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A NEW PARACONSISTENT SET THEORY: ML,

Rogque da C. CAIERO" and Edelcio G. de SOUZAT

Abstract

In the present paper we deal with the philosophical aspects of paracon-
sistent set theories. In order to illustrate our points more concretely, we
will construct a new paraconsistent set theory (called ML,) based both

on Quine’s well-known ML system and on the paraconsistent calculus
C,.

1. Introduction

Generally speaking, a Paraconsistent logic is a logic which can be used as
an underlying logic of inconsistent but non-trivial theories (cf. [4] and [5]).
Notwithstanding its many important forerunners, we can say that its full-
fledged study started just thirty-five odd years ago with the pioneering
work of Newton C.A. da Costa, who developed not only a propositional
paraconsistent logic but also a whole family of first (and higher)-order
paraconsistent predicate calculi. As is the case with other non-classical
logics, the importance of propositional paraconsistent logics for the eluci-
dation of some conceptual problems cannot be underestimated, but if we
want to construct more complex and elaborate theories (and even develop
non-classical mathematics), we must necessarily step beyond this frame-
work and go at least into first-order paraconsistent predicate calculus: only
after this point we are in position to build a paraconsistent set theory.

Thus, in the present article we study a paraconsistent set theory (denoted
ML by us) which is based on Quine’s ML system of set theory and on the
notion of paraconsistent structures (these can be seen as the paraconsistent
analogues Bourbaki’s concept of mathematical structures). Nevertheless, to
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begin with, we should stress that our work was motivated by the desire to
provide an answer to the much repeated question concerning the usefulness
(or not) of a paraconsistent logic. Thus, our ML-paraconsistent system may
be seen as a possible answer to this question, for, besides its purely
theoretical interest as a new mathematical theory, it is also possible to point
out philosophical applications of our construction — in fact, we argue that
it can be used to elucidate some epistemological questions related to both
mathematics and the empirical sciences.

In the beginning of this article (section 2), we discuss some generic as-
pects of paraconsistent logics. The purpose of section 3 is to present the
first-order paraconsistent calculus ¢, and show that there are important
connections between € and the first-order classical calculus. Thus, we
point out some syntactic and semantic features of paraconsistent logics and
introduce some basic concepts for the ensuing expounding. In sections 4
and 5, we shall present Quine’s ML set theory and elaborate a paraconsis-
tent version of ML. Also, we shall investigate how ML, can be employed as
a paraconsistent basis for inconsistent but non-trivial theories. Finally, sec-
tion 6 presents the notion of Russell’s set and some of its properties are
accordingly studied.

In the course of the text some applications of the paraconsistent set theory
may be briefly discussed and presented as reasons for its usefulness. This
article has an expository nature and our treatment will be neither rigorous
nor detailed.

2. Set theory and paraconsistent logic

A question may arise at once: Why do we propose a new set theory? A
paraconsistent logic (together with an associated set theory) is not devel-
oped here for its own sake, but because we want to make some philosophi-
cal considerations on paraconsistent logics in general. In order to do so, we
need as example, a characteristically strong paraconsistent system. For our
purposes, ML-paraconsistent set theory means an opportunity to investigate
some issues about the meaning of inconsistent theories and their applica-
tions in scientific fields and philosophical themes. Furthermore, we take
this opportunity mainly to make some questions about the significance,
motivation, justification and usefulness of paraconsistent logics.

We feel that most questions and arguments posed against the use and
construction of non-classical logics are generally based on misconceptions
about the role played by such logics in relation to classical logic itself.
Anyway, if one such question is put made to use we should expect its
answer to depend on the context (historical, scientific, epistemological and
methodological) in which this inquiry appear. It means that the pragmatic
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character of the domain of knowledge in which the question is made may
be seen as crucial to our response.

Be as it may, before any serious appraisal of the significance of paracon-
sistent logics, two general facts about them should always be kept in mind:
first of all, there do exist paraconsistent logics which allow the construction
of set theories as strong as (from the purely mathematical point of view) the
classical ones like Zermelo-Fraenkel, von Neumann-Bernays-Gddel,
Quine’s NL, Quine’s ML and so on. Secondly, although these paraconsis-
tent set theories can be used to obtain formal mathematical systems which
are also paraconsistent (i.e. they admit contradictory propositions without
being trivial), this does not mean that reality itself is inconsistent or contra-
dictory. The problem of existence of real contradictions is, in our view,
neither a logical nor a mathematical one. In other words, the existence of
real contradiction can be established only, if ever, by the empirical scien-
ces. A related and important question bears on the nature of a paraconsis-
tent negation: is it really a negation? This question can be solved only after
some definition of negation is given to us. Since any monadic propositional
operator may be conceived as a negation, from this point of view it is not
philosophically tenable to maintain that the paraconsistent negation is not a
negation at all.

Since large portions of our paper deal with applied logic, we will also
have to give some basic notions of structures (a la Bourbaki), which are
thus employed to study and characterize some formal features of the
domains and methods of science. For example, we can use structures in a
domain of knowledge (of an empirical science or mathematics) in order to
model or describe some aspects of its relevant features. So, loosely speak-
ing, we can understand the phenomena which constitute a domain by means
of such structures (which have also some underlying logic associated with
them) which offer us conceptual systematization, rules of definition and
rules of inference. The choice of an adequate logic to model (or to describe)
a domain of science or methodology is not absolutely determined and
unconditionally applied. We observe that the expression to model should
not be understood as necessarily assuming the correspondence theory of
truth and an image of a theory as being accepted true forever.

It is well known that the main characteristic of paraconsistent logics is
that inconsistency and triviality cease to coincide. Therefore, we can say
that there are some inconsistent theories (i.e., theories in which a formula
and its negation are both theorems) which are not trivial (i.e., not all formu-
las are theorems). Thus, paraconsistent logics furnish us tools to take into
account inconsistencies and rationally explore them. It is possible that these
inconsistencies have interesting features, at least from a heuristic point of
view; as such their study can teach us something about the domain of
knowledge under perusal. Needless to say, this step can not be performed if
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we remain within the boundaries of classical logic. In the latter case, any
inconsistency found in a certain theory implies the rejection of some of the
premises that lead to this contradiction, for consistency is the holy shrine of
classical logic. The problem is that this and other ad hoc procedures,
besides entailing in general epistemological losses, are not always available
in practice.

