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A PARACONSISTENT THEORY OF DECISION UNDER
UNCERTAINTY

Marcelo TSUIJI!

Abstract

In the present paper we use N.C.A. da Costa’s formalisations of the
concept of partial truth and its associated logic in order to construct a
paraconsistent theory of decision under uncertainty. For this purpose
we employ such formalisations to modify R. Jeffrey’s system ex-
pounded in his The Logic of Decision, transforming it into a system
capable of assigning nontrivial probabilities and utilities to contradic-
tory propositions.

1. Introduction

Since the mid-1920s, a great deal of work has been devoted to the develop-
ment of methods for providing numerical representations for the prefer-
ences and beliefs of a (supposedly rational) individual in models and theo-
ries of decision under uncertainty (a summary of the main models and
theories in question can be found in Fishburn 1981). In all such models, the
concepts of utility function and subjective probability play a fundamental
role, with the latter usually considered as the degree of rational belief of an
individual in (the truth of) a given proposition. In all such models, as I.
Hacking noted some years ago (see Hacking 1967), the resulting systems
had a standard classical logic as its underlying logical framework. Never-
theless, if we aim at obtaining a more realistic picture of decision making,
this requirement should be somewhat relaxed and it is interesting to say that
in this same paper I. Hacking suggested the necessity of a paraconsistent
theory of decision for this purpose (obviously he did not state his claim in
such a modern phrasing). So, the main goal of the present paper is to
provide an outline of how such a paraconsistent theory of decision could be
constructed. In order to achieve this, we employ the recent formalisations
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of the concepts of partial truth and its associated logic introduced by
N.C.A. da Costa and some of his collaborators (notably the late R. Chua-
qui) in order to modify the now classic logical decision theory put forward
by R. Jeffrey and E. Bolker (see Jeffrey 1983 and Bolker 1966, 1967).

We should also stress that this mathematized version of the concept of
partial truth could be used to clarify several other problems in the philoso-
phy of science, which ranged from the construction of inductive logics to
some methodological problems in the semantical approach to the philoso-
phy of science (see Da Costa and French 1989b, 1990, Suppe 1989 and
Van Fraassen 1995); in this context, perhaps one of the most interesting
results was the elaboration of a case in which the so-called Popper-Miller
argument against induction (Popper and Miller 1983) apparently failed (Da
Costa and French 1988, 1989a).

2. Partial Structures and Partial Truth

In this section, we give only the outlines of the formalisations introduced
by N.C.A. da Costa; further details, as well as the philosophical and episte-
mological ideas beneath these constructions can be found in (Mikenberg,
Da Costa and Chuaqui 1986, Da Costa 1989 and Da Costa and French
1990).

Let us suppose that we are interested in a certain domain of scientific
knowledge A. In order to study A, we can start by modelling it as a mathe-
matical structured of the form I, = ( A, R, ), < ;, where I is an appropriate
index set. Once we usually do not know everything about A, 3, can be sup-
posed to be a partial structure, i.e. the relations R,, for i in I, are not com-
pletely defined (it means that the relations R;, for i in I, are partial relations:
if m; is its rank, then it will not necessarily be defined for all m-tuples of
elements of A). Thus, J, models what the scientific community knows {or
accept as true) about A.

But if we really want to investigate A, for instance by means of hypoth-
eses and previsions about it, we usually introduce some extra ideal ele-
ments in our initial structure ;. They can be seen as being fictions in the
sense of Vaihinger’s philosophy, as underlined above; their main function
is to make easier our dealing with the circumstances. These elements are
composed of new individuals whose set we denoted by A,, under the pro-
viso that A, # J and A, N A, = &, and of new relations (R); e s, where R,
(for each j in J, J being another appropriate index set) is a partial relation
over A = A, U A,. In this way, we obtain another partial structure 3, = { A,
Ry )i ek, assuming that I N J = and K = I U J. For some i € [ and j € J,
R; may be an extension of R,
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Let us now suppose that L, and L, are appropriate languages for us to
speak about the structures 3, and <J3,, respectively (thus, both must contain
the usual logical symbols, including the equality symbol). As mentioned
above, once we usually know (or accept as known) something about A,
there is a set D of propositions of L, which express everything we know (or
accept as true) about A (or J,); nevertheless, in order to develop a suitable
and powerful concept of partial truth we should also include in D all the
true decidable propositions, even if in practice they are still unknown to us.
Therefore, D involves not only what is known or taken by granted about A,
but also what in principle can be discovered and decided as true about A.

