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A GENERAL TREATMENT FOR THE DEDUCTION THEOREM IN
OPEN CALCULTI"

Arthur BUCHSBAUM and Tarcisio PEQUENO

Abstract

Aiming clear formulations of the deduction theorem and precise ac-
count of its restrictions, a study concerning the rules introducing con-
nectives related to its behavior is conducted. Special attention is de-
voted to operators, such as quantifiers and modalities, dealing with
varying objects. Concepts and techniques able to cope with the suble-
ties of tracing those objects are introduced. As a result, a classification
of calculi in terms of robustness to applications of the deduction theo-
rem is given.

1. Introduction

The material implication, no matter of having always being one of the most
disputed connectives along all the history of Logic, is almost universally
present in the myriad of logics nowadays available. In addition to this
popularity, it plays a unique role in most of the logics in which it occurs,
because it has a direct connection to the very core of the particular relation
of logical consequence that the logic intends to define. In fact, it works as a
formulation for that notion, expressed in terms of the internal logical for-
malism. The relation between this internal notion of entailment it repre-
sents and the notion of logical consequence the logical calculus as a whole
express is usually formulated through the so called deduction theorem,
which establishes the ways and conditions for their interplay. In general,
the way the implication is introduced in a particular calculus is related to
the way the rules for quantifiers and other connectives alike, such as mo-
dalities, are introduced.

In spite of being such a pervasive connective and a so important one, it
can be verified that frequently it is not treated in a way so careful as it de-
serves, bringing about imprecision in the enunciation of rules and misappli-
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cations of theorems related to its definition. The aim of the authors in this
paper is precisely the one of clearing out the issue, by making explicit all
the elements and relations involved in the formulations of the rules for the
introduction of some key connectives that have the power to interfere in the
correct enunciation of the deduction theorem applicable in a particular cal-
culus. Among these connectives there are quantifiers and other operators of
the kind, such as modalities, whose occurrence in a formula may require
some sort of tracing of the varying objects that they, whether explicitly or
implicitly, may involve, and that may affect the behavior of the terms
occurring in the deduction theorem. This concept of a varying object,
which generalizes the one of a variable, together with two basic relations,
named here as dependency and supporting, to be introduced later in the pa-
per, are the key elements in our strategy to make explicit the mutual rela-
tions among the rules introducing those connectives and the way they
affect the correct enunciation and applications of the deduction theorem.
The treatment given here for the subject is conducted in the style of genera-
lized logic, meaning the introducing of concepts, theorems and procedures
with no special regards for particular systems but, instead of it, using them
to characterize classes of logics with respect to properties related to these
concepts. It turns out, from this strategy, the results being applicable to
large classes of logics, whether known or yet to develop. The concepts here
presented had been already applied by the authors in the formulations and
generalized proofs of metatheorems for families of non classical calculi in
[2] and in [3].

It can be observed by a careful examination of the classical logic books
that two distinct choices for the introduction of implication and quantifiers
have been made standard:

1%t)  The rule for introducing the implication has no restrictions, but there
are constraints for introducing the universal quantifier and other operators
of the kind. A calculus adopting this strategy is called closed in our con-
text. It is more often used in calculi presented in natural deduction and se-
quent calculus style. Examples of closed calculi may be found in [1, 4, 5, 6,
9]. However, this closed option may be very cumbersome when used to
calculi, presented in axiomatic style, having varying objects other than
variables, such as in modal logics.

2")  The introduction of the implication is done with restrictions, but the
introduction of the universal quantifier and other analogous operators is un-
conditional. This strategy is more often adopted for axiomatic formula-
tions. From here on this kind of calculi are called open. Examples may be
found in [7,8,10].

It is important to notice that these alternative strategies are not incompat-
ible and have been adopted as variants for the definition of the same logic,
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classical logic, for instance. However, the resulting calculi are not strictly
equivalent. They are equivalent just in the sense of having the same logical
theorems but not in the stronger sense of implementing the same deduction
relation. For instance, in an open formalization for the classical logic we
have p(x) — Vx p(x), but the same does not hold for a closed formaliza-
tion.

