = A, DAM({1,, ..., t,}* is inconsistent, and
ACT, I'repA.O

Theorem 1 suggests that we derive B from A provided all of ¢y, ..., 1,
‘behave unambiguously’ with respect to A. A specific interpretation of this
suggestion leads to an inconsistency-adaptive logic, as we shall see.

Corollary 1 I't ¢y A iff for all A € °(I), there are NLT ¢y, ..., t, such that
Arc AvDAM({1y, .., 1.}

The corollary follows immediately from Theorem 1 and A € %(A).
Theorem 2 For every A € X°(I), A is ambiguous iff I"is inconsistent.

Proof: If I'is inconsistent, then for some A, I' t 7, A&~A. In view of Corol-
lary 1 there are, for all A € Z°(I'), NLT ty, ..., t, such that A ¢y (A&~A) \/
DAM({ty, ..., t,}. As A&~A is false, A k¢ DAM{1y, ..., t,,}. By definition, A
is ambiguous.

For the other direction, let A € Z°(I") be ambiguous. Hence, there are
NLT 1, ..., ty such that A bc;, DAM({1q, ..., t,}. Obviously, A Fcp 71 v
DAM{1,, ..., t;}. In view of Theorem 1, I'k ¢y 711*. As ~2t;* is a CL-theo-
rem, I'Fcp ~7t1, and hence I'is inconsistent. (]

3.3. Semantics of ACL2

Definition: Where M is a CL-model, ACM) = {t | 7t € o and vy(?1) = 1}.
Definition: A CL-model M is maximally normal with respect to A € X°(I")
iff M is a CL-model of A, and there is no CL-model M’ of A such that
AC(M’ C AC(M).

Definition: M is an ACL2-model of A iff M is maximally normal with
respect to 4.

Definition: A= gcp2 Biff B is true in all ACL2-models of A.

All ACL2-models of A are CL-models of A. Hence, A = 4c12 B if A
= cLB.
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If A is not ambiguous, then AC(M) = & and, for any set 3 of NLT,
VM(DAM(2))=0, for all ACL2-models of A. So, if Iis consistent, '= ¢y A
iff A= gcr2 Bforall A € °(I) and for all B € %(A).

If 4 is ambiguous, I" has no CL-models, but some CL-models of A will
(except for border cases) verify more ambiguities than is required to make
A true, that is, some CL-models of A will not be maximally normal with
respect to A; these are not ACL2-models of A, As the ACL2-models of A
are, in general, a subset of its CL-models, A has, in general, more ACL2-
semantic-consequences than CL-semantic-consequences.

The definitions show that ACL2 interprets a set of premises as normal as
possible: no more 7t € s are true than is required by the premises.

3.4. Prooftheory

The format of ACL2-proofs is obtained from the format of CL-proofs, by
adding a fifth element to each line. Each line of a proof consists of five
elements:

(i) aline number,
(ii) the formula derived,
(iii) the line numbers of the wffs from which (ii) is derived,
(iv) the rule of inference that justifies the derivation, and
(v) the NLT on the non-ambiguous behaviour of which we rely in order
for (ii) to be derivable by (iv) from the formulas of the lines enumer-
ated in (iii).

Every formula that is CL-derivable from A € X°(D), is also ACL2-deriv-
able from A4; the fifth element of these lines remains empty. Whenever a
formula of the form B \y DAM{¢, ..., t,} is CL-derived from A, we can
derive a new line in an ACL2-proof with B as second element and {1, ...,
tp} as fifth element. When such line is used in the derivation of new lines,
all NLT occurring in its fifth element have to occur in the fifth element of
the new line.

