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OVERCLASSICAL LOGIC

Newton C.A. DA COSTA and Jean-Yves BEZIAU!

Abstract

We introduce a logic with a negation which obeys neither the principle
of non contradiction, nor the principle of excluded middle, but which
obeys all De Morgan's laws as well as the two laws of double negation.

1. Introduction: relative complement

A good picture of how classical negation works is given by the extension-
alist viewpoint in a boolean algebra of sets where classical negation is
represented by the complement operation. Let us call U the universe (or
domain) of the algebra; an element A of the algebra is a subset of U and its
complement A is the part of U which is not covered by A, thus we have
the following well-know diagram:
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The complement operation induces a bipartition of the universe.

This operation is related to such a method as the method of dichotomy
used by Plato. This operation is very strong and powerful, it permits us to
think about some non-definable or non-axiomatizable or non-recursive
notions. For example the complement of the concept “plumed biped” is
something hardly definable by other means. In first-order logic, the com-
plement of the concept of “valid formula” is neither axiomatizable nor
recursive, but in some sense the complement operation gives us a way to
think about it.

However, this notion of complement may also be criticized. If we want to
have on both sides, a “meaningful” extension, this bipolarisation seems
quite artificial. A bipolarization like Night and Day which surrounds us is
maybe the origin of the idea of bipolarisation... but it is even subject to
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criticisms from the point of view of another argument, the favorite argu-
ment of the fuzzy logicians, the argument of the grey zone.

Most of the time the things are not Black or White they say, there is a
fuzzy zone, where the things are Grey. The turning of the Day into Night is
not instantaneous, there is a period which is both Day and Night, the Day is
not yet finished and the Night has already begun, this is the Twilight zone,
in French: “a la nuit tombante” and “au tombée du jour” are synonymous.

On the other hand, there is a special moment which is neither Night nor
Day; we are not speaking about the Dawn, but something which is called
the Blue Hour, which is characterized by a moment of silence, a silence
which is a break between the noise produced by the animals of the night
and the noise produced by the animals of the day, a moment which is a
kind of out of time well-described in the movie of E. Rohmer called
L’heure bleue. It is not yet Day and already not Night anymore.

The light itself is a concept difficult to capture by bipolarization: are
photons particles or waves, both particles and waves, neither particles nor
waves? N. Bohr has developed the idea of “complementarity” in order to
support the idea that photons are both particles and waves, concepts which
are in principle incompatible. If we want to have a mathematical theory of
complementarity it is clear that we need a notion of “complement” which
keeps the antagonism between particles and waves but at the same time
allows them to live together (see [Février 1948]). Some people have argued
that photons are neither particles nor waves (see eg [Lévy-Leblond 1989],
P-32), thus in this case we need a “complement” which keeps the antago-
nism between particles and waves but at the time allows them not to cap-
ture everything.

We can take another example in the field of logic itself. It is hard to think
of the duality classical/non-classical logic as a strict bipolarization. Logics
which are extensions of classical logic such as classical modal logics, high-
order or infinitary classical logic are sometimes called non-classical logics,
yet they can be thought as classical logics. Concepts such as propositional
logic and first-order logic encompass logics which are classical and logics
which are non-classical. On the other hand when we want to built a general
theory of logic, a Universal Logic (see [Béziau 1994]) which deals with the
world of all possible logics, this aim of generalization requires that we
include degenerated logics such as the logic in which everything is a conse-
quence of everything or the logic where nothing is a consequence of
nothing. It is reasonable to say that these trivial logics are neither classical
nor non-classical. Furthermore, the necessity of generalization will also
allow in the world of possible logics some logics which do not look like
logics (in the same way that for example the notion of algebra in Universal
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Algebra allows some algebras which are degenerated), and this kind of
logics seem neither classical nor non-classical.

In conclusion the “non” in “non-classical™ is not classical and we can
present the following picture:

intuititonistic logic

paraconsistent logic

NON-CLASSICAL
| LOGIC
high order
CLASSICAL classical
LOGIC logic
modal logic

classical
propositional logic
trivial logic

classical
first-order logic

It seems thus useful to develop a “relative” complement A of the set A in
the universe U which is described by the following picture:
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AA
exterior of A
1A
inconsistent
zone of A
A
VA
interior of A 74
incomplete zone
of A

U

The question which arises is: what is the striking feature of this relative
complement A? That is to say, what distinguishes A from any other sub-
set B of the universe? It must have some striking properties which permit it
to honor the name “complement” as relative it could be. It is clear that by
admitting an incomplete zone, we are withdrawing the principle of exclud-
ed middle and that by admitting an inconsistent zone, we are withdrawing
the principle of contradiction. What is left then? We can hope that it satis-
fies for example De Morgan's laws or the law of double negation, features
which belong to classical negation and not to a unary operator such that a
modal operator.