We will give an example: when we are studying one given scientific
domain A, molecular biology, for instance, D must contain all true decid-
able propositions of A, as well as some laws and principles from physics,
chemistry and any other science relevant to A. But in D we can also include
propositions which are not decidable if it is the case of their being already
accepted as true by A. It means that in D (or in its semantical counterpart
3,) we collect everything that is accepted as true in A, in addition to every-
thing that is in effect true or that in principle we can establish as true in vir-
tue of our investigations (which starts properly speaking only with the
description of J,). Usually this latter structure is subjected to some con-
straints derived from earlier researches.

The preceding discussion suggests the introduction o the following type
of structure:

JI=(A, AL R, R, D)icijen

where A, Ay, R;, R;, D, I and J satisfy the conditions imposed above. J is
associated to the languages L, and L,. For easiness of exposition and for
taking advantage of the symbolism which has been used up to now we can
redefine J as:

S=(A5Rk! D)kEK’

with A, K and D as above. We will call I a simple partial structure.
We are now almost in position to give a rigorous definition of the notion
of partial truth, but before that we must give two preliminary definitions:

Definition 1 Let L be a first-order language with equality symbol and with-
out functional symbols and with the same similarity type of J. We say that
L is interpreted in < if:

1. each individual constant of L is associated with an element of
the universe of J;
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2 each predicate symbol of L of arity n is associated with a relation
R,, with k in K and with the same arity n, with this latter
association being a surjective one;

3. there is a subset D’ C L which is in one-one association with D.

Because of the item 3 above we can identify D’ with D; in what follows this
identification will always be assumed.

Definition 2 Let £ be a complete structure of the same relational type of J
= (A, R, D), c g (ie. its relations of arity n are defined for all n-tuples of
elements of A) and let L be a language as above interpreted in 3. We say
that ¥ is 3-normal if:

1. the universe of ¥ is A;

2. the total relations of ¥ extend the corresponding partial relations
of J;

3. if ¢ is an individual constant of L then both in J and in ¥ we

have that c¢ is interpreted by the same element;
4, a€D=%F a

It may be the case that there are no J-normal structures which extend the
given partial structure J; nevertheless, necessary and sufficient conditions
for the existence of such J-normal structures were given in Mikenberg, Da
Costa and Chuaqui 1986. Here we will suppose that our simple partial
structures satisfy these conditions (in the above cited paper it is also dem-
onstrated that the theory of models based on simple partial structures
encompasses the usual theory of models as a particular case).

Definition 3 Let L and 3 be respectively one language and a simple partial
structure in which the language is interpreted. We say that one proposition
a of L is partially true in J according to & if & is a J-normal structure and
a is true (in the classical sense) in ¥; i.e. we can also simply say that a is
partially true in the simple partial structure J if there is at least one struc-
ture & which is J-normal and such that a is classically true in &. If a is not
partially true in 3 according to £ (or simply if it is not partially true in J)
we say that a is partially false in J according to & (or partially false in J).

Using the above defined notions we can give a formal counterpart to the
idea (usually found in the philosophy of science) that a hypothesis saves the
appearances in a scientific domain A: we have only to substitute a simple
partial structure ¥ for A and interpret a suitable language L in I as pre-
viously explained; then we say that a proposition a of L saves the appear-
ances in A if a is partially true in 3.
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It is also useful to remark that in our case we have an informal adaptation
of Tarski’s T criterion that will be called 7,, by us: if ‘a’ stands for a propo-
sition of L then a is partially true if and only if things happen as if a were
true. If a belongs to the class of decidable true propositions then T and T,
will coincide.

3. The Logic of Decision and Ja§kowski’s: Logics

In the next section we will construct a paraconsistent theory of decision
under uncertainty based on R. Jeftrey’s now classic The Logic of Decision;
$0, in this section we will perform modifications that will enable us to
apply his main ideas in order to attribute non-trivial probabilities and utili-
ties even to contradictory propositions. In what follows we will sometimes
use the terms “partial truth” and “pragmatic truth” as substitutes for each
other in some specific contexts —we do so to conform to the initial termi-
nology used by N.C.A. da Costa and later adopted in the literature,
although we believe that this choice was a bit unfortunate for it suggests
that his theory has strong connections with classical theories of pragmatism
(which is by no means the case here). For this reason we attached ourselves
to the convention of using the term “partial” instead of “pragmatic”
whenever possible in the present paper.

