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SOME REMARKS ABOUT INDISTINGUISHABILITY AND
ELEMENTARY PARTICLES

Adonai S. SANT’ ANNA

Abstract

In the present survey we discuss some points about identity and indis-
tinguishability in quantum physics. Our emphasis is on the possibility
that quantum particles may have some kind of individuality, despite the
theories which regard them as non-individuals in a sense. We also
present some ideas which may conduct to a classical picture for
physical phenomena that are usually described by means of quantum
mechanics or quantum electrodynamics.

1. Introduction

The present survey mainly copes with foundational questions regarding
identity and indistinguishability among elementary (quantum) particles. In
this sense it is a philosophical work. We refer to the words of P. Suppes in
[30]:

We are no longer Sunday’s preachers for Monday’s scientific workers,
but we can participate in the scientific enterprise in a variety of con-
structive ways. Certain foundational problems will be solved better by
philosophers than by anyone else. Other problems of great conceptual
interest will really depend for their solution upon scientists deeply
immersed in the discipline itself, but illumination of the conceptual
significance of the solutions can be a proper philosophical role.

Therefore, it is necessary to settle some philosophical terms. By identity we
mean that if a and b are identicals, then they are the very same individual,
that is, there are no ‘two’ individuals at all, but only one which can be
named indiferently by either a or b. By indistinguishability we simply mean
agreement with respect to attributes. We recognize that this is not a
rigorous definition. Nevertheless such an intuition is better clarified in the
next section.
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Elementary particles that share the same set of state-independent (intrin-
sic) properties are usually said to be indistinguishable. Although classical
particles can share all their intrinsic properties, we might say that they
‘have’ some kind of quid which makes them individuals. Hence, we are
able to follow the trajectories of classical particles, at least in principle.
That allows us to identify them. In quantum physics this is not possible,
i.e., it is not possible, a priori, to keep track of individual particles in order
to distinguish among them when they share the same intrinsic properties. In
other words, it is not possible to label quantum particles.

The problems regarding individuality of quantum particles have been dis-
cussed in recent literature by several authors. Some few of them are [4] [6]
[14] [16] [24] [26] [34]. On the possibility that the collections of such
entities should not be considered as sets in the usual sense, Yu. Manin [21]
proposed the search for a axioms which should allow to deal with
collections of indistinguishable elementary particles. As he said,

I would like to point out that it [standard set theory] is rather an extra-
polation of common-place physics, where we can distinguish things,
count them, put them in some order, etc.. New quantum physics has
shown us models of entities with quite different behaviour. Even sets
of photons in a looking-glass box, or of electrons in a nickel piece are
much less Cantorian than the sets of grains of sand.

Other authors [6] [13] [14] have also considered that standard set theories
are not adequate to cope with some questions regarding microphysical phe-
nomena. These authors have emphasized that the ontology of microphysics
apparently does not reduce to that one of usual sets, due to the fact that sers
are collections of distinct objects.

Nevertheless, it has been recently proposed that standard set theory is
strong enough to deal with collections of physically indistinguishable quan-
tum particles [26], as we discuss with some details in the next Section. In
Section 3 we make a very brief discussion on quasi-set theory in the context
of quantum theory. In Section 4 we continue our dicussion about a classical
picture for the quantum world by means of the particular description for
photons proposed by Suppes et al. [31] [32] [33]. In Section 5 we present
some final remarks.

2. Indistinguishable particles and hidden variables

We intend to show here that it is possible to distinguish, at least in prin-
ciple, among particles that are ‘physically indistinguishable’, where by
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‘physically indistinguishable’ particles we mean, roughly speaking, those
particles which have the same set of measurement values for their intrinsic
properties. In a previous work [26] we assumed that ‘physically indistin-
guishdble particles’ are those which have the same set of measurement
values for a correspondent complete set of observables. It seems clear that
such a modification simplifies our conceptual framework and it is closer to
the usual understanding about the meaning of (physical) indistinguishabil-
ity. A kind of distinction is possible if we consider each particle as an or-
dered pair whose first element is the mentioned set of measurement values
of the intrinsic properties and the second element may be viewed as a hid-
den property (a hidden variable) which corresponds to something which,
intuitivelly speaking, was not yet measured in laboratory. The mentioned
‘hidden property’ may assume different values for each individual particle
in a manner that it allows us to distinguish those particles which are
‘physically’ indistinguishable. Obviously such a hidden property appears to
have a metaphysical nature, in a sense to be made precise. This is the kind
of metaphysics that we advocate. The ‘reasonable’ metaphysics should be
that one which could provide a hope for a future new physics. This future
new physics may correspond to more extended physical systems that are
not, untill now, measured in laboratories.

As remarked above, our concern here is only with the process of labeling
physically indistinguishable particles. So, although we are not interested in
describing here an axiomatic framework for quantum physics, quantum
mechanics or even mechanics, we expect that our approach can be extend-
ed in order to encompass them. All that follows is performed in a standard
set theory like Zermelo-Fraenkel with Urelemente! (ZFU).