Then, our position on the relationship between classical and paraconsis-
tent logics (as far as the latter’s application are concerned) can be pictured
as a twofold one: first, paraconsistent logics are complementary logics to
the classical one and secondly, they can be considered as heterodox logics
which are incompatible with classical logic. Indeed, as stated some para-
graphs above, the side to which our position lingers varies from case to
case and is dependent on a wide array of circumstances, from purely philo-
sophical consideration to strictly pragmatic ones — all of them linked to
the specific domain of knowledge in which we work at the moment. In
general, this distinction between complementarity and rivalry is not pre-
cisely drawn and a delicate and detailed analysis of this issue is often re-
quired.

We conclude this section by briefly mentioning some applications of a
paraconsistent logic which applies to some distinct fields. First of all, let us
recall that Cantor’s naive set theory is characterized mainly by two basic
postulates: extensionality and separation (i.e., every property determines a
set). Since we can derive Russell’s paradox in this set theory, there is
accordingly an inconsistency there. Thus, if it is added to classical first-
order logic (as the logic of set theoretical language) we obtain a trivial
theory. For this reason classical set theories are constructed by imposing
restrictions on the separation axiom — this move avoids the occurrence of
paradoxes and inconsistencies. However, in determined paraconsistent
logics, it is possible to construct set theories in which we define Russell’s
set without trivialization. They are devised to study (semantical) paradoxes
in set theory in order to offer alternative tools to handle contradictions at
face value instead of evading them. Similarly, we can apply such paracon-
sistent theories in order to analyze specific principles in first or higher order
predicate logic and set theory, aiming at a deeper understanding of several
logical concepts (such as negation).

Another example stems from the face that inconsistent beliefs and incom-
patible theories may be found in several branches of science. In order to
deal with this situation, we can propose a formal framework to model these
contradictory beliefs and theories; obviously, one way to think of such a
framework is to imagine it embedded in some adequate system of paracon-
sistent logic as has already been done by some of researchers working in
philosophy of sciences. Undoubtedly many other applications for paracon-
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sistent logics can and will be found by people with high interest in the
foundations of sciences.

3. The paraconsistent logic 6

We assume that the reader has some acquaintance with paraconsistent
logics and their aims. Thus the subject-matter is here only sketched and we
hope that the following expounding will be sufficient to give a general idea
of paraconsistent logics. About paraconsistent systems, one may consult,
for instance, [8].

3.1. The propositional calculus 6,

The primitive symbols of ‘€, are the following: (i) propositional variables;
(ii) connectives: — (implication), /\ (conjunction), \/ (disjunction) and —
(negation)’; and (iii) parenthesis. We note that the symbol of negation is
peculiar, as we shall see. The symbol L indicates the language underlying
€,. Moreover, we define formulas in a standard way. We use ¢, ¢, y, ... as
metalinguistic variables for formulas.

It is necessary to define the notion of well-behaved formula, that is de-
noted by ¢°.

Definition 3.1 ¢° is an abbreviation for — (¢ /\ — @).

In paraconsistent logics, we shall denote by the symbol —, and call it ne-
gation, a connective which is not the same as classical negation. We define
the strong negation —* which has the properties of the classical negation.
Definition 3.2 —*g is an abbreviation for — @ /\ ¢°.

Let ¢, i and y be formulas. We present briefly, in Hilbert-style, the propo-

sitional postulates (axiom schemes and primitive deduction rules) of the €,
as follows:

1]‘.“.quivalence, «, is defined as usual.
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The concepts of proof, deduction, theorem and others, for the calculus %,
are standard. The notions of theory, trivial and inconsistent theory will be
introduced in a further topic.

We point out three propositions that can be used to compare 6, with the
classical propositional calculus, here denoted by €,

Theorem 3.1 The following schemes and rules are not provable in 6 5
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Theorem 3.2 In €,, the following schemes are theorems:
I o\ %, —* e —*g)and ~*—*p o @;
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Theorem 3.3 In 6, the strong negation —* has all properties of classical
negation. B

For the proofs of theorems above one can see [4].
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3.2. The predicate calculus € |

The system 6 is a paraconsistent first-order predicate calculus with iden-
tity, that can be used as the underlying logic of inconsistent but non trivial
theories. The primitive symbols of 6] are the following:

1. Individual variables (a denumerably infinite family of variables);
Predicate symbols: for each n, 0 < n < w, a finite or denumerably
infinite family of predicate symbols of arity n;

3. Connectives: - (implication), /\ (conjunction), \/ (disjunction)

and — (negation) (equivalence is defined as usual);

The quantifiers ¥ (for all), and 3 (there exists);

Parenthesis;

A collection of individual constants, which may be empty;

The binary predicate of identity: =.

S O

The basic syntactic notions, such as term, formula, free occurrence of a
variable in a formula, sentence (formula without free variables) and others
are usual with adaptations (for instance, see [10]). The symbol L. indicates
the language underlying 6, . The postulates (axiom schemes, axioms, and
primitive deduction rules) of € can be classified into three groups:

(i)  The propositional postulates (which are the same postulates of the
propositional calculus %, );

(ii))  The postulates of quantification;

(iii) The identity postulates.

We assume the postulates of 6, and consider, in Hilbert-style, this col-
lection of the postulates of quantification and the postulates of identity. For
the postulates, x is a variable, ¢(x) is a formula, y is a formula which does
not contain x free, and ¢ is a term which is free for x in ¢(x).

Vi) Vxex) = o(n)

Yy ¢ - @)/ - Yxe(x)

Vi) Vx(e(x)° - (Vxe(x)°

) @) ~ Txpx)

) @) - YExex) > ¢

3 Vx(e(x)® - (Fxe(x)°

K) ¢ o i, where ¢ and i are congruent formulas2, or one that is ob-

tained from the other by the suppression of vacuous quantifiers.

23ce [10], p. 153. In brief words, two formulas are said to be congruent, if they differ
only in their bound variables and corresponding bound variables are bound by corresponding
quantifiers. We note that congruent formulas are equivalent (¢f. [10], Lemma 15b).
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=) Vx(x=x)
=) x=y - (@(x) & @(y), where ¢(z) is a formula, and x and y are dis-
tinct variables free for z in @(z).

The concepts of proof, deduction, theorem and others are convenient adap-
tations of those of usual ones.