Whenever a NLT t behaves ambiguously at a stage of a proof (see defini-
tion below) all lines with 7 in their fifth element have to be marked. In ac-
tual proofs a line is marked by writing the symbol *“1” before the line
number. A marked line does not belong to the proof. As a result, formulas
derived at some stage of a proof, will not be finally derivable, because the
line in which they occur will be marked at a later stage. After each step, the
marks are updated, (removed or added). Of course each set of premises
must (and will) have a unique set of final ACL2-consequences.
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Definition: A occurs unconditionally at some line of a proof iff the fifth
element of that line is empty.

Definition: The NLT t behaves ambiguously at a stage of a proof iff 7t
occurs unconditionally in the proof at that stage.

Suppose that B is derived on one or more lines the fifth element of which is
not empty. B is considered as derived at a stage of a proof and the lines
become a full part of the proof if B comes out true under a maximally
normal ‘interpretation’ of the minimal DAM-formulas (at that stage).
“Interpretation” should refer to formal properties of the formulas that occur
in the proof.

The role of DAM-formulas is crucial in ACL2-proofs. Clearly, when a
DAM-formula occurs unconditionally at some line of a proof, at least one
of the disjuncts of that DAM-formula is true. Some DAM-formulas occur-
ring unconditionally in a proof may be disregarded.

Where ¥ and O are sets of NLT, let us stipulate that

Definition: DAM(Z2) is a minimal DAM-formula at a stage of a proof iff it
occurs unconditionnally in the proof at that stage and there is no © C 3 for
which DAM(6) occurs unconditionally in the proof at that stage.

Let @; be the set of all sets that contain one factor out of each minimal
DAM-formula at stage s of the proof. @, may contain redundant elements:
the same factor may occur in different minimal DAM-formulas. If DAM({¢,,
t2} and DAM{1}, 13} are minimal DAM-formulas, then @, = {{t,}, {11.t2},
{t1,13}, {11,213} }. Of these {11,12} and {z1,13} are redundant. Both DAM{¢;,
2} and DAM{t},t3} are true if ?¢; is true; there is no need that also ?t; and
713 be true. So, let @, be obtained from @, by eliminating elements from it
that are proper supersets of other elements. Hence, the members of @ are
sets of formulas, such that, if all members of such a set are true, then all
DAM-formulas that occur unconditionally in the proof at stage s are true.

Where @ is as defined above and A is the second element of line j, line j
fulfils the integrity criterion at stage s iff (i) the intersection of some mem-
ber of @; and of the fifth element of line j is empty, and (ii) for each ¢ €
@, there is a line k such that the intersection of ¢ and of the fifth element of
line k is empty and A is the second element of line k.2

9For an example, see Section 5.
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These are the ACL2-rules:

SR (structural rules) If B € A (A € ¥°(I), then write a new line
with B as second element, a dash as third element, Premise as
fourth element and with an empty fifth element.

RU  (unconditional rules) All inference rules valid in CL, are also valid
in ACL2. The fifth element of the new line is the union of the fifth
elements of the lines mentioned in its third element.

RC (conditional rule) If DAM{C;,...,.Cp,} \v B occurs as second ele-
ment of a line of a proof, then add a new line with B as second ele-
ment, provided that, at that stage, no factor of DAM{Cj,...,C,,}
behaves ambiguously. The fifth element of the new line is the
union of {Cy,...,.Cy,} and of the fifth element of the line in which
DAM({C;,...,C;z} \/ B occurs.

RQ A line is marked (with 1) at a stage of a proof iff it does not fulfil
the integrity criterion.

Definition: B is finally derived at some line in an ACL2-proof iff it is the
second element of that line and any (possibly infinite) extension of the
proof can be further extended in such way that the line is unmarked.

Definition: A Fycra B (B is ACL2-finally derivable from A) iff B is finally
derived at some line of an ACL2-proof from A.

Lemma 5 If in an ACL2-proof from A, B occurs as the second element and

{1, .-, 1n} (0 = n) occurs as the fifth element of a line j, then A Fcr B v
DAM({t, ..., t,).

Proof (by induction). The lemma obviously holds if j is the first line in the
proof, for then n = 0 and either B € A or bz B.