Our picture for describing indistinguishability issues in quantum physics
is a set-theoretical predicate, following P. Suppes’ ideas about axiomatiza-
tion for physical theories [29].

Hence, our system has five primitive notions: A, X, P, m, and M. A is a
function A:N— N, where N is the set {1,2,3...,n}, n is a nonnegative integer,
and R is the set of real numbers; X and P are finite sets; m and M are unary
predicates defined on elements of P. Intuitivelly, the images A; of the func-
tion A, where i € N, correspond to our hidden variables. We denote by Ay
the set of all A;, where i € N. X is to be intuitivelly interpreted as a set such
that its elements correspond to measurement values of the state-indepen-
dent properties like rest mass, electric charge, etc.. The elements of X are
denoted by x, y, etc. P is to be physically interpreted as a set of particles.

]Although it does not matter if we have Urelemente in our formal framework, we
consider that for future extensions of such a work we will need atoms or Urelemente. These
atoms (in the set-theoretical sense) may be interpreted as elementary particles.
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m(p), where p € P, means that p is a microscopic particle, or a micro-ob-
ject. M(p) means that p € P is a macroscopic particle, or a macro-object.
Actually, the distinction between microscopic and macroscopic objects as
mentioned here does not reflect, at least in principle, the great problem of
explaining the distinguishability among macroscopic objects, since these
are composed of physically indistinguishable things. As it is well known,
Schrodinger explained that in terms of a Gestalt [27]. Nevertheless, this
still remains as an open problem from the foundational (axiomatic) point of
view.

Definition 2.1 ¢ = (A,X,P,m,M) is a system of ontologically distinguish-
able particles, abbreviated as %q-system, if and only if the following six
axioms are satisfied:

D1 A:N - R is an injective function, whose set of images is denoted by Ay.
D2 PC X x Ay

We denote the elements of P by p,q,r,... when there is no risk of confusion.
Definition 2.2 (xA) = (,A)) & x =y Ni=].
Definition 2.3 (x A) = (y,A)) & x=y.

= is a binary relation which corresponds to our ontological indistinguish-
ability between particles, while = is another binary relation which corre-
sponds to the physical indistinguishability between particles.

Definition 2.2 says that two particles are ontologically indistinguishable
if and only if they have the same set of measurement values for their intrin-
sic physical properties and the same value for their hidden variables. Defi-
nition 2.3 means that two particles are physically indistinguishable if and
only if they have the same set of measurement values for their intrinsic
(physical) properties.

D3 (Vx,y € X)(VA, € A(({x,A) EPA(A) EP) » x=y).

D4 (Vp,g € PYM(p) \M(q) » (p =q > p=q)).

D5 (Vp.g € P)p = q/\ = (p = gq) > m(p) N\ m(g)).

D6 (Vx € X)(VA; € AN ((m((x,A)) v M((x,A)) /N = (m({(x,A)) /\
M({xA))).

Axiom D1 allows us to deduce that the cardinality of Ay coincides with the
cardinality of N (#Ay = #N). Axiom D2 just says that particles are repre-



INDISTINGUISHABILITY AND ELEMENTARY PARTICLES 49

sented by ordered pairs?, where the first element intuitively corresponds to
measurement values of all the intrinsic physical properties, while the
second element corresponds to the hidden inner property that allows us to
distinguish particles at an ontological level. Yet, axioms D2 and D3 guar-
antee that two particles that share the same values for their hidden variable
are the very same particle, since our structure is set-theoretical and the
equality = is the classical one. Axiom D4 says that macroscopic objects that
are physically indistinguishable, are necessarily identicals. Axiom D5 says
that two particles physically indistinguishable that are not ontologically
indistinguishable (they are ontologically distinguishable) are both
microscopic particles. Axiom D6 means that a particle is either microscopic
or macroscopic, but not both.

Axiom D4 deserves further explanation. Let us observe that it was not
postulated the existence of (in particular) micro-objects; but the axiomatic
is compatible with such an hypothesis. Axiom D4 entails that (ontologi-
cally) distinct macro-objects are always distinguished by a measurement
value; if two particles are macro-objects, then there exists a value for a
measurement which distinguish them. Then, macro-objects, in particular,
obey Leibniz’s Principle of the Identity of Indiscernibles and we may say
that (according to our axiomatics) classical logic holds with respect to them
while micro-objects may be physically indistinguishable without the neces-
sity of being ‘the same’ object.

In [26] the axiomatic framework for a system of ontologically distin-
guishable particles is a little different from the present formulation. The
main difference is on axiom D5, which does not exist in [26]. Such an
axiom is necessary to prove the theorem that we present in the next subsec-
tion.