3.1. Jeffrey-Keynes Algebras

From the purely formal point of view, Jeffrey’s system is essentially a logi-
cal theory, which makes it particularly suitable for the development within
it of the theory of partial truth as described in the previous section. To be
more exact, we can begin with in the fdllowing way: let us suppose that a
certain individual is interested in taking decisions in a given domain A
which will thus be his domain of action; he will then model A using a
simple partial structure I = ( A, R;, D );c x and a language L, as done
above. Now, for the specific decisions of this individual acting in A it is
generally enough for him to examine a set S of closed formulas of L
(therefore S can be identified with a set of sentences or propositions);
obviously we must suppose that D C § —intuitively this means that this
individual partakes of the partial truth criteria of A.

We must introduce now a subtle logical artifice: let us suppose that we
have a formalised metalanguage of L that we denote by L. For each propo-
sition a of L we construct a proposition a in the metalanguage L such that
@ is a proposition stating the following: ‘a is partially true in . These
metapropositions form a set M which is in one-one correspondence with
the propositions of L —the elements of M will be called the atomic prag-
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matic propositions. From now on it is tacitly assumed that for each symbol
for a proposition of the object language L there is a corresponding bold-
face symbol in the metalanguage L (or more precisely, in M). Then if we
could devise a method for measuring the degree of rational belief in the
classical truth of an arbitrary proposition & of L we would immediately be
measuring the degree of rational belief in the partial truth of the corre-
sponding proposition a of L (for « affirms that a is partially true in 3J). In
other words, if we had a method for assigning classical subjective probabil-
ities for the propositions of the metalanguage L we would automatically be
constructing a theory of pragmatic probabilities for the propositions of the
object language L. This ingenious method was first imagined by N.C.A. da
Costa in Da Costa 1986 (see also Da Costa and French 1989b); neverthe-
less, his paper developed a theory of pragmatic probabilities without the
simultaneous definition of a utility function and this fact rendered his sys-
tem inadequate for a theory of decision under uncertainty. In what follows,
based on R. Jeffrey’s ideas, we will try to fill this gap.

We said earlier that an individual who has to take decisions in A should
analyse a certain set S of propositions of L; as stipulated in the previous
paragraph S will be its counterpart in L. Therefore, considering S as a set of
propositional generators we can construct the following absolutely (or
propositional) free algebra

(S, AV, 7, 6,)

over the set 8. Next we can also define a propositional calculus over the
universe © of this absolutely free algebra by choosing some classes of its
elements as the axioms of such a calculus, i.e.:

Definition 4 The logical axioms of the propositional calculus over S are
the following:

L. di={a> (B> a)|a BE D)
2. dh={(@a>B>M->(a=p)->(@->|ap yeE S
3. dh={-na-a|laE ).

We have yet the non-logical pragmatical axiom:

4. A4 = Q C D. This axiom forms the pragmatic nucleous of the
propositonal calculus in question; intuitively it shows what the
individual knows or accepts as true about A concerning his deci-
sion process.
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If we adjoin modus ponens (i.e. from aand @ - B it follows B) as an infer-
ence rule for our propositional calculus then we can define the notion of a
deduction for this calculus in the usual way; this operation will be denoted
by the symbol — (. To summarize, the following structure:

C=(8,—QJ)s (1)

will be the pragmatic propositional calculus over the set S with the non-
logical axiom Q. The references to S and Q in the equation (1) above are
important in order to remind us that this propositional calculus is con-
structed relatively to these two sets —this remark should be kept in mind,
although from now on (for commodity of notation) we will consider as
fixed the two sets S and Q and drop any references to them until otherwise
stated.

We know by the usual properties of the classical propositional calculus
that for all @ and B in & the equivalence relation — o « 8 defines a con-
gruence relation over © (i.e. it is an equivalence relation which is compati-
ble with the algebraic structure of &). So:

Definition 5 The Lindenbaum Algebra
§B=<@,071,/\1\/1 -, _))

of € =( &, ) is the Boolean algebra obtained through the passage to
the quotient of & by the congruence relation induced by — a « B.

The elements of B are thus equivalence classes of S; nevertheless, in order
to simplify our notation we will always refer to such elements || of B by
means of one of its characteristic representatives a. We are now ready to
define the main structure of our paper.