Case 1: the third element of line j is empty and the fourth is ‘Premise’:
then n =0, B € A, and hence 4 }¢; B.

Case 2: B is derived at line j by an application of RU. Let the third ele-
ment of line j be iy,...,in, and the fifth element {rq, ..., 1,,}. Let Cy be the
second element and O the fifth element of line i;. By the induction hy-
pothesis, 4 ¢z C \v DAM(6p) for all k (1 < k < m). Hence, A +¢y
(C1&...&Cyy) v DAM(O1 U...U B). As Cy,...,Cpy Fcr B and {tis s Gy} =
61 U..U 6, Atc B\ DAM({ty, ..., tn}).

Case 3: B is derived at line j by an application of RC. Then the line men-
tioned in the third element of j has B \y DAM(s,....s,,} as second element
and {uy,....ux} as fifth element, such that {sq, ...,5,, Ul ey} = {11, ..., ty}.
By the induction hypothesis A F¢y B\ DAM{1, ..., 1,}. OJ
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In view of this lemma, the following inference rule is derivable in ACL2.

DAM From a line j with B as second, and J as fifth element, derive a
new line with an empty fifth element, B \ DAM(Z) as second
and j as third element.

Definition: A minimal DAM-consequence of A is a DAM-consequence of A
such that no result of dropping a factor from it is a DAM-consequence of 4.

Definition: @, is the set of all sets that contain exactly one factor of each
minimal DAM-consequence of A and that are not proper supersets of such
a set.

Theorem 3 A F4cp2 B iff there are one or more (possibly empty) finite sets
31, 35,... of NLT, such that 4 ¢z B\ DAM(3), A b1 B \/ DAM(3»), ..
and for any @ € @, one of the 3; is such that 3; N ¢ = .10

Theorem 4 If A Facr2 B, then it is possible to extend any proof from 4 into
a proof in which B is finally derived.!1

3.5. Soundness and completeness

Lemma 6 For any ¢ € @4, A has an ACL2-model M(P such that AC(M,) =
®.

Proof. (1 rely on the soundness and completeness of CL without referring to
it.) Suppose @ € P4. Let A, = {7 |t € ¢). As A, C A, ¢ C AC(M) for
all CL-models of &, . Consider all such models M, for which AC(M,, )} =
. All these M, are ACL2-models of &, (if this was not the case there
would be another model of s, in which some member of &, is not true)
and vice versa (in view of Lemma 2). Obviously, forall 7t € (o - A, ), ¢
& AC(M,,) and vy ('71) 0 (in view of the definition of an ACL2-model).
Suppose there is no CL-model of A that is an ACL2-model of s . Then
for all CL-models of A, vp(?) =0 for some t € @ or VM(‘?d) =1 for some d
€ (54 - o, ). Consider an arbitrary CL-model MO of A, in which vpo(?1) =
0 for some C € ¢. In all CL-models of 4, VM(DAM(E)) = 1 for all minimal
DAM-consequences DAM(Z) of A. Hence for all minimal DAM-conse-
quences DAM(Z;) of A, such that t+ € 3, there is a d; € 3; such that

10The proof of Theorem 3 is completely analogous to the proof of Theorem 7.1 in [5].

liThe proof of Theorem 4 is completely analogous to the proof of Theorem 7.2 in [5].
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Vmo(?d) = 1. Suppose ¢ is obtained from ¢ by replacing ¢ by d; for every
DAM(Z;) from which f was selected by ¢. Obviously t & ¢0. If all 4}, d,...
€ ¢%n g, then ¢ C ¢, but then @ & P4, which contradicts the main sup-
position. Hence, for every CL-model of A, there is a d; & ¢ such that
VM(?Di) = 1 (*).