We discuss in [26] how our approach is out of the range of the well
known proofs on the impossibility of hidden variables in the quantum theo-
ry, like von Neumann’s theorem, Gleason’s work, Kochen and Specker re-
sults, Bell’s inequalities or other works where it is sustained that no distri-

2In (4] the authors discuss the possible representation of quantum particles by means of
ordered pairs (E,L), where E corresponds to a predicate which in some way characterizes the
particle in terms, e.g., of its rest mass, its charge, and so on, while L denotes an appropriate
label, which could be, for example, the location of the particle in space-time. Then, even in
the case that the particles (in a system) have the same E, they might be distinguished by their
labels. But if the particles have the same label, the tools of classical mathematics cannot be
applied, since the pairs should be identified. In order to provide a mathematical distinction
between particles with the same £ and L, these authors use quasi-set theory [13] [14]. In the
present picture, according to axioms D1-D3, it is prohibited the case where two particles
have the same (ontological) label.
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bution of hidden variables can account for the statistical predictions of the
quantum theory [3].

2.1.  Whar abour indistinguishability?

It is natural to ask: what about the quantum phenomena of the microscopic
world where indistinguishability plays an important role?

In order to get the quantum distribution functions, e.g., it is necessary to
assume that quantum particles may be indistinguishable in some sense pre-
cisely established. In the case of fermions, it is also assumed Pauli’s exclu-
sion principle.

Loosely speaking, Pauli’s principle states that two or more fermions can-
not occupy the same state. This happens because a state like | k') | k') is
necessarily symmetrical, which is not possible for fermions. Different states
also cannot be used to label fermions, since a fermion can change its state.
In the case of bosons, the situation is more dramatic, since we may have
several bosons occupying the same single state. Then, even if we have a
collection of physically indistinguishable bosons or physically indistin-
guishable fermions, is it possible to find a reasonable way to express this
into the framework of a standard set theory? In our picture, the answer is
positive. But before we do that let us state the following theorem:

Theorem 2.1 If X is a unitary set and P has more than one element (the
cardinality of P is greater than 1) then (Vp € P)(m(p)).

Proof: Consider x € X as the unique element of X. Since P has more than
one element then there exist p = (x,A;) and g = (x,A;) such that p # g. Thus
A; # A, according to axiom D3. Therefore p and g are microscopic particles
according to axioms D5 and D6.0]

In order to cope with, e.g., a collection of fermions we consider, as a first
assumption, a @y-system with X as a unit set and several particles, that is,
all particles are microscopic. So, fermions are microscopic particles be-
cause they are physically indistinguishable objects. It should be empha-
sized that by considering fermions, we assume that the unique element x €
X corresponds to the measurement values of all state-independent proper-
ties. Our second assumption is Pauli’s exclusion principle. But before that,
we need to establish the meaning of the symmetrical and the antisymmetri-
cal states.

Without loss of generality, we consider a system of two physically indis-
tinguishable particles, ontologically labeled as particles (x,A;) and (x,A,), or
simply A, and A,, if there is no risk of confusion. If we are concerned with
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a rigorous notation, we should denote the state of particle A, in the Hilbert
space formalism, as | k', (x,A,)), where k' corresponds to the extra ‘physical’
information that is not available at x. But we prefer the abbreviate notation.

The same state is denoted as ki.)' Likewise, we denote the ket of the

remaining particle by

kY ) Hence, suppose that particle A, is character-
ized by the state vector

k,’_l ), where k' stands for a collective index for a

complete set of observables (commuting or not). The state ket for the two
particles system is

() k)
If a measurement is performed on this system, it may be obtained k' for one

particle and k" for the other one. But, actually, it is not possible to know if
the state ket of the system is ) Ik” ) k"|>
nation c, Ikl') k; > +c, k! |k’ > This is called the exchange degener-

acy, which means that to determme the eigenvalue of a complete set of
observables is not sufficient for uniquely specifying the state ket.

Using a notation similar to [25] we define the permutation operator P,,
by

k; ) or any linear combi-

P ) [k2,) = [i5) [k @
It is obvious that P,, = P}, and that P,Z2 = 1. In the case of fermions:
P i) [k, ) == [k, ) [k ®

or, in the more general situations:
P;; | n physically indistinguishable fermions)
= — | n physically indistinguishable fermions), 4)

where P;; is the permutation operator that interchanges the particle ontolog-
ically labeled A; with the particle ontologically labeled A;, where i and j are
arbitrary but d:stmct elements of N.

In our picture, it is possible to count fermions, since anyone of them is
associated to a particular distinct label. So, we may deal with collections of
fermions as sets. It is also clear what is meant by saying that a system of
fermions is totally antisymmetrical under the interchange of any pair, since
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the meaning of the word ‘interchange’, according to equation (2), was made
clear. Thus, we observe that by equation (2),

k) e ) = ) [k, ), (5)

which contradicts equation (4). Hence, as expected, fermions cannot ‘occu-
py’ the same physical state, which is the exclusion principle in our lan-
guage of hidden variables.