We have the following propositions concerning the quantification part of
%, . Let @(x) be a formula, ¢ is a formula which does not contain x free,
and ¢ is a term which is free for x in ¢(x), so:

Theorem 3.4 The following schemes are not provable in € P
1. Vxg(x) & —3x 1 p(x);
2. Fxe(x) © Vx 1 p(x). A

Theorem 3.5 In €], these schemes are theorems:
1. Vxe(x) & —*3x —*p(x);
2. Fxp(x) & —*¥Vx D *g(x). A

In the next topic we describe the semantic of valuation for the paraconsis-
tent calculus € | .

3.3.  Semantical analysis of €

The paraconsistent systems ‘6, and ‘6, possess a semantic of valuations (cf.
[71) in relation to which €, and €7, respectively, are correct and complete.
We shall study briefly the semantics of valuations; indeed, the semantics of
bivaluations, i.e., two truth-value, designated for convenience by 0 and 1.

For sake of the simplicity, let D be a set, thus the diagram language L ~(D)
is defined as in Shoenfield [17]. By convention, when D = &, LoD) = L.
Grosso modo, the semantics of valuations for 6T may be described as
follows:

Definition 3.3 A valuation vof €[ inD is a function from the set of formu-
las of Lo(D) to the set {0,1} such that:

(i) Up>P)=1leup)=00ruy)=1;

(i) ue AP =1e vp)=)=1;

(ii}) Ao\ =1 up)=Toruh=1;

(iv) ue=0=u—gp)=1;

(v) U@ =1=up =1

V) W) =ue > P=Up-> ) =1= 1 p)=0;

(i) Ue) =uh) =T = U > ¥) = ulp A ) = (o °) =

’
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(viii) UVxe(x)) =1 if and only if for all constant c of Lo(D), we have
ue(c) =1; .

(ix) W(3xe(x)) =1 if and only if there is a constant ¢ of Lo(D), such
that @(c)) = 1;

(x)  UVx(e(x))®) =1 = A(Vxe(x))°) = U(Txe(x))°) = 1;

(xi) If o and \ are congruent formulas, W ) = W),

(xii) Wvc =c')=1if and only if the constants ¢ and ¢’ of L{(D) are
associated to the same element of D;

(xiii) Uc=cY=1land () =1 = Ye(c)) =1.

The clauses above claim that a condition for a formula to obey the principle
of contradiction is that.ene of its direct subformulas have to obey this prin-
ciple. This character gives to paraconsistent negations interesting proper-
ties. These clauses allow us to characterize the strong negation, denoted by
—*, in the following way: = *¢ ©p, =@ /A —1(@/\ —¢). This connec-
tive has all properties of classical negation. Thus, ¢ is true if and only if
—1*gpis false.

Definition 3.4 A sentence ¢ (in Lo(D)) is said to be true in a valuation v if
and only if v(¢) = 1; otherwise, it is said to be false in a valuation, i.e.,

v(g) =0.

Definition 3.5 A valuationv in D is a modelof a set T of sentences if v(¢)
=1 for each ¢ inI'. Let us suppose that T' U { @} is a set of sentences of
Lo(D). We say that ¢ is a semantic consequence of T', and write T = ¢,
if for all D and for all model v of T we have v(p) = 1.

Then, if we define the concept of deduction in a usual way (we use the
symbol I' b ¢ to denote that there is a deduction of ¢ from the set I') we
have the completeness and soundness of 6, and € .

Theorem 3.6 't =TE ¢ N

On the theory of valuations3, the reader may consult Arruda and da Costa
[2] and da Costa and Béziau [7].

31n the classical first-order predicate calculus, we can see that a valuation v in Lo(D)
determines a first-order structure whose universe is D, and conversely. In the case of 6 | , a
valuation in L(D) individualizes, analogously, a first-order structure, but a given structure
does not determine a unique valuation.
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3.4. Some special results

In this section, we point out some properties about the paraconsistent cal-
culi €, and ‘€| and some results on the relation between the classical logic
and the paraconsistent calculi.

A theory T is a set of sentences closed under deduction. In this moment,
we define the concepts of trivial theory and inconsistent one.

Definition 3.6 A theory T is said to be trivial (or overcomplete) if T coin-

cides with the set of all sentences of L; otherwise, T is said to be non tri-
vial.

Definition 3.7 A theory T is called inconsistent if there exists a formula ¢
(of L¢) such that ¢ and — @ belong to T; otherwise, T is called consistent,

Theorem 3.7 The calculi ‘6, and € | are consistent and non trivial. B

We present the definition of the concept of trivializable theory and enun-
ciate a further proposition about it.

Definition 3.8 A non trivial theory is called finitely trivializable if and only
if there exists a formula ¢ (which is not a schema) such that adjoining ¢ to
the theory as a new axiom, the resulting theory is trivial.

Theorem 3.8 The calculi ‘6, and €| are finitely trivializable.

Proof: Indeed, loosely speaking, each formula of the kind ¢ /\ = *¢ tri-
vializes €, and ¢7. W

Theorem 3.9 [Fidel] The paraconsistent calculus 6, is decidable. B

Theorem 3.10 [Arruda] The paraconsistent calculus 6, is not decidable by
finite matrices. B

Theorem 3.11 The paraconsistent calculus €} is not decidable. B

We denote 6, and 6 , respectively, the classical propositional calculus and
the classical first-order predicate calculus with identity.

We remember that in € there exists a strong negation, which is referred
—*, and it has the properties of the classical negation. It is known that the
classical logic is, grosso modo, translated to 6 |, in the following sense: let
¢ be a formula and we replace the weak negation — by the strong negation
¥, getting a translated formula ¢*. Indeed, if ¢ is a theorem in @ o» then
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@* is a theorem in %6 | . The similar way, let I" and I'* be respectively a set
of formulas of €, and a set of translated formulas, and if a formula ¢ is de-
rived from I in €, then ¢* is deduced from I'* in 6 .

Theorem 3.12 Let @, @3, ..., ©, be the prime components of the formula in
I" and 1. Then, s is deduced from F in the classical logic € if and only if
Y is deduced from T, qo] (PZ, fees qom iné .M

Theorem 3.13 Let ¢ be a formula of L such that ¢ is deduced in € ; from a
set of formulas T, then ¢* is deduced from T'* in €| paraconsistent logic.

Proof: We supply a sketch of proof. The — *-transformation of a formula ¢
is the formula ¢* obtained from ¢ by replacing in it every occurrence of —
by an occurrence of —*, Thus, let I" be a set of formulas, I'* is the corre-
sponding set of — *-transforms of the formulas of I'. We know that — * has
every property of the classical negation. If ¢ is deduced from I in € ;, then
@* is deduced from I'* in 6. W

Thus, we can say that 6| contains €|, in the sense described in the last
theorem. In other words, €, (respectively 6;) is contained, under a conve-
nient translation, in 6| (respectively €,).