Consider the possibly infinite set {d},d,...} of all these d;, and suppose
there is no finite 34 C {d},dy,...} such that DAM(3) is a D AM-conse-
quence of A. Then for every such 34, there is a CL-model of A such that
VM(DAM(Zy)) = 0. Consider the list of finite sets {d}}, {d1,d2},...{d],...,
dn}, {d1,....dn41},.... For every set 3y in this list, there is a CL-model of A
such that viy(DAM(Z4,) = 0. This means that there is at least one CL-model
of A for which there is no d; such that vp(?d;) = 1, which contradicts (*).
Hence there is a 24 such that DAM(3,4) is a DAM-consequence of A. If this
is not a minimal DAM-consequence of A, then there is a d; such that
DAM(Z, - {d;}) is a DAM-consequence of A. As 3 is finite, there must be
3 C 34 such that DAM(Z) is a minimal DAM-consequence of A. As 3
contains nothing but d;, there is a d; € 3 n ¢ in view of the definition of
@4, which is impossible. Hence, there is a CL-model of A that is an ACL2-
model of &, .

Suppose now that none of these models is an ACL2-model of A. Then
there is a CL-model M’ of A such that AC(M’) C AC(M,, ) and hence
AC(M’) C ¢. But then there is ar € ¢ such that viy+(?¢) = 0. Let By, ....B,,
be the minimal DAM-consequences of A from which ¢ selects the factor ¢.
As v (1) = 0, there is another factor d; of every B; such that vy (?d;) = 1.
As AC(M) C AC(M,, ), also VM,(7d}) = 1, and hence d; € ¢. Consider ¢’
that only differs from ¢ in the fact that it picked the factors d; from every
B; instead of ¢. As all these d; € p and t & ¢, ¢’ C @ and hence ¢ & Dy,
which contradicts the main supposition. []

Definition: @4 = {AC(M) | M is an ACL2-model of 4}.
Lemma 7 @4 = Wy

Proof. As for every ¢ € @4, there is an ACL2-model of A such that ¢ =
AC(M) (Lemma 6), @4 C V4.

For the other direction, let AC(M) € ¥ 4. Hence M is an ACL2-model of
A. Any minimal DAM-consequence of A has a factor C such that C €
AC(M) and vi(?C) = 1. Hence there is a ¢ € P4 such that ¢ C AC(M). If
AC(M) # ¢, then, again by Lemma 6, there is an ACL2-model M’ of A
such that AC(M’) = ¢. But then AC(M’) C AC(M), which is impossible. (]
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Theorem 5 AbpcraBiff AE Acpa B.

The proof follows immediately from Lemma 7, Theorem 3 and the sound-
ness and completeness of CL.

4. Interpretation of Cnpcy2 (A € Z°(IM)

I start this section with some CL-theorems and ACL2-derivation rules. (A,
3)” refers to a line of a proof in which A is the second element and X is the
fifth element. (All proofs are easy and hence left to reader.) For every A €
W+, forevery P € &, for every m € P7, for every B € %, forevery 3,0 C
FEYPrE U, forevery CESEUPHE j=12,..:

FeL~(P = P v (P = PY) ,

FeL ~(Vay)... Va)(may...ap = 7 ay..a,) v (Vay)... Ya) (7 ...a, =

Tal.ap)
FeL~(B=B) v (B=F)

Replacement of Non-logical Terms (RNLT).

ool TP LYy 20, T
iy 2y #oiCiy ZU [CPY)

Example of MP in ACL2:

i plDgd - - )

i+l. p4 - - (o)

i+2. pDg3 (i) RNLT Su{p’}

i+3. p (i+1) RNLT 6u {p4)

i+4. g3 (i+2,i+3)  MP Su6Ou{ptp’}

Applications of MP can be sped up by skipping the applications of RNLT.
In the example above, one can derive line (i+4) at once from line (i) by an
application of the rule Conditional Modus Ponens (CMP).