Since we have characterized the permutation operator, the symmetrical
and the antisymmetrical states, Pauli’s exclusion principle and the labeling
of quantum particles, now it is possible to deduce the quantum distribution
functions.

Consider, for that, as exemplified in [10], a narrow energy range of about
10-33J, which is usually referred to as an energy bin. Such a bin contains
about 10'° discrete energy levels. In order to get the quantum distribution
function for bosons, we need to calculate the number of ways of distribut-
ing v physically indistinguishable particles within K discrete energy levels,
which is given by:

7= (K+ yv—1)!
(K-D!v!
We could also say that / corresponds to the number of ways of choosing K
occupation numbers N, such that >N, = v, where i denotes i-th discrete
energy level.
In the case of fermions, N; can be either 0 or 1 only. In this case, we have:
1
P Bt
(K—wv)!v!
The important point is that K and » are interpreted as cardinalities of sets. K
corresponds to the cardinality of the set of discrete energy levels within a
certain bin and v is the cardinality of the set of physically indistinguishable
particles (either bosons or fermions) within a certain bin. These physically
indistinguishable particles may be viewed as elements of a set, if we con-

sider them as the ordered pairs, as presented in our axiomatic framework.

From now on, the calculation of quantum statistics is standard. For details
see [10].

P12

(6)

(7

2.2. The Helium Atom

The helium atom is the simplest realistic situation where the problem of
individuality plays an important role. In [26] we do not discuss this impor-
tant point, but see [16]. With the identity question ignored, the wave func-
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tion of the helium atom should be just the product of two hydrogen atom
wave functions with Z = 1 changed to Z = 2. Nevertheless, the space part of
the wave function for the case where one of the electrons is in the ground
state (100) and the other one is in excited state (nlm) is:
|
o(x,,X,) = ﬁ['f’m(xl)‘/’nm(xz) E Wi (X)W (X1, (8)

where the + (-) sign is for the spin singlet (triplet)? and x, and x, are the
vector positions of both electrons.

For the ground state, however, the space function must be necessarily
symmetric. In this case, the problems regarding identity have no physical
effect. The most interesting case is certainly the excited state. From a
realistic point of view, equation (8) reflects our ignorance on which
electron is in position x; and which one is in position x,. Nevertheless, in
the same equation there are terms like g (X;), which correspond to a
specific physical property of an individual electron, labeled by its position
X, in space.

We could interpret our hidden variables A, as the space-time positions of
particles if we adopt Bohmiam mechanics to describe quantum phenomena.
According to Bohm’s causal interpretation for quantum mechanics, ele-
mentary particles do have well defined trajectories [3], despite the fact that
the followers of Bohm’s ideas do not consider space-time trajectories as
legitime hidden variables [11].

2.3. Hidden variables and the incompleteness of quantum physics

Another natural question is the following: are we assuming that quantum
physics is an incomplete theory, since we are using a sort of hidden variable
formalism? The answer is: not necessarily.

There is a new technique in quantum optics called interaction-free mea-
surement. This technique was predicted by Elitzur and Vaidman [8] and
Kwiat et al. performed a preliminary demonstration of such an effect in
laboratory [17]. It is basically a consequence of one of the most intriguing
aspects of quantum mechanics, namely, nonlocality. Elitzur and Vaidman
showed that it is possible to ascertain the existence of an object in a given
region of space without interacting with it. Some people have questioned if
such a technique violates Heisenberg’s uncertainty principle [19]. We do
not want to discuss the details about that. But certainly some foundational
aspects of quantum theory should be revised.

3Spin singlet refers to total spin zero and spin triplet refers to total spin different of zero.
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We question if it is possible to propose an experiment which allows us to
keep track of individual electrons in order to distinguish among them by
using the technique first proposed by Elitzur and Vaidman. If that is possi-
ble, then we could interpret our hidden variables as the space-time trajecto-
ries of the elementary particles. Following Schrédinger’s terminology [28],
that would be a manner to mark or to ‘paint’ electrons. Since our concept of
physical indistinguishability refers just to the set of measurement values of
intrinsic properties, it seems reasonable to consider that our hidden vari-
ables may correspond to the history of each particle, i.e., the space-time tra-
jectory.

We recognise the problems about these ideas, if we restrict our discus-
sions from the point of view of the usual interpretation for quantum phys-
ics. Nevertheless, we recall that there are other interpretations [2] [3] [31]
[32] [33].

We return to this discussion in Section 4.

It seems clear that the way physicists usually do in labelling particles, de-
spite the dificulties this procedure causes with respect to the foundations of
physics [5] [14], it has a ‘rationale’ by itself.

Hence, by assuming some sort of distinguishability among elementary
particles that share the same set of intrinsic properties, we do not contradict
quantum distribution functions or other phenomena of the quantum world
where (physical) indistinguishability plays a decisive role like the Helium
atom.