Theorem 3.14 If we adjoin to ‘€, (respectively € | ) the principle of contra-
diction, the scheme — (@ /\ — @), as a new postulate, then we obtain 6,
(respectively 6 ;). B

Corollary 3.1 The calculus €, (respectively € ;) is stronger than the calcu-
lus €, (respectively 6 ), in the sense that the theorems of 6, (respectively
€| ) are also theorems of €, (respectively € ;). B

The further parts of this exposition deals with Quine’s ML system and a
paraconsistent version of it.

4. Quine’s ML System

In this section we outline the Quine’s ML system of set theory. The lan-
guage Ly, is that of € (and ), but with only one specific (binary) predi-
cate symbol, €, which is called membership predicate. The syntactic no-
tions are adaptations of those the language of €. In addition, # and &
have their standard meanings. The underlying logic of the ML, that will be
denoted by ML, is the classical predicate calculus with identity 6, with
only two primitive predicate symbols: = (identity) and € (membership).



126 ROQUE DA C. CAIERO AND EDELCIO G. DE SOUZA

The logical symbols of € are those of € [, grosso modo, and if we add the
scheme — (¢ /\ =) to €7, we shall get 6.

Firstly, we introduce Russell’s abstractor x ¢(x), which is “the class of
all x such that ¢(x) is satisfied”, by the following:

Definition 4.1 Let ¢(x) and yAy) be formulas whose variables are subjected
to the common conditions and z, v, u are variables that do not occur in ¢(x)
and Y(y), then:

(i) y=X@x) =p,;Izly =z \Vx(x € z & (@(x) A\ At(x € 1))));

(i) Xe(x)=y=p,zz=y N\Vx(x € z & (¢(x) N\ Jt(x € 1))));

(iii)  X(x)= Y(y) =py FuTv(u= 2 o(x) A v= 39 Nu=v);

(v) ¥y € xp(x) =py Ta(y € z A\ Vx(x € z & (p(x) A\ 31(x € 1)),

(v)  xe(x) Ey=p,Izz= e N\zEy)

(Vi) Xp(x) € FPY) =py JuTv(w = Zo(x) A\ v= (),

(vii) X @(x) =p, uVx(x € u & @(x)).

The notions of term and formula are analogous to those presented in €

plus the following: if x is a variable and ¢(x) a formula, then X ¢(x) is a

term; and if #, and 1, are terms, 7, € 1, and 1, = ¢, are (atomic) formulas.
Instead of Russell’s method of abstraction, we could use the classifier:

Definition 4.2 {x : ¢(x)} =p,; % @(x).
Thus, we have the following properties:

L yeE{x:px)} © Jzly EzNV(x E 7 & ¢(x)));

2. x:p)) Eye FUzEYNVXE z & ¢(x))):

3. e} E{y: Yy} © 2z EVAVIXE z o) A
Yy(y Ev e (y)));

4. y={x:@x)} o 2=z \Vx(x Ez o ¢x));

5. (xie)=y e Jzz=y A\Vx(xE z & ¢(x)));

6. {x:@)}=(y: ¢} o TTvz=v A Vx(x Ez & oK) AVy
Yy Ev o Uy)).

The elimination of a classifier in any formula ¢ is described by:

e({x: ¥0)}) © Fu(Vx(x € u & Y(x)) N\ gu))
The Russellian descriptor wxg(x) means “the object x such that ¢(x)”. The
description operator (i.e., a variable binding term operator), in Russell’s

sense, ¢ is introduced by contextual definition and we may eliminate it in a
context.
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Definition 4.3 wx¢(x) =p, ¥(z(y € z A Vx(x=y & ¢(x)))).

As usual, we is called a description. It is easy to see that variables, ab-
stracts and descriptions constitute the category of terms. We can show that
a(yyd(y)), where a is a formula, is equivalent to Ju(y(u) N\ Vy({(y) » y =
w) N\ au)).

The definition of the relational abstractor is the following:

Definition 4.4 Xy, X3, ..., X0, X3, .., X,) =pystu (Vu(u € y o
3)"—l HXZ...H.X,,,(M = (x], Xy ey xm) /\ (P(xls Xpy aeey xm))))-

We shall supply, in this section, an outline of the construction of ML.4
However, we shall introduce some modifications in order to adapt it for our
aims but the essence of Quine’s system is maintained. We are beginning the
description of the Quine’s ML system that is noted ML,. The language of
ML is L, and there is no difficulties in defining the fundamental notions of
the theory by means of the method of Russell’s abstractor (or descriptor).

Let us note that the intuitive interpretation of the system ML, admits
classes as objects and some classes are sets. Basically, we shall turn our
attention to sets in ML,. It is convenient to introduce the notion of “x is a
set” as y(x € y), where y is different from x. Thus, a class of the system is
a set if there is another class to which it belongs.

In order to formulate the axiomatic of ML,, we present, intuitively, the
concept of stratification.

Definition 4.5 A formula ¢ is said to be stratified if one can assign indices
of integers to occurrence of any variable of ¢ so that:

(i)  If x is a variable and  a formula which is part of ¢(x), then all
free occurrences of the same variable x in  are designed the same indice;

(ii) If x is a variable that occurs free in Y(x), then any bound occur-
rence of x in Yxy(x), Axy(x) and x Y(x) must be assigned the same indice
that is the occurrence in y(x),

(iii) For every formula of the kind x € y, xy(x) € y, x € ya(y) and
X Y(x) € ya(y) that occurs in @(x), where x, v are variables and y(x), a(y)
are formulas, the indice assigned to the variable y is one greater than the
indice assigned to the variable x;

4The prime source for ML set theory is W.v.0. Quine [13], 1951. In fact, an earlier ver-
sion of ML is published in 1940, it is proved inconsistent by J.B. Rosser, 1942. For further
discussion, consult Quine [13] and [14]; ].B. Rosser [15].
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(iv)  For every formula of the kind x = y, x{fx) = y, x = ya(y) and
XP(x) = yafy) that occurs in @, where x, y are variables and Y(x), afy)
are formulas, the indices assigned to the both variables x and y are equal.

The postulates of ML, are those of € plus the postulates of Russell’s ab-
stractor and the following:

MLE Vx(x €y « x € z) - y =z, where y and z are any terms in which x
does not occur.