Definition 6 A Jeffrey-Keynes Algebra is an ordered Boolean algebra
JI{=(B,>)

which satisfies the following axioms:

1. B is the Lindenbaum algebra constructed according to definition
3,

2. B is an atomless and complete Boolean algebra;

3 Z is a transitive and connected binary relation over B - 0 (i.e.

the domain of the relation is the Lindenbaum algebra less its



108 MARCELO TSUIJI

zero element). From this binary relation we can define the stan-
dard preference (>) and indifference (=) relations as usual:

a>fBeaz=Band B #* a
a=fe azfand B = q;

4, (Averaging Condition) If & A 8 =0 for a, 8 € B then:

ca>B=a>avyvp>p
rta=fB=a~ayfp=4

5. (Impartiality) If o, B and y € B such that a N B =0, a =
Ny=BNy=0,a+ yand a\/ y= B v vythen for all §
such that & # a we have:

B, a
€Y

ayvé=~gys.

6. (Continuity) If { «, } is a monotonically increasing (decreasing)
sequence in the Boolean structure of *B and if 2 = sup { a, } (or

2=inf{ a,}) andif B> X > +then there is a natural number
m such that:

B> a, > yforalln = m.

(For a discussion of the meaning of each of these axioms see Bolker 1967
or Jeffrey 1983.)

Theorem 7 (Bolker) (Existence) Given a Jeffrey-Keynes algebra I & = ( B,
> ), we can construct an additively countable probability measure P and

an additively countable signed measure (or a charge) M over & §& such
that:

M(a) _ M(B)
P(a) P(B)

(Uniqueness) Furthermore if P' and M’ are two other measures which also
satisfy the existence conditions above then there are real numbers a, b, ¢
and d such that:

ar-fe

* -d/c does not lie in the interval of values of M/P;

* ad > bc;

ccM1)+d=1;

* M'(a) = aM(a) + bP(a) for all a in the domains of M and P;
* P'(a) = cM(a) + dP(a) for all a in the domains of M and P.
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Proof: See Bolker 1966 []

Remark 8 1. We can define the null set N of a Jeffrey-Keynes alge-
bra as the set of all propositions such that @ € N if and only if
P(a) = 0. We have then:

*0EWN,;
ca,BEN=aNBEN,;
*BENa- B=1=aEN.

In other words, N is an implicative ideal of the Jeffrey-Keynes
algebra. It follows from the averaging condition (see Jeffrey
1983) that the domains of both measures M and P is the set B -
N

2. If we define U(a) = M(a)/P(a) and apply the Radon-Nikodym
theorem to it, we obtain:

M@= _ u(B)dpp).

(where B = « should be understood as the ordering relation in-
duced by 8 - a = 1). Thus, it follows that:

P L BHPB).

We can in this way view u = dJ/dP as the utility function of the
Jeffrey-Keynes algebra and U(a) as the conditional expected
utility of a. Furthermore, we can also restate the uniqueness
theorem in the following way: if U(a) and U'(a) are two condi-
tional expected utility functions which satisfy the existence con-
ditions then there are real numbers a, b, ¢ and d satisfying the
uniqueness conditions such that:

:aU(cx)+b
cU(a)+d’

i.e. there is a fractional linear transformation between the two
functions;

Ula)=

U'(a)

3. From what was said at the beginning of this section about the
relationships between the propositions of the object language L
and its metalanguage L we can conclude that P(a) measures the
degree of rational belief in the partial truth of the proposition a
and represents thus the pragmatic probability of this proposition.
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In the same vein U(a) can be seen as the conditional expected
utility of a.

3.2. Partial Validity and the Systems PV and PT

Given a simple partial structure < it is natural to consider its J-normal ex-
tensions as the worlds of a Kripke structure for S5 with quantification, i.e.
we have a universe and several structures in which the language L can be
interpreted and where every world is accessible to every world. It is also
natural to extend the language L of the simple pragmatic structure J to a
modal language by the adjunction of the modal operator [] to its primitive
symbols. The operator [J which in modal logic represents the notion of
necessity corresponds in the present situation to partial validity (in a simple
partial structure J). Analogously, the possibility symbol < defined in terms
of (] and negation, corresponds to partial truth (in &). Thus, we can extend
the semantics of L in an obvious way and since the universes of all worlds
belonging to a simple partial structure are the same, it is reasonable to
suppose that in the present case equality behaves as necessary equality.