The importance of indistinguishability among elementary particles in the
case of interference is discussed at the end of the paper.

3. Quasi-set theory and quantum theory

Quasi-set theory is based on Zermelo-Fraenkel axioms and permits to cope
with collections of indistinguishable objects by allowing the presence of
two sorts of atoms (Urelemente), termed m-atoms and M-atoms [13] [15].
A binary relation of indistinguishability between m-atoms (denoted by the
symbol =), is used instead of identity, and it is postulated that = has the
properties of an equivalence relation. The predicate of equality cannot be
applied to the m-atoms, since no expression of the form x = y is a formula if
x or y denote m-atoms. Hence, there is a precise sense in saying that m-
atoms can be indistinguishable without being identical.

The universe of quasi-sets is composed by m-atoms, M-atoms and quasi-
sets. The axiomatics is adapted from that of ZFU (Zermelo-Fraenkel with
Urelemente), and when we restrict the theory to the case which does not
consider m-atoms, quasi-set theory is essentially equivalent to ZFU, and the
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corresponding quasi-sets can then be termed ‘ZFU-sets’. The M-atoms play
the role of the Urelemente in the sense of ZFU.

In order to preserve the concept of identity for the ‘well-behaved’ ob-
Jects, an Extensional Equality (=) is introduced for those entities which are
not m-atoms on the following grounds: for all x and y, if they are not m-
atoms, then x =g y corresponds to say that Vz(z € x & z € y) v (M(x) \
M(y) /\ x = y). It is possible to prove that = has all the properties of class-
ical identity.

It seems reasonable to assume that the hidden variables formalism pre-
sented above may be an interpretation for quasi-set theory. The M-atoms
and m-atoms of quasi-set theory should be interpreted, respectively, as the
‘macroscopic particles’ and ‘microscopic particles’ of the hidden variables
formalism. The binary relation = of quasi-set theory should be interpreted
as the ‘physical indistinguishability’ relation of the hidden variables
formalism, which has a second binary relation called ‘ontological
indistinguishability’ with no correspondence in quasi-set theory.

In [16] a quasi-set theory for bosons and fermions is presented. The au-
thors obtain the quantum distribution functions (Fermi-Dirac and Bose-
Einstein) and discuss the Helium atom. Unfortunatelly, we cannot give all
the details about [16] since that paper is still being prepared. Besides, to use
quasi-set theory for dealing with collections of quantum particles means
that we consider non-individuality right at the start and this is an as-
sumption that we intend to avoid in this paper. As we remarked in the
beginning of our text, our intention is to work on the possibility that ele-
mentary particles may be considered as individuals of some sort.

Nevertheless, even in quasi-set theory non-individuality may be naturally
interpreted as an individuality which is somehow ‘veiled’.

4. Virtual photons

Consider two electrons at points A and B in space-time, ending up at points
C and D. Such an event can happen in several different ways. There can be,
for example, a photon exchange between the two electrons, which is not
detected in the initial or final conditions of the experiment. Such an ex-
changed photon is usually called a ‘virtual photon’, as remarked by R.P.
Feynman [9]. Due to the fact that we cannot label electrons, there is no way
to know if the electron at point C is the same one which was at point A. So,
there is no way to know if actually a virtual photon was exchanged or not.
Returning to our previous discussion about interaction-free measure-
ments, we wonder if it is possible to keep track of both electrons in
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order to distinguish between them by using some variation of the experi-
ment proposed by Elitzur-Vaidman. That is just a conjecture, but motivated
by experimentation and by the formalism of quantum mechanics itself.

There are other kinds of ‘virtual photons’ in the literature. We call the
virtual photon refered to above as f-virtual-photon. The letter f accounts for
Feynman.

Suppes and de Barros [31] began a foundational analysis on diffraction of
light. It was formulated a probabilistic theory of photons with well-defined
trajectories. The wave properties come from the expectation density of the
photons. The photons are also regarded as virtual, because they are not
directly observable, including their anihilation of each other (according to
the assumptions given below). What can be detected is the photon-matter
interaction. The meaning of virtual used here is not the same as in the case
of f-virtual-photons. The assumptions are:

* Photons are emitted by harmonically oscillating sources;

* They have definite trajectories;

* They have a probability of being scattered at a slit;

Absorbers, like sources, are periodic;

* Photons have positive and negative states (+-photons and —photons)
which locally interfere, when being absorbed;

* Photons change their states when reflected by a perfect conductor.

In this particular description for photons, we call virtual photons as s-vir-
tual-photons.