MLC 3yVx(x €y o (@) /\ Jt(x € 1)), where y does not occur in ¢(x)
and x, y are different variables.

MLS If ¢(x) is a formula whose bound variables y, are restricted by the
condition 3r(y, € 1), whose only free variables are x, y;, Y5, ..., Yy
and that ¢(x) 1s stratified, then

Ay, En NIy, €N NIy, €1 - Ju(xe(x) € ),
where u does not occur in ¢(x).

The first axiom is familiar. It is called extensionality. The third postulate
MLS claims that the formula ¢(x) is stratified in which every occurrence of
every quantifier is restricted to sets and all free variables of ¢(x) occur in
the list x, y;, Y2 «c, Ve

The development of ML, system offers no difficulties (we can see Quine
[14]). In order to study some characteristics of MLy, in a intuitive style, we
need some definitions and theorems. We shall formulate the definitions of
some classes, in ML,, whose will be useful in the next.

Definition 4.6 In MLy we have the following definitions:
(i) V =p,; X(x=1x) (universal class);
(ii) D =py x(x #x) (null class);
(iti)  x° =p, y(Iy(y & x));
(iv) xCy=p,2(VzzEx > zEY));
(v)  P(x) =p, a(Vu(u Cx) (power class);
(vi) {x} =Def Z(Vz(z = X)),
(vii) xUy=p,2(VZ(zEx\/z E ),
(viit) x Ny =p, 2(Vz(z Ex Nz E y));
(ix) x\y=p, a(Vu(u € x/\u & y)),
(x)  O0=p,;u(u=x(x+#x)
(xi) 1=p, a(Iy(x = {yh).
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We could define other basic notions, such that as {x, y}, Ux, Nx, ordered
pair, natural numbers, relation, and function. In connection with these defi-
nitions, we can derive certain results in a non rigorous form:

Theorem 4.1 In MLy these results are valid:

if (x) is stratified formula, then A x (x);

Ix(x=x) and AX(x # x);

VWYzAx(xEy\/x E ) and VYWV x(x Ey N x € 2);
Vya X(x & ¥ )

Vi(x=xo xEV)andV¥x(x E J & x # x);
VixeEd o x # x);

Vx(x # x%);

If x is a set, then Vx(x € V);

Vx3{x} and VxVy3{x, y};

Vx(x € {x}), VaVy(x € {y} & x=1y) and VxVy({x} = {y} o x
=y). 1

N0 NS A W~

=

The universal class V does exist in MLy, i.e., we demonstrate it. In particu-
lar, we see that V € V. Indeed, V is a set and V is not well-founded. We
can prove some properties about the universal set.”

Theorem 4.2 In MLy we have:
1. VeV,
2. Ifxisaset, thenx U x=V;
3. NV=Z UV=VandNZ=V;
4. Ve=@andF=V;
5. V=P(V).1

The ML, system has some curious characteristics. For instance, the class
of all the sets, i.e., the universal class, is a set (or MLy-set) and the power
set of the universal set is just the universal set. Therefore, the Cantor’s
theorem is not valid in its general claim. In ML,, there are Cantorian sets
(and classes) and non Cantorian sets. The usual proof of Cantor’s theorem
(i.e., about the subsets of a set) does not go through in it. Indeed, at a
crucial step in the proof, a set is not available because its defining condition
is not stratified. In consequence, if we could prove that z, intuitively, has
fewer elements than P(z), where z is any class, then, since V = P(V), we
could obtain a contradiction for V (since V would have fewer elements than

31t is known, in the usual formulation of classical Zermelo-Fraenkel set theory. there is
not an universal set and the existence of this set implies that the theory is trivial.
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P(V)).6 In ML,, let S(z) be the class X(Ju(u € z /\ x = {u})), i.e., the class
of all single sets build from the elements of z, which is a set; then we can
prove that S(z) has fewer elements than P(z). Therefore, let z = V, we
conclude that S(V) has fewer elements than V. Thus, V has the property that
it is not equinumerous (the same number of elements) with the set of all
single sets of its elements.

Other interesting properties of ML,/ are briefly the following:

1. Russell’s paradox (for set) is not derivable in ML, since the formula
associated to x & x is not stratified and X (x & x) is not a set;

2. ML, is finitely trivializable;

3. All theorems of Quine’s NL system are provable in MLy,

4. If ML, is consistent, so Quine’s NL is consistent;

5. If Quine’s NL is consistent, then ML, is also consistent (cf. Wang
(18]);

6. The axiom of infinity is provable in ML;

7. There are some models of ML, that are non standard in the sense that
the usual ordering of the finite cardinals or of the ordinals is not actually a
well-ordesing in the metalanguage;

8. The mathematical induction can be proved in MLy;

9. ML, contains the usual arithmetic of natural numbers.

We stress some questions about Quine’s ML set theory:

I.  The axiom of choice is (dis)provable in ML,;

II. Whether the consistency of Zermelo-Fraenkel set theory implies the
consistency of MLy,

III. Which part of the classical standard mathematics could be obtained
from the basis ML,

Let us see an exercise: consider the calculus 6| plus the postulates of ab-
stractor and plus the set-theoretical postulates of ML, but without restric-
tions on the formula (scheme) ¢(x) in the axiom scheme MLS. For our
aims, this system is called MK;. We expect that the resultant system be-
comes trivial.

Theorem 4.3 Let MK be as described, then it is trivial.

6See J.B. Rosser [15].

TSee W.v.0. Quine [14] and W. Hatcher [9].
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Proof: Let ¢(x) be the formula x & x /\ (x € x)°; and so JYVx(x Ey o (x
& x /\ (x € x)°)) is derived of MK|. Indeed, in particular, we have y € y ©
(v & y/\ (y € y)°), which is called KA in this context. However,y € y \/ y
& y, then:

1. ify €y, itresults of KAthaty & y A\ (y Ey)° thus,y Ey AN (y € y
N (y € y)°),

2. ify &y, then(y € y)°\/ —(y € y)°; firstly, if (y € y)° and KA, so y
€y theny Ey ANy & y/\(y € y)°. And, secondly, if = (y € y)°, i.e.,
Sy EyAy&y)theny Ey/\y¢&yand KA; therefore, yEy N\ y &
y N\ Ey)r.