Some well known formulations of the deduction theorem, in the context
of open calculi, presented in axiomatic style, that can be found in the litera-
ture, present some undesirable features, such as:

* explicit use of the concept of demonstration, instead of an idea of a high-
er level dealing with syntactic consequence;

* lack of an adequate tracing to accompany the use of varying objects in
rules of generalization, making it difficult to further applications of the
deduction theorem, in a context, after the first time it has been applied.
Furthermore, we consider it essential, for a deeper understanding of this

matter, to conduct a survey, followed by a careful study, of the basic prop-
erties of the consequence relations involved. We have discovered in this
study two relevant relations of consequence, with different tracing systems
for varying objects, here called “dependence” and “supporting”. Under cer-
tain special conditions, to be precisely stated later, these relations can be
proved to be equivalent, enabling the use of the most convenient properties
of both of them.

Below we will give two examples of formulations of the deduction theo-
rem, commonly found in the literature, that suffer from the above-men-
tioned ills:

* “For the predicate calculus (or the full number-theoretic formal system),
if I', A= B with the free variables held constant for the last assumption
formula A, then'— A D B.” According to [7, pg. 97].

* “Assume that I, A — B where, in the deduction, no application of Gen
to a wf which depends upon A has as its quantified variable a free vari-
able of A. Then '— A D B.” According to [8, pg. 63].

In this study we have found formulations for the deduction theorem that
overcome these problems in a generalization that covers a broad spectrum
of logics.
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2. Variation, Dependency and Supporting

From here on, we will consider C an axiomatic calculus, «,f3,v formulas in
C, and I', 9,{ collections of formulas in C; the same conventions continue
to be valid if the cited signals are used with primes or subscripts.

Pre-Definition 2.1: For each application of a rule of inference r in C, we
consider as previously known the varying objects of this application in C.
If r is a rule in C, whose applications do not have varying objects, we say
that r is a constant rule in C; otherwise, we say that r is a varying rule in
C. We say that o is a varying object in C if there is an application of a rule
in C such that o is a varying object of this application. We also consider as
previously known when a varying object o is free in a given formula . The
following additional conditions are to be fulfilled:

* the number of varying objects of each application of a rule in C is finite;
* each varying object of an application of a rule is not free in the conse-

quence of this application.

Example 2.2: In practice, we find the following varying objects:
* variables used in universal quantification;

¢ xis a varying object of the application of the rule of universal
generalization; xo

* hidden variables used in introducing connectives associated with modal-
ities such as necessity, skeptical plausibility [2, Chapter 5], etc; such

variable may be indicated by the sign itself introduced by the rule;

¢ “0J” s the varying object of the rule —a—.
Uo

Definition 2.3: Let D = (ay,...,a,) be a demonstration in C. We say that a;
is relevant to a; in D (ij € {1,...,n}) if one of the following conditions is
fulfilled:

* i=jand q; is justified in D as a premise; B.....,

* a;is justified in D as a consequence of an application ————£ of a rule

J
in C and there exists a hypothesis 8, (k € {1,...,p}) of this application
such that «; is relevant to 8, in D,

Definition 2.4: We say that a demonstration D in C depends on a collec-
tion ¥ of varying objects if ¥ contains the collection of varying objects o
of applications of rules in ® having a hypothesis in which o is free such
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that there is a formula, justified as a premise in D, whereon o is free too,
relevant to this hypothesis in . If there is a demonstration in C of a from
I" such that it depends on V¥, we say that a depends on V' from T in

C, and we note this by I’

E a. IfV ={o,...,0,} and n = 1, we also note

0y5:::50

>™n

v .
r .—C— abyT a. IfV = &, we say that D is an unvarying

demonstration in C.