The assumptions given above are supposed to be somehow natural for
particles. From these assumptions we can define fields as we do below, as a
purely probabilistic concept. Consequently, the probabilistic properties of
the defined field are derived in a manner familiar from stochastic processes
from the properties of collections of the sample paths, i.e., trajectories of
photons. It remains to be seen whether this reduction of fields to distribu-
tions of particles with linear trajectories can be carried through for all phe-
nomena usually described by QED, like Aharanov-Bohm effect, anomalous
magnetic moment of the electron, Lamb shift, Casimir effect, etc.. For now,
such a conjecture seems unlikely, since there is no process of quantization
to justify our assumption that the vacuum state has energy #Aw and mo-
mentum L%k, where k = w/c, and w is the frequency of the Source which
‘generate$’ the s-virtual-photons.

In the case of the Casimir effect, the particle model presented is used to
calculate pressure exerted on certain plates in the spirit of the particle theo-
ry of classical statistical mechanics. Nevertheless, we do not use (in prin-
ciple) any quantization process to get the reduced Planck’s constant %. It is
one of our proposed open problems to define a transformation group
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from which Planck’s constant may naturally arise. It could be, e.g., the con-
formal group, since from the Poincaré group we get only the speed of light
&
The expected density of +-photons emitted at instant 7 in the time interval
dr is given by

s5;(8)= %(1 * coswt), 9

where  is the frequency of a harmonically oscillating source, A, is a con-
stant determined by the source, and ¢ is time. If a photon is emitted at ¢', 0
= t' = t, then at time ¢ the photon has traveled (with speed c) a distance r,
where
o
t—t'=—. (10)
c
The conditional space-time expectation density of +-photons for a spheri-
cally symmetric source with given periodicity w is:

h,(t,v|w) = A2 (I:tcosa)(t—ijj, (11)
- 8rr

C

where A is a real constant.
The scalar field defined in terms of the expectation density h.(z,r|w) is

h,—h

e, 12
O Jh +h o

where & is a scalar physical constant. Using (11), (12) may be rewritten for
a spherically symmetric source as:

e=¢, 2cosw(r—ﬁj. (13)
4rr c

Suppes et al. [32] applied the particular description for photons in order to
explain the Casimir effect [23]. We do not discuss here the details about the
particular description for diffraction of light because it does not provide any
insight about the very nature of photons with respect to individuality. Since
the explanation for the Casimir effect is presented in [32] by using some
usual techniques derived from statistical mechanics, we concentrate our
discussions on this topic.

In the cited paper it was first considered the simplest case, where two
perfectly conducting parallel plates, stand face to face in vacuum at a
distance d much smaller than their lateral extensions. It is well known that
such plates attract each other with a pressure due to the vacuum energy, as
predicted by Casimir, given by
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2

pe_ b4 hc4 . | (14)
240d

Usually, such an attraction is explained in terms of the vacuum field. We

consider that in the vacuum there is a non-vanishing energy which could be

associated to virtual photons in a sense to be made precise. A random dis-

tribution of oscillating sources of photons, in the vacuum, which do not

interfere with each other, is used to derive (14), as it follows.

The photons outside the plates that strike such surfaces act to push the
plates together, while reflections of the photons confined between the plates
push them apart. This idea was proposed by Milonni, Cook, and Goggin
[22] and also presented in [23], but not actually developed from a pure
particle viewpoint. Milonni presented virtual photons as particles associated
to the quantum vacuum state. Such particles are called, in this paper, as v-
virtual-photons, where the letter v accounts for vacuum.

The particles that we are considering should satisfy a probability density
fik) = 0. Rather than assume an explicit expression for f{k) (which requires
some assumptions about the virtual photons), it is preferred to state some
properties that f{k) must satisfy:

(1) J:j: _[:f (k)dl’cxdk_‘,dkz =1, and the mean and the variance of f(k)
are finite;

(i)  There exists a constant H such that h(t,rs|k) < H;

(i)  h(trs|k) f (K)]io = 1, and all derivatives of this expression vanish at k.

From (i)~(iii) and assumptions made earlier, it may be inferred that the
number of v-virtual photons is finite for any bounded region of space-time.
It may be also inferred that h(t,rs |k) f (k)|;— = O, which is intuitively an ex-
pected property of a cutoff function.

The xyz space is divided into parallelepipeds of sides L,, L,, and L, asin
the usual description of QED. So, all k,, &,, and k. must assume discrete
values, as it is explained in the next paragraphs.

A photon changes its state from positive to negative and vice versa when
it is reflected. This implies that the defined scalar field, given by (12), van-
ishes at the reflecting surface. So, according to (13) and recalling that £ =
w/c, we have at the wall:

cos(a)t—a)iJ=cos(a)t—kr)=0. (15)
C
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If we set wt = 7/2, which corresponds to a convenient choice for the origin
of time, it is easy to see that the values of k,, k,, and k; that satisfy the
boundary conditioninx=L,, y=L,, and z = L, are:

k n

X,¥,2

T L

x,v,2

Notwithstanding, one natural question arises: what about the photons with
linear momenta that do not satisfy (16)? We recall that reflectors, like
absorbers [31], behave periodically, since the photons are continuously hit-
ting the plates. Thus, the probability of reflecting a photon is given by:

(16)

p=C(l +cos(wt+ ), (17)

where i is a certain phase. If p = 0, then there is no interaction with the
plates, which means that no momentum is delivered to it.