In fact, it is valid in 6 | the scheme (¢° /\ (¢ /\ 1 ¢)) - B, where B is
an arbitrary formula. Therefore, MK, is trivial. Il

The last proposition, it seems, claims that there are forms of stronger
negation which are incompatible with the postulates of ML, without restric-
tions.

5. Paraconsistent Set Theory

The ML, system is a paraconsistent set theory whose underlying logic is
%, and whose language is that of ML,. The specific postulates of ML, are
precisely the same postulates as those of ML, and some others that will be
stated below. The system ML, of set theory is related to ML, grosso modo,
as the logic 6| is related to € ;.

In consequence, we construct the ML, beginning with the language L,
its logical postulates are the same as those of | and the basic set-theoretic
notions are analogous to those of ML,. Although the concepts dealing with
negation have two meanings, both are concerned with 6} : one involving
the weak negation; and the other the strong negation. In classical set theo-
ries we have the usual negation which is referred to —, while there are two
corresponding definitions in paraconsistent set theories, the weak negation,
denoted —, and the strong negation, whose symbol —* denotes it. By con-
vention, we use a symbol shaped like a star * to indicate the strong nega-
tion. In effect, the symbols for these notions will differ only by the fact that
strong versions are starred, for instance, we have two empty sets: & = % (x
# x) and &* = %(x #* x). We have to note that there are two forms of
negations of the membership relation, —(x € y) and —*(x € y), which can
write, respectively, & and &*. In a certain sense, if a negation does occur
essentially in a specific axiom (or axiom scheme) of ML, it gives birth to
two corresponding axioms (or axiom schemes) of ML,, one with the strong
negation and another with the weak one.
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In brief, the logical postulates are those of € | paraconsistent logic (first-
order predicate calculus with identity); and the specific postulates are those
schemes of the Quine’s ML system of set theory and for each postulate ¢ of
ML, in which occurs a weak negation, we add a new postulate in ML,
analogous to ¢ but with strong negation.

Theorem 5.1 If t,, t,, and t; are the terms of ML,, then:
1. 4=t
2. K=o h=1
3. h=6NAL=t->1=1.1

Theorem 5.2 If in a formula ¢(x) the symbol — does not occur, then
(h=1) - (e(1) © @),
where t, and t, are terms free for x in ¢(x). W
Theorem 5.3 If t|, and t, are terms and ©(x) is a formula in which —%*, the
strong negation, may occur, but the weak negation — does not occur ex-

plicitly, we have: t,=1, = (¢(t;) & ©(t;)). R

Theorem 5.4 Under the conditions last two propositions, then: ¥x¢(x) —
(1) and @(t) = Axp(x) hold, where t is a term free for x in ¢(x). B

We want to consider the previous treatment of the definitions of V, &, {x}
and so on. Thus, we can proceed as in the lastest definition of them, and
can prove the next proposition.

Theorem 5.5 In ML, the following results are valid:

1. if ¢(x) is stratified formula, then 3 x @(x);

2. Ax(x=x)and Ax(x # x);

3. WYz3x(xeEy\VxEDand VyWz3x(xEy N x E2);

4 Viix=xoxEV)iandVx(xE D & x + x);

S, Vx3{x} and VxV¥y3{x, y},

6. Vx(x € {x]}), xVy(x € [y} e x=y)and VxVy({x} = {y} o x =
y). 1

It is interesting to note that the proposition Vx(x & ) is not widely valid;
and, in similar manner, ¥x(x # x) is not also. One can prove:

Theorem 5.6 In ML,, we have:
1. Vx(x &* %), where @* is x(x # x /\ (x = x)°);
2. Vx(x @** & x #*x), wherex #* xisx #x N\ (x=x)°. 1
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We remark that the preceding propositions show some of the peculiarities
of the paraconsistent logic ML,. Substitution (or replacement) inside a con-
text governed by the weak negation, has to be carefuly studied case by case.

Theorem 5.7 In ML,, we have yJx(x Ey & x & x).

Proof: We consider the postulate MLS and replace ¢(x) by x & x; thus,
Vx(x Ey & x & x). Then,IyyE y o y& y);andso IyIx(x E y © x
Zx).n

We intend, among other things, to show: first, ML, should be partially
included in ML,, although the latter is also to be contained, in a certain
sense, In the former; second, ML, should be equiconsistent with ML, but
can be used as the basis for we study an inconsistent, non trivial theory; and
third, the set-theoretic system here presented is a way to develop a set
theory with the notion of Russell’s set.

The two next results treat of equiconsistency between both the systems
MLy and ML,.

Theorem 5.8 Let ¢ be a sentence of Ly; and ¢* be the sentence obtained
from @ by the replacement of — by —*. The sentence ¢ is a theorem of
MLy if and only if ¢* is a theorem of ML,.

Proof: It is a consequence of the logical postulates of ML, and ML,, i.e., the
axioms (axiom schemes, deduction rules), respectively, of 6 ; and €| ; and
the specific postulates about both set theories. B

This theorem has interesting corollaries.

Corollary 5.1 The ML, system is said to be consistent (in connection with
= or with —*) if and only if MLy is said to be consistent. B

Corollary 5.2 Let T and ¢ be respectively a set of formulas and a formula
in MLy and ¢ is deduced from I" in MLy if and only if ¢ is deduced from T,
(xEy)and(x=y)inML,. .1

The proposition above shows, in a determined sense, that ML, system is
contained in ML,. It is noted, if we treat only of classes well-behaved,
every valid formula in ML, is also valid within ML,.

Theorem 5.9 The system ML, is finitely trivializable. B

Thus, ML, paraconsistent set theory is founded on the €] paraconsistent
first-order predicate with identity and there are some important relations
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between €| and € ; which correspond to the same relations between ML,
and ML,,.

We stress some relations between the systems of set theories, ML, is part
of MLy, but that ML, is also contained, in a certain sense, in ML,. It is
enough to take into account the axiomatizations of ML, and ML, and the
structures of their underlying logics, 6| and 6.

Theorem 5.10 ML, contains ML,. B

The last results show us that ML, is strictly stronger than Quine’s classical
ML system; i.e., all theorems of ML, are theorems of ML,.

We might think about a notion of non triviality relative to another system,
in this case ML,.

Corollary 5.3 If MLy is consistent, then ML, is non trivial. B

Theorem 5.11 The paraconsistent set theory ML, is not a Cantorian set
theory. B

Though ML, is essentially as strong as MLy, in the sense indicated above,
ML, constitutes a paraconsistent set theory: it can be used to handle incon-
sistent theories which are not trivial, as we shall show in what follows.