If @ depends on & from I" in C, we say that a is an unvarying conse-
quence of I in C.

Theorem 2.5: A formula a depends on V" from I' in C if, and only if, at
least one of the following conditions is fulfilled:
* « is an axiom of C;

cac o o
« there is an application ————" of a rule in C such that
4 14 * — S
r E ay,..., I E a, and, for every varying object o of this application,

such that 0 € V and for every o; (1 = i =n), if ois free in «,, then there
(_‘l/'
isI” CT, such that oisnotfree in I and I’ |— a.
If ¥ = J, we can replace the third clause by the following condition:

. .. o,...,.0, .
* there exists an application of a rule ————" in C, such that

9 [2 JTTE F

C

and for every «; (1 =i =n), if ois free in @, then there exists " C T

r — a, and, for every varying object o of this application

such that o is not free in I” and I

%,
—
C

Example 2.6: In an axiomatic open calculus with the rules of universal
generalization and of necessity, we have the following examples of depen-
dence:

o pry) 222 Vay pry);
x,0

* px O Vx px.
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’-

?

Theorem 2.7: The following properties are valid for the relation

(1)  if there is a demonstration D in C of « from I" whose collection of

varying objects of applications of rules of Cin D is ¥, then I |— a;
OV'
(i) if'|— a,thenl |— a;
C C
(i) if T ‘E a, then there is a collection V" of varying objects such that
OV‘
r ‘— a;
C
(iv) ‘— a iff |— a;
C C
e |V ’
(v) ifl'|—=aand¥V CV’, thenT |— a;
C C
Y A
(vi) if'|—aandI CI”, then I ‘-— a;
C C
DV‘ ’
(vii) ifT E a, then there is ¥ C ¥ such that V" is finite and T’ a;
o ora |V . o o v
(viii) if I’ E a, then there is I” C T such that I is finite and I’ E; a;
NP : :
(ix) ifT E a and, for each o € W, ois not free in T,
V -
then I’ ‘ i o;
r r E a
¢
(x) if { foreach o € W, there exists I’ C I such that ois not free in I’
and I’ |— «
TS
then I’ w a.
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OV
Theorem 2.8: The following assertions are not valid for the relation “|—":

L lfr ‘O_V(—:l' ai,...,r ‘% (2.5 {alr"!an} % B’
e |V . SV, W 5
o c
*T z a,..., I I @,
C C
0,,...,0,

* {al""vap} HC— B
o if | * foralli € {1,..,n} andforallj € {1,..,p},if o; & V and o,is

free in o, then there exists I"” C I such that o; is not free in I’

DV‘
then I' |— B.
E
Proof:
Let C be a calculus whose axioms are given by the schemas “a » a v B8”
. Lo —
and “Vx a - a (xt)”, and whose rules of inference are OC_@_ and

» such that the first is a constant rule and the second is a varying rule
xXo

in which the varying object of each application is the corresponding quanti-
fied variable.

{¥y Q(»,2), Q(y,2) > Ry}‘% Ry

We have , however it is not true

%]
Ry‘—Vz(Ry v Sz)
C
that {Vy Q(y.2), Q(»,z) = Ry} ’% Vz (Ry v Sz), from which we have a

counter-example for the first proposition.
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{9y Q0 2. ¥3(Q(32) = Ry} 2 Ry

Likewise, we have
Ry —%Vsz(Ry v Sz)

, hevertheless

it is not true that {Vy Q(y,2), ¥y Q(y,z) = Ry) ’% VyVz (Ry v Sz), from

which we have a counter-example for the second proposition.

Definition 2.9: We say a demonstration D in C is supported by a collection
V" of varying objects if V' contains the collection of varying objects of
applications of rules in ® such that, for each conclusion of such applica-
tions, there exists a premise relevant to it in . If there exists a demonstra-
tion in C of a from I' such that it is supported by V', we say that

OI—f-a.If°V=

-
iy, a IfV =&,

@ is supported by V' from I' in C, and we note this by I’

{0),...,0,} andn =1, we also note I"

OV‘
L by T
c ™

we say that D is a stable demonstration in C. If « is supported by & from
I' in C, we say that « is a stable consequence of I' in C.