As an example, consider the first strike of a photon on a plate perpendic-
ular to the z axis. Such a surface is not oscillating before the strike. But
after reflectidn, the wall oscillates with the same frequency w associated to
the linear momentum & = w/c. The particle reflects on the other wall and re-
turns to the first wall with a phase 2L, k,. But we must have 2L, k, = 2nr,
from (17), if the particle is to be reflected again on its return to the first
wall. Obviously, cos(w t — 2L, k,) = cos(w ¢) if and only if 2L, k, = 2n.

If we consider L, , very large compared with any physical dimensions of
interest, we can assume that the k.., approach a continuum. This is what
holds for photons outside the plates.

Now, the inward pressure: the expected number of photons that strike the
area dS of one of the plates, i.e., have trajectories in the direction of the
plates, within the time interval dt is

ht,r k) f(k)% dkdk,dk, cos ¢ dt dS, (18)

where 7 is the angle of incidence of the photons on the plate with respect to

the normal of the surface, i.e., cos y = k/k, where k = «‘/kf +kf +k22 ;
Thus, the element of volume that we are taking into account is cos y c dt

dS. The factor % is justified by (16), since outside the plates we approach
T

the continuum as an idealization or a limit.

The momentum delivered to the plate by a single reflected photon is
equal to the negative of the change in the momentum of the photon. Hence,
the momentum is equal to Z%ﬁkz, if we consider the plate perpendicular to
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the z component of the xyz system of coordinates. Therefore, the expected
linear momentum transfered to an area dS on the plate during the time
interval dt is

2
%%h(n rolk) £ (k)dk,dk,dk.c dt dS. (19)

The force on the plate is obtained by dividing (19) by dr. The pressure is
obtained by dividing the force by dS. We denote the inward pressure as P,
and the outward pressure as P,,,. Hence:

dP. hc kZh(t, rs|k)f(k)dk dk, k..

in (20)
N &
Integrating over momentum:
2
j' e, [ ak, [ i MO GO @1

\/kz +k+k?

The equation given above is identical to a result due to Milonni, Cook and

Goggin [22], if we consider that h(t,r |k) f (k) has the role of the usual cut-
off function.

To get the expression for the outward pressure we use similar arguments.
Nevertheless, because of the small distance d between the plates, we must
take into account the periodicity given in (16), at least for the z component.
For this small distance d, the continuum approach does not hold. Thus:

2
ht, rslk)f(k)(%)

—.
\/kf+k2+(—m)
! d

We note that it follows from (i)~(iii) that P,, and P,,, are both finite.
The resultant pressure is given by:

P, = ;ffd gj:dkx [ ak, (22)

Poy—Pip=
zhcz J dx h(t,ro|x,u) f(Nx+n*) _
4d* ‘\/x+n2
n’he = ) ™ X+l
o [ dui [ dx T 23)
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242 kld?
where, by change of variables, fik) = AVx+u’), x=x'2 = k—iz— ;- —"nz_, u

k__‘ 2

|, and dk,dk, =x'dx'd@ *.. The expression h(t,rs|x, u) f
kz ? dz
(Vx+u®) corresponds to a cutoff function. In this conceptual framework
h(t,rs |k) is bounded and f(~ x +u”) has the physical interpretation of a

probability density of the frequencies of the photons.

Frequently it is assumed that the cutoff function has the property of going
to zero as k approaches infinity and going to one when k approaches zero.
This is justified physically with the hypothesis that the conductivity of the
reflecting conductors decreases to zero as the frequency gets high. Since
h(t,rs|k) is bounded, it is easy to see that the product A(z,rs k) f (k) must as-
sume a similar role with respect to the cutoff, from a mathematical stand-
point. According to the mathematical assumptions that were made about
h(t,rs|k) and fik), all the properties of a cutoff function are satisfied for
h(t,rs|k) f (k).

If we consider:

= kzi, f = tan
T

h(t,r

x,u) f(Nx+u®)
Vx+u’ '

it is clear that the Euler-MacLaurin sum formula [1] may be applied to (23).

F(u) = uzj:dx 24)

The factor that is multiplying ’:ZT in (23) may be written as:
1

- e ]' 1 r I L4
Z}F(n) - jodup(u) == B~ PO+ = F ... (5

for lim, _,.F(u) = 0, since z; F(n) is finite and so lim, ,..F(n) = 0. Note

that F(0) = 0, F'(0) = 0, F"'(0) = —12h(t,r; IO), and all higher derivatives
F®(0), where n is odd, vanish in accordance with assumption (iii). Since
by (iii) h(t,rs|0)A0) = 1:

2
Pom—Pr'n=_ ﬂhcd,‘
240d

Equation (26) is identical to (14), which completes our derivation of the
Casimir effect for parallel plates.