We remember that the calculus 6 | can be used as foundations for incon-
sistent and non trivial theories. Intuitively speaking, it satisfies the follow-
ing requirements: first, in this calculus the principle of contradiction, — (¢
/\ =), is not a valid schema; and, second, from two contradictory formu-
las, ¢ and =g, it is not possible to deduce an arbitrary formula of the lan-
guage. In fact, in ML, system, it is possible to define, to postulate, and to
study certain paradoxes, paradoxical sets (and structures), whose existence
can be proved in some cases or postulated in others. However, they do not
exist in the classical systems, such as ML,. These sets (and structures) can
be used in mathematics, in a context of an empirical science to describe a
domain (so it is associated to corresponding theory), and in a methodologi-
cal research (v.g., studying a contradiction that arises from the coexistence
of incompatible theories).

6. Russell’s Set

We shall introduce and study the Russell’s set (or Russellian set). Loosely
speaking, it is a typical example of a paradoxical object which existence is
possible in a paraconsistent theory (and interpreted in an adequate uni-
verse) and it is not possible within the classical world. We shall see that the



A NEW PARACONSISTENT SET THEORY: ML, 135

system ML, plus the Russell’s set form a new theory, which is inconsistent
but non trivial. It is important noted that we are accepting the existence of
the Russell’s set as a new postulate.

Definition 6.1 R =p,; X (x & x), and we assume that R € V.

We adopt the supposition that Russell’s set exists in the universal set, i.e.,
R € V is adjoined to the postulates of ML,. Thus, we try to study the struc-
ture of the Russellian set.

We use the properties of negation, so can prove some results that concern
Russell’s set.

Theorem 6.1 Let R be a Russell’s set, then in ML, plus R € V (that we de-
note by MLyg), we prove:

I. REReoR&R;

2. RERAR€ZR.

Proof: We havethecase x ER © x & R; hence, RER &« R & R. We
use the appropriate axioms and rules of €| logic,thenRER/AR& R. W

Theorem 6.2 [Arruda-Batens] Let R and V be respectively Russell’s set
and universal set. Then, in MLg, we have UR =V.

Theorem 6.3 [Arruda] Let R be Russellian set, then ... P(P(P(R))) C
PP(R)CPR)ICR N

Theorem 6.4 In MLy, we have:
1. VEZR;
2. JER {J})ER, and ({T}} €ER;
3. RuR‘'=uR R

We present the concept of Russell’s relations that generalizes the conside-
rations above.

aeey

Definition 6.2 R, ; =p,; i(Jz(u € z N\ Vx; ... Vx; ... Vx,(u = (xy, ..., x;,
X)) & (X, .., ., X, ) E X)), where ] = j=n.

By convention, { x ) = x; and so R = R, ,. Let us investigate R, under the
condition that R,; € V. Then, ( x;, x,) € Ry, © (x), x3) & x,.

Theorem 6.5 (R,,, Ry1) ERyy © (Ry, Ry) € Ry B

Theorem 6.6 Ry, € U2R,, and Ry, CV X V, where U2R;, = UUR,,. &
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Theorem 6.7 R #* (R} - RER;,. A

Theorem 6.8 Let R, ; be Russellian relations, where n = 1, then Un R, =V.
[ |

We can generalize the Russell’s paradox: R,; € R, ;/\ R,; & R,;, where 1
= j = n and n finite.

Theorem 6.9 The MLy set theory is inconsistent. B

In fact, it is clear that the MLy is inconsistent theory and it rest the ques-
tion: MLy is a non trivial system or is a trivial one.

Theorem 6.10 If ML, is consistent, then MLy is non trivial. B

Adapting the standard conception of mathematical structure & la Bourbaki
(see N. Bourbaki [3]), it is possible to define the concept of paraconsistent
mathematical structures (da Costa [3a]).

Definition 6.3 An ordered péir (V, R, ) is called Russell’s structure, de-
noted by R, where V is the universe set and R, is a Russell relation and
the condition R,; €V, for 1 < j < n, is satisfied.

In fact, Bourbaki’s concept of mathematical structure requires that each
axiom for a structure satisfies the condition of having the property of being
transportable, in other words, an axiom is preserved under isomorphisms.
The paraconsistent structures do not satisfy this condition. The notion of
transportable formula is a crucial aspect of the characterization of Bour-
baki’s notions of specie of structures and mathematical structure.

In this paper we will not enter into details about the general theory of
these last structures.

7. Final Remarks

From our standpoint, each logic supplies a possible instrument and a per-
spective for characterizing some aspects of a certain phenomenon or a do-
main. And we have got something important to remember: in a sense, each
logic supplies a tool in a pragmatic context. From a philosophical point of
view, just as from a technical one, paraconsistent logic has given rise to
various considerations. Nonetheless, by no means a comprehensive ap-
proach is proposed in this paper. We must be noted that in some places we
used the expression paraconsistent logic in the singular as an “abuse of
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language” or when talking about an explicit system, because there are
several paraconsistent logics.

The system ML, and other paraconsistent logics are built in such a way
that they encompass the classical logic. In consequence, roughly speaking,
their developments show that ML, and other paraconsistent systems are
strictly stronger than the respective classical system. In effect, there are
quite strong paraconsistent logics. Let us note that, for instance, ML,
extends MLy, it allows us to study contradictory sets and structures which
do not belong to the classical universe and to investigate paradoxes and
issues that are incompatible with the classical approach. Thus, ML, and
other strong paraconsistent systems become larger than the classical ones
and it enables an enlargement of the methodological tools. It is important to
keep in mind the conceptual power of the analytical methods.

The ML, (or ML) system may be used, e.g., to examine the known para-
doxes of Russell, Cantor, Burali-Forti, Curry. The paraconsistent set theory
ML, makes clearer some aspects of paraconsistent logic and this usefulness,
but there exists doubts and a great enterprise on our hands. For instance, it
contributes to clarify the relations between the schema of separation and an
underlying logic. An attractive issue deals with a construction of a
paraconsistent model theory within a paraconsistent set theory. It brings
about interesting problems of semantical analysis and it seems to be
promising to the development of technical devices. By using ML, we can
develop a paraconsistent form of the differential and integral calculus, ana-
logous to the one discussed in da Costa [6].