To give birth to such a relative complement, we will here construct over
a boolean algebra of universe U a structure whose domain is the cartesian
product U X U. An element of this overboolean-algebra is thus a pair
A=<+A;-A> of subsets of U, +A is called the positive part of A and -A its
negative part. The overoperations —, /\ , \s are defined as follows: — A=<-
A+A>, A A B=<+A N +B;-A U -B>, A \v B=<+A U +B; -A N -B> and
the overpredicate C as follows: A C B iff +A C +B and -B C -A.

We will construct herein a logic which has a paranormal (i.e. paraconsis-
tent and paracomplete) idempotent Morganian negation which is the logical
counterpart of this kind of overboolean structure.

o
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2. The overclassical propositional logic OVC%
2.1. Morphology

We consider an absolute free algebra ¥=<F;/\,\/,=,—> of type <2,2,2,1>,
that is to say a set [ of zero-order formulas constructed with the connec-
tives A\, v/, =, —, like the standard language of propositional classical
logic. Atomic formulas will be denoted by p, q, ... and formulas by A, B, ...

We call @ the set of pairs of objects of F. An object a=<A1;A2> of @ is
called an overformula. The formula A1 is called the positive part of a and
the formula A2 its negative part. An overformula is atomic when both parts
of it are atomic formulas, positive if both parts do not contain —. Given an
overformula a=<A1;A2> and an endomorphism & of ¥ (substitution), the
overformula pa=<aAl;aA2> is called a substitution of a, and the set of all
substitutions of «, the a-overschema. A set of overformulas is an over-
schema iff it is an a-overschema for some overformula c.

Given an overformula a=<A1;A2>, we will call the formula <A2;Al>, the
overnegation of , and we will denote it by — e (for the sake of simplicity
we use the same symbol “—").

Given two overformulas a=<A1;A2> and B=<B1;B2>, we call respec-
tively the overdisjunction, the overconjunction, the overimplication of «
and B, the following formulas:

avy B =<AlyBl;A2/AB2>
aN B =<AlINB1;A2vB2>
a— 3 =<Al-Bl;B2->A2>

It is clear that all overformulas constructed only with positive formulas are
positive.

DE FACTO MORPHOLOGICAL PROPERTIES
It is easy to see that:

—(avy B=—aN S, —1(a/\B)=—|a\/ —|B,
—(ay " B)="aA B, etc...

Thus if in our overlogic \/ and N have all their standard properties, then the
negation is Morganian (i.e. obeys the laws of De Morgan), and it is also
idempotent. This shows that overintuitionistic logic is isomorphic to classi-
cal logic.
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This shows also that the structure <®;A,\/,—,—> is not an absolute free
algebra.

It is clear that:

avBERBva(ay P vyFav(Bvy, aNaF a,etc.

We can see also that —a \/ B=<A2\/B1;A1/B2> is different from a = §3;
moreover contrary to the above inequalities, these two overformulas are not
pairwise equivalent, i.e. the positive part A2\/Bl of —a‘/ 3 1s not equiva-
lent in classical logic to the positive part A1 - B1 of @ = (3, nor are their
negative parts.

If we take — a v/ B as the overimplication of a and 3, it has de facto all
other Morganian properties (because then —a = B=a v/ 8, ~(a = B)=a
A — 3, etc.}, but maybe it has not the typical features of an implication.

2.2. Semantics

We consider the set V" of classical bivaluations; it is a set of functions from
F to {0,1}.

If b € ¥, then we define a function v (overvaluation) from @ to the fol-
lowing set of four values: {<0;0>,<0;1>,<1;0>,<1;1>} by the following
equation,

(<A1;A2>)=<b(Al);b(B1)>
We consider the set W of all overvaluations.

Let v be an overvaluation and « an overformula, if ID(«)=<0;0> « is said
relatively false in v and the value <1;1> will be interpreted as relative
truth, <0;1> as absolute falsity, <1,0> as absolute truth, <0;0> as relative
falsity. The overformula « is said false when it is relatively or absolutely
false, and true when it is relatively or absolutely false, logically false when
it is false for every overvaluation and logically true when it is true for
every overvaluation.

Let © be a set of overformulas and « an overformula, « is said a (seman-
tical) consequence of ® when for any overvaluation 1, if all the members
of O are true in D then « is true also in 1v; and this will be written: ® = a.