The above mentioned theorems and derivations rules, allow us to rein-
troduce the normal interpretation of the NLT, provided the indexed NLT
behave unambiguously. If no DAM-formulas are derivable from the premi-
ses, no NLT is ambiguous, and hence all normal interpretations can be re-
introduced. Conditionally derived contradictions lead to the derivation of
DAM-consequences:

Introduction of DAM-consequences (IDAM).
(A, 3), (~A, 6)/ DAM(Z U 6)
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Example

1. gl - Prem %)

i ~(g*\/ p) . Prem &

3. ¢ (1) RNLT {q!}
4. ~(qVvp) (2) RNLT {q%.p!)
5. ~q @ ND {¢%.p!)
6.  ~p (4) ND {g%.p'}
7. DAM{gl,g2p!} (3,5 IDAM O

8. ~q? 2) ND %)

9. ~pl Q@) ND %

10. ~q v g2 (8) RNLT %)

1. ~py2p! ) RNLT O

12. ~p (11) RC {p!}
13.  DAM{ql,¢?) (3,10) IDAM O

At stage (7), the formula in line (7) is a minimal DAM-formula, and hence

lines (3)—(6) become marked. (As it is the only minimal DAM-formula at

that stage, @7 = {{q!},{¢?),{p}}. Hence g!,42 and p! behave ambiguous-
ly at that stage.) At stage (13), the formula in line (13) becomes the only

minimal DAM-formula, and hence only ¢! and g2 behave ambiguously at
that stage. Hence lines (3)—(6) remain marked, and line (11) is not marked.

Therefore q,~q & C nacra{q'.~(q¢? v p!)}, whereas g!,~¢g2,~pl,~p €
Cnacra2{q',~(g? \v p')}. In other words: ACL2 localizes an ambiguity in
that the first and the second occurrence of g in {g,~(g \/ p)} cannot be con-

sistently identified.

Now I come to the interpretation of Cngcya(4). Obviously, the purpose
of ACL2 is not to interpret ambiguities, but to localize them. We can con-
sider both I"'and A € Z°(I") as formalisations of the same set of sentences
in a natural language.

In view of Theorem 1, we have I" ¢y A iff there is a finite 3 such that A
Fcr B v DAM(Z), for every A € ¥°(I) and for every B € ¥(A). If I'is
consistent, it is easily seen that, for all non-empty 3, DAM(X) & Cncy (4).
Any ACL2-model M of A is minimally abnormal and hence, for all ACL2-
models M of 4, viy(DAM(Z)) = 0. Hence, I' F¢cp A iff A Facz2 B for all B
€ Z(A). As A € Z(A), we have the following corollary:

Corollary 2 If I' is consistent, then for every 4 € ¥°(I), I' b A iff A
FacL2 A.
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Let Cnjc;,(A) be the set of all ACL2-consequences of A € &°(I') in which
no mdlces occur. If I' is consistent, then, in view of Corollary 2, Cncp(I) =
CnACLz(A) In other words, when we apply ACL2 to a consistent set of
premises, we get exactly the same theory as when we apply CL to it.

If I' is inconsistent, applying CL to it, leads to triviality. If we take am-
biguities to be the cause of the inconsistency of I, then the best solution is
to formalize the premises in the language £#, thus becoming a set of
premises A € X°(I). As ACL2 interprets A as unambiguously as possible,
Cncr(4) C Cnacra(4), except in border cases.!2

If an indexed NLT # is not ambiguous with respect to A, then it does not
occur in a minimal DAM-consequence of A, and the condition on which it
can be replaced by ¢ by an application of the replacement rule RNLT,
cannot be overruled. Therefore we have the following corollary:

Corollary 3 If ¢ does not occur in a minimal DAM-consequence of A €
Z°(I), then A Facpa Biff A Focpn Bt (i=1,2,...).