Among the partially valid formulas (those formulas a such that [J a is a
theorem of S5 with quantification and necessary equality) there are the log-
ically partially true formulas (those formulas a such that [] < a is a theo-
rem of the same system). In order to simplify our exposition, the former
class of formulas will be called strictly partially valid and the latter will be
called partially valid. The first class of formulas coincides with the set of
theorem of S5 with quantification and necessary equality and the second
one corresponds to Jaskowski’s logic associated to this same system (see
Da Costa and Doria 1995). Then, it is possible to formalise a logical system
that represents the notion of strict partial validity in the following way. We
start with a standard language L* for modal logics without function sym-
bols and the axioms of this system (called PV from now on) are:

1. If a is an instance of a propositional tautology, then a is an
axiom.

a,a — blb.

O(a - b)-» (da - Ob).

Oa - a.

Ca-0%a.

Vxa(x) - a(f), where t is an individual constant or a variable
free for x in a(x).

afll a.

a = b(x)la » Vxb(x).

x=x.

0. x=y- (alx) - a@)).

9y LA b

=0
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We can thus define the notion of deduction in the usual way, as well the
other well-known syntactic and semantic rules. For a full discussion of the
system PV see Da Costa, Bueno and French 1998.

In similar lines, it is also possible to formalise the notion of pragmatic
validity in a logical system that we will denote PT —the key intuition in
this new system is that there — a means in fact that < a is a strictly par-
tially valid formula. In fact, from this we can see that PT will be a.Jaskow-
ski’s discussive logic associated with PV, i.e. a is a theorem of PT iff ¢ a
is a theorem of PV.

Thus, if we denote by ¥Va any formula of the form Vx,Vx,...Vx,a and
use the same language L* as above, the axioms of the system PT will be the
following ones:

1. If a is an instance of a propositional tautology, then (] ¥Va is an
axiom.

2. O VVa, O VYV(a - b)YIVVD.

3. OVVY({d(a - b) » (Da - 0Ob)).

4. aOvv@da - a).

5. OvWCa -» OCa).

6. O VYV (Vxa(x) = a(f), t as above.

T. O VVa/a.

8. O VVae/OVVYO a.

9. <O YVala.

10. [OVV(a - b(x))OVV(a - VYxb(x)).

11.  Vacuous quantification can be introduced and suppressed in any
formula.

12. OVYVx(x=x).

13. OVV(x=y - (alx) < a(y))).

Again, further information and results about PT can be found in Da Costa,
Bueno and French 1998; for the sequel, it will be necessary to state only the
following theorem:

Definition 9 A pragmatic theory is a set T of sentences of PT such that ifc,,
cy,Cyarein T and {c,, cy,...c,} F— a, thenaisalsoin T.

Theorem 10 There exist pragmatic theories which are inconsistent but non-
trivial.

Proof: Let ¢ and M be respectively any individual constant and a monadic
predicate symbol of PT. The theory whose nonlogical axioms are M(c) and
—1M(c) is inconsistent but it is nontrivial, because the corresponding theory
of PV (whose nonlogical axioms are & M(c) and & — M(c)) is consistent.
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In effect, it is easy to construct a Kripke model for PV in which both ¢
M(c) and & — M(c) are true.

In other words, we have proved that PT is a paraconsistent system.

4. A Paraconsistent Theory of Decision

Then, from the constructions carried out in the previous section, it is easy
for us to show how to define a paraconsistent theory of decision under un-
certainty.

First of all, we construct a Jeffrey-Keynes algebra (as explained in the
subsection 3.1) using the language L* instead of L and considering the
logic PT in the place of the original set S of indeterminate propositions of
L. In other words, we will thus obtain a Jeffrey-Keynes algebra of the fol-
lowing type:

I Spr=(Bpp, =)

where B, is the Lindenbaum algebra obtained from (the metalanguage L*
of) PT.

Since in PT both a and —a can be deduced in PT (see theorem 10) it fol-
lows that in the Jeffrey-Keynes algebra ¥ § pr = ( Bpp, = ) both @ and —a
will be assigned nontrivial probabilities and utilities, which in turn amounts
to assigning nontrivial utilities to the contradictory propositions a and —a
in such a way that the corresponding degrees of rational belief in their par-
tial truth are also different from zero (we should observe that & and — e are
not contradictory propositions at the metalanguage level, for here the
negation of « is not a metalinguistic connective —in fact, they both are
what we have termed atomic pragmatic propositions in subsection 3.1).

Therefore, in this way we do obtain a paraconsistent theory of decision
under uncertainty, as stated in the beginning of the paper. Applications and

further philosophical aspects of the present system will be dealt with else-
where.
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