In [32] the case for the solid ball is also discussed. Actually, the literature
about the Casimir effect is huge. We do not intend to discuss about this in
the present paper.

(26)
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4.1. Remarks

One of our points in this Section is about the identity issues of ‘virtual pho-
tons’. If we refer to f-virtual-photons, it is obvious that we are talking about
a possible exchanging of photons (in the usual sense). Nevertheless, if we
are talking about virtual photons in the sense of particles associated to the
quantum vacuum state, as in [22], the question is: are these virtual photons
indistinguishable? Milonni et al. [22] refer to those virtual photons as parti-
cles. Nevertheless, their calculations for the Casimir effect are performed in
terms of the vacuum field and not in terms of particles. In [32] Suppes et al.
make all the calculations for the Casimir effect by assuming a particular
description. Their method is very similar to the usual treatment given for
statistical dynamics. So, those photons should satisfy a probability density
flk) = 0. Rather than assume an explicit expression for f(k) (which requires
some assumptions about the virtual photons), it was preferred by the au-
thors to state some few general properties that f{k) should satisfy.
Let us analyze some possibilities:

1. The particular description by Suppes et al. is classical in the sense
that there is no process of first or second quantization. So, one rea-
sonable assumption is to consider that s-virtual-photons and, in par-
ticular, v-virtual-photons, are classical particles, i.e., distinguishable
particles. Thus, they should satisfy Maxwell-Boltzmann statistics.
Nevertheless, there is no choice of parameters in Maxwell-Boltz-
mann statistics which allows an agreement between equation (23)
and the usual descriptions for the Casimir effect. Besides, there are
experimental facts which cannot be ignored. Lamoreaux [18], e.g.,
measured the attraction between a gold-plated sphere and a gold
plate, agreeing with the usual theory to within 5%. So, it seems that
the usual descriptions for the Casimir effect are very reasonable.

2. If s-virtual-photons do not satisfy Maxwell-Boltzmann statistics then
we could admit the possibility that they are indistinguishable, despite
the classical picture. There are two usual statistics for indistin-
guishable particles, namely, Bose-Einstein and Fermi-Dirac. Bose-
Einstein applies for photons, for example. Nevertheless, there is
again no choice of parameters in Bose-Einstein statistics which
allows an agreement between equation (23) and the usual
description. In certain cases Fermi-Dirac may be used. We mean by
that that Fermi-Dirac distribution function may be used in equation

(23) in order to get equation (26). Nevertheless, it seems risky to
assume
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that s-virtual-photons do satisfy Fermi-Dirac statistics. Usually, such
an statistic is associated to particles with half integer spin.

3. One could investigate the possibility that s-virtual-photons do satisfy
other statistics than Maxwell-Boltzmann, Fermi-Dirac or Bose-Ein-
stein.

We should recall that this particle description is a local theory of photons
which violates Bell’s inequalities [33]. Our intention is not to advocate the
particular description of photons as a better alternative than QED. Our in-
tention is to compare alternative ideas and to try to understand possible
consequences of such ideas. These ideas may be seen as tools for a better
understanding of the microscopic world and even of QED. The possibility
of a classical explanation for elementary particles seems at least interesting,
mainly for those people who are concerned with questions like non-locality,
wave-particle duality and indistinguishability.

5. Final remarks

1. It is usually considered that the interference produced by two light
beams is determined by both their mutual coherence and to the indis-
tinguishability of the quantum particle paths. Our present discussion
in this paper is focused only on the ‘corpuscular’ features of quantum
particles, in the sense that we are not dealing with coherence. Mandel
has proposed a quantitative link between the wave and the particle
descriptions by using an adequate decomposition of the density
operator [20]. He considers, in his calculations, a density operator
corresponding to an incoherent mixture of states, which would be
associated, in principle, to some experimental setup that allows to
identify the source of the detected photon. Mandel does not present
such an experimental setup. In the particular description of photons
by Suppes et al. indistinguishability is not assumed and all wave
properties come from the expectation density of the photons. So, in
principle, there is no link between indistinguishability and coherence.

2. The unique difference between the electron and the negative muon is
their rest mass [12]. This intriguing physical phenomenon has moti-
vated Dirac [7] to propose a model for the electron in terms of a
membrane which should allow to assume that the muon is an elec-
tron in an excited ‘state’. There are two important points about this.
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First, if an electron is a membrane, then it may be individualized in
some sense. The second point is a bit more critical. If the muon is an
excited electron then it is possible, using Schrédinger’s terminology
[28], to paint electrons, at least in principle. In other words, it is pos-
sible, in principle, to mark or individualize electrons by changing
their intrinsic properties, mainly for those cases where there are just
two electrons.
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