The logic <®;= > where = is the part of P(P)XD defined by <O;a>
iff ® E a, is called the overclassical propositional logic, and will be
denoted by OVC .
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The semantics used to define OVC} is a four-valued non-truthfunctional
semantics. Bivalent nontruthfunctional semantics were extensively used by
da Costa for the development of his paraconsistent C-systems; this method
gave birth to the theory of (bi)valuation, which extends basic truth-func-
tional concepts, such as the notion of truth-table (see [da Costa/Béziau
1994]). Multivalent non-truth-functional semantics were introduced in
[Béziau 1990]. The methods of the theory of valuation, such as the genet-
alized method of truth-table can be straightforward extended to these multi-
valent semantics. Furthermore this kind of semantics is a particular case of
a very general definition of semantics given in [Béziau 1995] and therefore
the results concerning these semantics can be applied to this case; in partic-
ular OVC? is a normal logic (it obeys the three Tarskian axioms) and the

following results are a corollary of the epimorphism theorem of [Béziau
1995]:

THEOREM

aT = aA holds for every substitution o in positive classical logic iff O
= ¢a holds for every oversubstitution ¢ in OVC;

PROPOSITION

a - Bis false in 0 iff ais true in Y0 and B is false in t»
a /N Bis true in W iff ais true and B is true in v

av/ Bis false in W iff a is false in Y0 and B is false in 10

2.3.  Overclassical logic is paranormal

An overformula <A;B> is said:

- paracomplete iff there exists b € V, b(A)=b(B)=0

- paraconsistent iff there exists b € V', b(A)=b(B)=1

- classical iff is neither paracomplete nor paraconsistent

- paranormal iff it is both paracomplete and paraconsistent

Using the truth-table method, we construct the following table:

a —a al " —(aN a) ay Ta
<p:n> <n;p>  <pAmny/p>  <nyp;p/An>  <p\/n;n/\p>
<0;0> <0;0> <0;0> <0;0> <0:0>
<0:1> <1;0> <0;1> <1:0> <1;0>
<1;0> <0;1> <0;1> <1;0> <1;0>

<l;l> <l;1> <I;1> <l;1> <l;1>
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This table shows that any atomic overformula is paranormal and permits to
prove directly the following results:

THEOREM

No form of (deductive) reductio ad absurdum, contraposition, ex-contra-
dictio sequitur quod libet, Curry's law hold for the overnegation —; i.e. all
the following laws are false:

—aF Band "aF B=F a aF BandakF " B8=F -a
—aFE 3= BF « aE B= —F —a
—aFE B="BF a aF f=BF -a
a, akE f a, TaE —f
—aF a=F a aF —a=F -«

THEOREM
The laws of non-contradiction, excluded middle and disjunctive syllogism
are not valid in overclassical logic:

FEo(aN a) Faya a nayBE B
a/\ Ta is not logically false.

THEOREM
Overclassical logic is paranormal (paracomplete and paraconsistent).

THEOREM
Overclassical logic is a strict paraconsistent logic (in the sense of Urbas).

QUESTION
Are there any interesting properties which hold for the overnegation — and
which are not de facto morphological properties?

We will soon have an answer.

2.4. Overclassical logic is not T-algebraizable
a and B are said logically equivalent (a == f) iff for every overvaluation

Iv, they are both true or both false in 1.
It is easy to check that:

“(avpP)="(Bva)
-ﬂ(a/\B) == —1(Bf\ o)
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In fact we have the following theorem:

THEOREM

a and B are logically equivalent iff their positive parts are equivalent in
classical logic.

It is easy to see that a=<p;n> and B=<p;m> are logically equivalent and
that — a=<n;p> and B=<m;p> are not, thus we have:

THEOREM
The replacement theorem does not hold in overclassical logic.

Therefore overclassical logic cannot be T-algebrized (i.e. algebraized with
the method of Tarski-Lindenbaum), the relation of logical equivalence
being not a congruence relation.

2.5.  Other negations and embedding of classical logic

a=<A;—A> is clearly a classical overformula. Thus classical logic is in a
certain sense embedded in overclassical logic. This embedding enjoys fur-
thermore the following property:

THEOREM
The replacement theorem holds for classical overformulas.

COROLLARY

Overclassical logic is not simple (i.e. it admits other congruence relations
than identity).

The fact that overclassical logic contains classical logic is also a conse-
quence of the fact that for any formula a=<A;B>, we can define a classical
overnegation — * as follows: —*a=<—1A;—B>. The negations —#a=
<71 A;7> where ? is any formula are also classical overnegations of a.

However we may ask:

QUESTION Is there a positive classical overformula?

CONJECTURED ANSWER No

CONJECTURED COROLLARY It is not possible to define a classical
negation in the overpositiveclassical logic OVPE.
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Anyway, we can define “positively” the following paraconsistent overne-
gation of a=<A;B>: = la=<A->B;B- A>.

a=<A;A - B> is a paraconsistent overformula.