Theorem 2.10: If V' is a collection of varying objects in C, a is supported
by V' from I' in C if, and only if, at least one of the following clauses is ful-
filled:
* ais an axiom of C;
ca el o o
* there exists an application —""" of a rule in C such that
o
r i @pysoni L ‘— a, and, if there is a varying object o of this

&
application such that o & V', then

— al,..., - a,,.
c

C
If V' =, we can replace the third clause above by the following condition:

. L sy O ;
* there exists an application Lo of a rule in C such that
v V . . . : .
r P ap,..., I’ Z; @, and, if there is a varying object o of this

application, then

— A 7T A
C

C
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Example 2.11: In an open axiomatic calculus with the rules of generaliza-
tion and of necessity, we have the following example of supporting:

« Opx .y O Yy $px.

Theorem 2.12: The following properties are valid for the relation *

(i)  if there exists a demonstration ® in C of a from I" whose collection
of varying objects of applications of rules of Cin D is V', then

r HK a;
&
DV‘
() ifT ”— a, then I }— a;
C (&
(i) if ‘E a, then there is a collection V" of varying objects such that
r “I a;
C

(iv) ‘E a iff u% a;

Olf'f
a;

C
(vi) ifI’ I aand' CI”, then I ”I «a;

C C

YV
(v) ifl’ E aand°|f(_:_°lf’,thenl"H

vV
(vii) if E a, then there exists ¥ C % such that ¥ is finite and
CVI
C

OV‘
(viii) if E; a, then there exists I C I such that I is finite and

r

,

a;

al<
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Vv v W
ix) ifT |[— ol [—2 @, (). 00} — B,
0 [ e [ e [
— “"Vlu UV, W 8
| C
The theorem below describes a way of expansion for the relation “|—"in a
generic calculus. C
v w

Theorem 2.13: if T’ l ay,....I' ‘—" O { Bpseanaltn} ‘"‘“‘ B,

& C C
then T IV,U...LJCC’VR uw 8.

Lemma 2.14: If T HI a,then I’ .I a.
C C

Proof:
If a is an axiom of C or & € T, there is nothing to prove.

12"

: 8 Ofpyiiny O
Let us suppose then there is an application —— = of a rule of C
o

fulfilling the conditions of theorem 2.10. By induction hypothesis, we have

'O_V' al,...,r

C
that o & V', we have

r

— a,. Given a varying object o of this application such

— ay,...,|— «,, and hence

C

to theorem 2.7, a sufficient condition for concluding that T’

— a, which is, according

—
C

3. Special Axiomatic Calculi

Definition 3.1: A calculus C is said to be partial stable if the following

conditions are valid:

* each varying rule of C is unary, its domain is the collection of all for-
mulas in C, and each of its applications has exactly one varying object;
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a’ e : o
» for each application — of a varying rule in C, if its varying object is not
(24 .

free in &', then o’

= m
C

n?

. . o,...,. 0 - . s
» for each application —————" of a constant rule in C, if &/ ,..., ¢/,
o

are respectively conclusions of applications of a varying rule over

@ ’
7 W

C

@j,..., a,, o using the same varying object, then « ,..., o]

n

Lemma 3.2: If C is partial stable and T’

%) 5
‘E a, then, for each application

— of a varying rule in C, if its varying object is not free in I', I' H%— o
o
Proof: it is similar to the proof of lemma 3.11.
: , a . &
Theorem 3.3: If C is partial stable, then I" E aiffl’ E .
Proof: it is similar to the proof of theorem 3.12.