The paraconsistent logics lead us to deeper understanding of the basic
concepts of the classical logic itself and contributes to clarify its meanings
in methodological aspects such as mathematical issues and fields of appli-
cation. For instance, N. da Costa states that the paraconsistent logic oblige
us to think carefully about the concept of negation and its logical formula-
tion. Thus, one can legitimately ask about the meaning of negation refer-
ring to a logical system. As it is well known, there are several logical sys-
tems, each one of them having different postulates, therefore we do not
believe that there exists a priori the negation. Indeed, since at this moment
there is no standard criterion for the negation it is more convenient and
plausible to accept the existence of several negations. They can be under-
stood as constituting a resemblance family in the Wittgenstein’s sense. In
our judgement, at this moment, there is absolutely no reason for supporting
the unity of the concept of negation and even less identifying it with the
classical concept.

In inconsistent (and apparently non trivial) theory, which relates to some
paraconsistent systems, we can define or postulate a determined paradoxi-
cal (or inconsistent) object (e.g., a set, a structure) and investigate its exis-
tence and its properties. There are theories in which this existence can be
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proved and in others it is postulated and does not trivialize them. However,
this paradoxical object does not exist within the classical theories; it cannot
be described and studied within them. Immediately, three points about this
possible theoretical existence can be derived: first, its relationship with the
conception and the act of the consistency principle (or non-contradiction) in
the usual sense; second, it concerns the meanings of the formulas which
infringe the principle of contradiction. These points allow us to examine the
nature itself of this logical principle (in particular, the epistemological
character) and its formal treatment. The third point is related to the subject
matter of this paradoxical object and the universe of discourse of a lan-
guage (v.g., of a science, a methodological approach). To exemplify it, let
us suppose an universe of discourse which is classical —then paradoxical
objects cannot belong to it. Instead, let be an universe of discourse, depend-
ing on the properties of a paradoxical object, which can belong to this uni-
verse, i.e., it may be legitimate to accept it. Basically, the definition of this
object does not contain and does not imply a contradiction of the form ¢ /\
—*¢. In other words, it does not have to originate a trivial theory. Roughly
speaking, if one adopts the paraconsistent logic, the objects that we can
deal with become more numerous. Evidently, this claim is purely formal
and does not deal with the deeper consideration on ontology and epistemo-
logy.

In fact, if the underlying logic of a theory is the classical one, then the
theory is called trivial if and only if it is inconsistent. In this case, a contra-
dictory theory does not preserve any proper scientific interest according to
a strict classical approach. Usually, we try to change inconsistent theories,
incompatible theories and contradictory evidences into consistent ones. In
maintaining the underlying classical logic, one will lose some characteristic
properties of given quasi-theories —or intuitive version, premises, hypo-
thesis. Otherwise, if we abandon the classical logic, we can preserve some
features of a theory. In a sense, some kinds of inconsistencies can be
methodologically and epistemologically handled. When we have a contra-
diction within a science, we find ourselves face to face with an epistemo-
logical attitude and a methodological choice.

We have a pluralist account of knowledge, for example, if we accept the
coexistence of incompatible (or seemingly inconsistent) theories within a
field of science. In effect, this is the case when we look carefully at some
branches of the empirical sciences, e.g., physics, biology and economics.

It can be believed that the intuitive notion of dialectic is intimately con-
nected with the theory of inconsistent systems or the ones that have the
property of contradiction. At first sight, there are several conflicting con-
ceptions of dialectic and various conceptions of dialectic informal logic. In
fact, for many specialists and philosophers it is not possible to formalize
dialectics. Nevertheless, for others, it is apparently possible to treat some of
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the proposed dialectic logics; or, in principle, employing techniques used in
paraconsistent systems, one can try to make explicit certain features of
these dialectic logics.

Indeed, its philosophical significance and its usefulness are contestable
and controversial. In generic terms, one can defend that the paraconsistent
logics exhibit a structural weakness when considered in relation to the
classical logic. This weakness means that apparently there exists no unique
paraconsistent logic —it is a feature that the paraconsistent logics share
with other types of logic, e.g., modal logic. There are still other different
focuses of controversy over the paraconsistent logics and their applications.

At a first glance, it may be supposed that one wants to develop a para-
consistent logic (and paraconsistent mathematics) to accept the existence of
the inconsistencies (or the contradictions) in the real world as true. Thus,
the elaboration of systems like ML, and others seems to provide an evi-
dence to support this belief. Thus, the subject-matter needs a careful exami-
nation. The existence of ML, and other paraconsistent systems point out a
theoretical fact: in the abstract and formal context, one can develop incon-
sistent theories. In this contextual level, there are theoretical contradictions
which are true. Nonetheless, the existence of actual contradictions or the
question of the possibility of an inconsistent world are both issues that
depend fundamentally upon the empirical sciences. It also depends upon
the basic relationships of the several concepts accepted as true (or real) in
accordance to each one’s metaphysical beliefs in the nature of reality.

In brief, we want to abandon the metaphysical speculation about the ulti-
mate nature of the real world. Therefore, if we seek to know something
about the real world, we have to utilize the available methodological tools
of the empirical sciences and their proper methodology. There exists no
different way to justify the existence of such inconsistencies since we doubt
whether a priori beliefs are true. In principle, we admit the existence of
inconsistencies within a system of knowledge (or science), but we are
talking about a phenomenon which seems true and we can call it epistemo-
logical inconsistency (or epistemological contradiction). It can be under-
stood as elements that suggest the inconsistent aspects of the real world.
Although there are no rational arguments, we reject any metaphysical spec-
ulation, which can offer support to the relationship between epistemological
inconsistency and real inconsistency or, contradictory world. In effect, a
paraconsistent logic (or theory) can be useful to handle epistemological
inconsistency, if it does exist and if it is not interpreted as being unreason-
able, an error, a fault. However, we emphasize that this fact does not mean
that one accepts the actual character of inconsistency or recognizes it.

Finally, we stress that the mainstream methodological conduct generally
eliminates the epistemological inconsistencies which arises in a branch of
science and maintains the classical logic and the consistency as a kind of
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value that has epistemological and ontological meanings; and there are also
cultural compounds in parts of this conduct. The domains of classical logic
(which include set theory, mathematics, applied logic) are assured,
undoubtedly, from a mathematical point of view. It should be clear that
paraconsistent logic does not constitute a simple approach that tries to chal-
lenge classical logic or destroy it. Each one has its proper usefulness as
stated in the beginning of this text. In order to develop a scientific disci-
pline (mathematical or empirical science), one must have free choice of
analytical methods.
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