We can define the following paracomplete overnegation of a=<A;B>:
—?a=<"(B-=A);m(A-B)>.

a=<A;—(B— A)> is a paracomplete overformula.

2.6. Implication in overclassical logic
In virtue of the theorem of 2.2. we have in particular:
akF BiffE a- B

The following theorem is a corollary of theorem of 2.2. and the fact that the
ex-contradictio sequitur quod libet and the excluded middle do not hold.

THEOREM
The following schemas are not valid in overclassical logic:

(a= B> (0> —a) (ma- B - (mB- w
(@a= =B > (B> 7o) (Ta-—p)-> (B> a
a—(—a-> p) a-(ma- —p)
(ma- a) - a) (- "a)> a

Now, following the expectation of the reader, we will present a compara-
tive study of @ = Band —a \/ B; this will be done by the following table:

a B a- B —ay B
<Al;A2> <BIl;B2> <Al-BI1;B2-A2> <A2,Bl:A1AB2>
<0;0> <0;0> <l;l> <0;0>
<0;0> <0;1> <1;0> <0;0>
<0;1> <0;0> <l;1> <1:0>
<0;1> <0;1> <l;l> <1:0>
<0;0> <1;0> <I;1> <l;0>
<0;0> <l;1> <1;0> <1;0>
<0;1> <1;0> <l;1> <1;0>

<0;1> <1:1> <l:1> <1;0>
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<1;0> <0:0> <0;1> <0;0>
<1;0> <0;1> - <0;0> <0;1>
<l;1> <0;0> <0;1> <1;0>
<l;1> <l;1> <0;1> <l;1>
<1;0> <1;0> <l;1> <1;0>
<1;0> <l;1> <1;0> <l;1>
<1;1> <1;0> <l;1> <1;0>
<l;1> <l;1> <1;1> <l;1>

From this table we see that @ » B and —a v B are not logically equiva-
lent and none is the consequence of the other.

THEOREM The overimplication - is not Morganian.

—1a\/ B is Morganian de facto, unfortunately it does not satisfy, a = g iff
E —avB.

3. The overclassical first-order logic OVC;

Given two formulas Ax, Bx of the standard morphology of a first-order
logic, we consider the overformula a=<Ax;Bx> and we define the
universal overformula Vxax and the existential overformula Jxax as

follows:

Vxax=<VxAx;3xBx>
Axax=<IxAx;VxBx>

As de facto properties we have:

A Vx—ax=Jxax Vx—ax=—Ixax
Vx— ax=—3xax VYxax=—3Ix—ax

All the results of sections 2.2. and etc. hold with obvious adaptations.
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4. Overboolean-algebra

Overclassical logic is not T-algebraizable, but we can construct a mathe-
matical structure starting from a boolean algebra of sets which will be a
kind of model of overclassical logic. _

Given a boolean algebra of sets B=<A;N,U, ,C>, the elements of A
will denoted by a, b, etc. _

We will then define the overboolean-algebra B=<AXA,N,U, ,C>,
where the operations N, U, , C (different from those of B) are defined as
follows:

Given A=<al:a2> and B=<b1;b2>, we define

—A=<a2:al>

A N B=<al Nbl;a2 U b2>

A U B=<al U bl;a2 N b2>

A CBiffal C bl andb2 C a2

The correspondance between overclassical logic and overboolean-algebra
is given by the following theorem:

THEOREM

ea = @B holds for any oversubstitution in overclassical logic iff the uni-
versal quantification of A C B is true in an overboolean-algebra, where A
and B are algebraic expressions respectively similar to o and 3.

COROLLARY
An overboolean-algebra is a Curry's structure (the operation is not mono-
tonic in the sense of [Curry 1952]).

Due to the above theorems, most of the results about overclassical logic
can directly be adapted to overboolean-algebra.

We can also furthermore introduce the notion of overboolean-complete-
structure as a model for first-order overclassical logic.

5. Other overlogics

We can construct in a similar way overclassical logic of high-order, for
example the second-order overclassical logic OVC ; .

We can also construct overclassical logic taking as domain not the ordi-
nary product of the domain but any J{-cartesian product (3 cardinal), that
1s to say that for example OVC{ is the overclassical logic of zero-order
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(i.e. propositional) with denumerable sequences as overformulas. The sym-
bol in the name which represents the lenght of the overformulas will be
called the exponent.

It is also possible to built overoverclassical logic, for example OV C0 is
the overoveroveroverclassical zero-order logic of degree 7. This new factor
is called the depth of the logic.

We can also perform similar construction starting with other logics, for
example we can consider overmodal logic or overparaconsistent logic; but
we must take care of what will be the result: we have already mentioned
that OVIO, the zero-order overintuitionistic logic is isomorphic to classical
logic.
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