Theorem 3.4: If C is partial stable, then “

%” has the following additional

property:
* r "g a],....r “9 ap
C C
g P
o {als---!ap} I—C_"- B

* if | * foreveryi € {1,..,n} and foreveryj € {1,..p), if ois
free in ay, then exists I C I such that o, is not free in I”’

and I ‘

c
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%)
then ' “— B.
C

Proof: It is similar to the proof of theorem 3.13.

Corollary 3.5: If C is partial stable, then the following additional

#,

properties are valid for the relation

%)
E ay,...,I° ’E Bty [ O 5c00500,)
%] ‘@

— al,...,r o
C

o if I’

%)
— 3, then I’
CB

%)
CB’

* I a,

Ops...,0
* {als--'sap} ‘I—C"—B
* if | * foreveryi € {1,..,n} andforeveryj€ {1,..., p},if o; is

free in a;, then exists I C I' such that o; is not free in "’

and I ‘% @

then I’

(%)
Felkat

Proof: it suffices to use theorem 3.3, the ninth proposition of theorem 2.12
and theorem 3.4.

Definition 3.6: A calculus C is said to be partial strong if the following
clauses are satisfied:

@

— a -

(i) B H%— a- B

(iii) for each application “ of a constant rule of C,

B--.B
B

{a = Bl»---»a - Bn}

’%a—) B.
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Theorem 3.7: The following propositions are equivalent:

(i) Cis a partial strong calculus;

(i1) for any I' and a, where I" is a collection of formulas in C and « is a
formulain C,T" U {a}

% B implies I Pl a- .

Proof: it is similar to the proof of theorem 3.16.

Definition 3.8: A calculus is said to be partial strong stable if it is partial
strong and partial stable.

%)
Theorem 3.9: If C is a partial strong stable calculus, then I' U {a} —E B

implies I'

%)

— a = 5

C B

Proof: it suffices to use theorems 3.3 and 3.7.

Definition 3.10: A partial stable calculus C is said to be stable if it has the
following additional property:

» for each application ﬁ of a varying rule in C, where o is its varying
o

object, if B’ and &’ are respectively conclusions of applications of a
varying rule in C over 8 and a using the same varying object, then

ﬁ,O

— a’.
; 14 T
Lemma 3.11: If C is stable and T’ E a, then, for each application —; of a

C

()

varying rule in C, such that its varying object is not free inI', I" |— .

Proof:
If @ 1s an axiom of C, then

— «a, and so
C

— «’, and therefore I
C

’Ol/. ,

el & 4

C

If o € T, then the varying object of the application considered is not free
— a’.

i . )
in @, and so, as C is stable, o E a’, and therefore I’

If there is an application of a constant rule ————" in C such that
v V : : :
r E ap,...,.I E a,, we have, by induction hypothesis, that
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0‘/. ’ ’ ’ ’ .
— o,...I' | «;, where &/ ,..., 0, are respectively consequences
C

J
C

of ay,...,a, by the same rule in which o’ is a consequence of a. As C is

GV‘
stable, it follows that o ,..., o] ’ — .

— o, and hence I’

C

Let us suppose, then, that there exists an application = of a varying rule
o

v
of Csuch thatI" |— B, and, if its varying object does not belong to V', then

— a. Let o be the varying object of E Ifo& Y, |— a, hence [— a’, and
o

therefore I' |— «’. Consider B’ as consequence of 8 by the same rule in

which o’ i§ consequence of a. If 0o €V, as B

% g, T “% £, and so, as

C is stable, we have g8’ ‘

% o', and therefore I |— «'.

Theorem 3.12: If C is stable, then " }% a iffT Zg— a.

Proof: Y 3
By the lemma 2.14, we have I’ ”— a implies I ‘— «, so it remains to
prove the converse. c c

Let us suppose that I" C a.

Let © be a demonstration in C of « from " depending on V", B the first
occurrence of a formula in D justified as a consequence of an application
4

of a varying rule = such that its varying object does not belong to V" and

some premise is relevant to 8’ in D. Let o be the varying object of this
application.