If I' is inconsistent, then A is ambiguous, and some indexed NLT cannot be
replaced by an non-indexed NLT. These are the NLT that need an ambigu-
ous interpretation (ACL2 localizes these NLT; the interpretation itself is a
non-logical act). Hence, if we apply ACL2 to an inconsistent set of premi-
ses, ACL2 suggest which occurrences of which NLT behave ambiguously.

5. Importance of ACL2
5.1.  Examples and applications

When we hear a formally correct argument that has a weird conclusion, we
immediately assume that some referring words have an ambiguous mean-
ing. For instance in the argument “Girls are roses, roses are plants, hence
girls are plants”, it is clear that the two occurrences of “roses” do not mean
the same (see proof 1). Another example is the following riddle. “John and
his father are caught in a car-crash, John’s father is dead. John is brought to
the hospital. The surgeon cries out: “Oh, no, I cannot operate my son!”
How is this possible?”” Often heard answers are: “The first one was John’s
stepfather.” and “The surgeon has a son that looks like John.” People who

12There is only one border case, namely 4 = s{. Remark that for every ?7C € s such that
C does not occurin 4, 4 ¥ ¢ ~7C, whereas 4 k4 ~7C, (¢f Lemmas 1 and 2).
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give those answers assume there is something ambiguous about one of the
referring terms. An ACL2-proof from the maximally abnormal interpreta-
tion of the premises does exactly the same (see proof 2).

Proof 1.

1. (Vx)(G'x DRx) - Prem %]

2. (Vx)(R2x D Plxy)  -. Prem %)

3, Gla DRla 4)) Ul %)

4, R2a D Pla 4)) Ul %)

S, Ga D Ra 3) RNLT {G!,R}

6. Ra D Pa 4) RNLT {R2,P1)

7. Ga D Pa (5,6) Tra {R1,R2,G1,P1}
8. (Vx)(Gx D Px) (7 UG {R1,R2,GL,P)

(Vx)(Gx D Px) is finally derived at line (8) and line (8) will not be marked
in any extension of the proof. (There is no DAM-formula derivable from
these premises.) An opponent of the claim “All girls are plants”, can inves-
tigate the meaning of the NLT occurring in the fifth element of the line in
which the formula is derived. It seems obvious that NLT that only occur
once in the premises cannot have a double meaning. Hence the opponent of
the claim *“All girls are plants” can conclude that “roses” has been used am-
biguously.

Proof 2.

1. ~(x)Flx! - Prem -

2. (Fx)(S1x&Z1j2x) Prem -

3. (Vx)(Vy)((Szx&Zzyx) Dszy) - Prem!3 -

t4. ~(Ix)Fxj (1) RNLT (Fljl)

15. (I)(Sx&Zjx) ) RNLT {S!,Z!,2}

16. (VX)(Vy)(Sx&Zyx) D Fxy)  (3) RNLT {$2,72,F?}

7. (Sa&Zja) D Faj 6 Ul (S2Z2F2)

18. (Sa&Zja) D (An)Fxj 7 EG  {S2.22.F?)

19. (3x)Fxj (58) MPE {S1,71,252,72 F2)

10. DAM{j! j2,F1,F2 515271 72} (49) IDAM

Lines (4)—(9) are marked and do no longer belong to the proof. Line (10) is
not marked because it is CL-derivable. The minimal DAM-consequence in

13This third premise is a hidden premise we have to assume if the riddle has to be a
riddle. By the way, *j” stands for “John”, “F” stands for “is the father of”’, *‘S” stands for “is
a surgeon” and “Z” stands for “is the son of”’.
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line (10) reveals that there is something ambiguous about j”, “F”, “S” or
GGZ’!. . "

Hence, if an ACL2-consequence is not wanted, one can question the
meaning of the NLT occurring in the fifth element(s) of the line(s) in which
the formula is finally derived. If a set of premises is ambiguous, the mini-
mal DAM-consequences of this set will show the NLT among which the
ambiguities have to be found. I think ACL2 is a good formal parallel for
this part of real life thinking processes. Hearing a strange conclusion, or
being confronted with an internally inconsistent ‘story’, one is intended to
question some occurring referring terms. ACL2 is a logic that reveals the
possible ambiguities. Moreover, it reveals which occurrences of a referring
term are (possibly) ambiguous. Finally: if I'is inconsistent and ACL2 is ap-
plied to A € ¥°(I),then ACL2 resolves the inconsistencies in a construc-
tive way: ACL2 suggests to specify the meaning of some terms (which are
revealed by ACL2), it is to replace some NLT by two (or more) different
NLT, instead of to reject (one half of) each inconsistency.

These properties of ACL2 open a broad perspective on applications.
5.2, Philosophical importance

The adaptive logics developed by Diderik Batens allow for meaning
change concerning logical symbols. ACL2 allows for meaning change con-
cerning non-logical symbols. Therefore it is simply not true that natural
languages and formal languages are worlds apart. We now have formal sys-
tems able to capture the flexibility of reasoning in natural languages.

The mentioned formal logics are normative with respect to the art of rea-
soning, but in a tolerant way. Where classical logic intends to be an abso-
lute standard, and condemns all reasoning that sins against ‘fixed meaning’,
‘no contradiction’, ‘completeness’ and other ideals, adaptive logics accept
the fact that theories and other sets of premises often are inaccurate. They
do not reject a theory that contains inaccuracies, they locate and immunize
inaccurracies and remain normative for the rest of the theory. Where no
inaccuracies show up, adaptive logics are as good a normative standard as
their upper limit logic. The fact that adaptive logics are tolerant and
normative at the same time, makes them very useful. Non-adaptive logics
that try to capture the flexibility that is characteristic for human reasoning,
are bound to lose their normative role. Non-adaptive logics that intend to
be normative with respect to reasoning, are bound to reject too much
inaccurate but interesting knowledge, either by being too poor or by
trivializing the theory.
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To the best of my knowledge, the logic ACL2 is the first formal system,
with proof theory, that is tolerant with respect to meaning change in non-
logical elements of languages and is still normative with respect to reason-
ing.

In [8] Joel Smith mentions that, although internal consistency is wanted
in our theories, inconsistencies occur frequently in prototheories. “When
each member of a group of inconsistent statements enjoys some kind of em-
pirical confirmation, simple excision of one or more of these statements to
restore consistency might not be the most useful strategy for coming to a
consistent and empirically adequate resolution.”!4 It seems to me that
ACL2 is a good instrument to move from an inconsistent prototheory to a
consistent theory. Indeed, for every I, every A € ¥°(I) is consistent.

When we start from the hypothesis that inconsistencies in a prototheory
are not due to the logic we use, but to the ambiguity of the natural lan-
guage, we can formalize the prototheory in the language £%. ACL2 not
only safeguards the theory from triviality, but detects those NLT ¢ for
which the substitution B(t'/t) (confer Corollary 3) is not possible. The
choice of the minimal abnormality strategy keeps the set of possible ambi-
guities as small as possible, which means that a theory resulting from ap-
plying ACL2 to an (ambiguous or inconsistent) set of statements, is as in-
formative as possible. 13

When we accept that ambiguities may occur in the information we hap-
pen to have, when we want classical logic to be the (tolerant) standard of
reasoning, when we want to interpret as unambiguously as possible the
non-logical terms occurring in our statements about the world, and when
we want to know which occurrences of which non-logical terms we have to
interpret ambiguously, ACL2 is the proper logic to use.

Center for Logic and Philosophy of Science
University of Ghent
email: Guido.Vanackere @rug.ac.be

14gee (8], p. 429.

151, [7] Joke Meheus explains how Clausius came to a consistent theory on heat, starting
from mutually inconsistent theories. The case of Clausius can be reconstructed, in a very
natural way, by means of ACL2.
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