. . . %)
If o is not free in B, then, as C is stable, we have B’ [— B. and hence, as

the considered occurrence of 8’ precedes 8 in D, we have I’ U% B, and
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A
c?

If o is free in B, then, as o & ¥, there exists I’ C T, such that o is not

therefore, by the transitivity of *

=
c

freeinI” and I

E B’, and hence, as C is stable and in accordance with

lemma 3.11, I ’

% B, and therefore I’ H% B.

In any case, there is a demonstration Dy in C of B from I supported by
V. Replacing the considered occurrence of Bin D by D, we obtain, given
D, a demonstration in C of @ from I, in which the number of applications
of varying rules, whose varying objects do not belong to ¥ and whose
hypotheses have premises relevant to them in the new demonstration, has
decreased one unit. Repeating the same process a finite number of times,
we obtain a demonstration in C of a from I' supported by V', or rather,

OV‘

— 0.

r

Theorem 3.13: If C is stable, then *

OV
—C-” has the following additional prop-

erty:
‘L HE wn T li'f_ "
C C
0,,...,0
* {al"-'sap} I—Cl B

J
* if | * foreveryi € {1,..,n} and foreveryj € {1,...,p}, if 0; &€ V and
o; is free in @, then exists I'" C I such that o, is not free in I"’

\S

and I H-cg 3

then " ‘

OV'
c P



24 ARTHUR BUCHSBAUM AND TARCISIO PEQUENO

Proof:
Let Dy,...,D, be respectively demonstrations in C of ay,....a, from I sup-
ported by V, and let € be a demonstration of 8 from {a,.. .y} supported
by {o;,...,0,}. Concatenating D,,...,D,,E, we obtain a demonstration D of
Bin C fromTI.

Let vy be the first occurrence of a formula in D justified as a consequence

4

of an application Ll of a varying rule, such that its varying object does not
Y

belong to V" and some element of T is relevant to y’ in D. As s (T
are demonstrations supported by 4, we have the considered occurrence of
¥’ appears in €, and hence, considering o the varying object of the appli-
cation, we get o € {o,,...,0,}.

9= {a;/j € {1,..p) and o s free in a;}

Let ¢ and { be defined by {

{={a;/jE {1,..,p} and ois not free in a;)

It is easy to verify that there exists a finite I'’, such that " C T, o is not

' V
free in I and, for every 8 & &, I" |— 6. Therefore, by the construction of

oV'
{,F’U{ E"al,..

As the considered occurrence of y’ precedes yin D, we have

JTu

— agandoisnotfreeinI” U £
C

oty yevsits}

Y v
‘E v, and hence, by the transitivity of ‘HE we get

I"u¢

GV
E Y’, and therefore, by lemma 3.11, " U ¢ V% .

Forevery 6 € I" U {, we have I" |— §, and hence, once again due to the

transitivity of

e
C

E 7. Or rather, there exists a demonstration 3?

in C of yfrom I supported by V. Replacing the considered occurrence of Y
in D by D, we have a new demonstration D’ in C of 8 from T, in which
the number of applications of varying rules, whose varying objects do not
belong to V" and each hypothesis has some premise relevant to it in D, has
decreased one unit. Repeating the same process a finite number of times,
we obtain a demonstration in C of 8 from I" supported by V', or rather,
OV‘

c? )

r
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Corollary 3.14: 1f C is stable, then the following additional properties are

”»

YV
valid for the relation “|—":

, Vv v W
L lfr ?1 al,...,r ‘_P_ al,, {al,...,ap] F B,
|°1f UL UW
then I" |—! c E :

* T ‘I lel,...,r lI CI.’p
C &

—

C B

il 2

e if | * forevery i € {1,..,n} and foreveryj € {1,..,p}, if o, & V and
o; is free in a;, then exists I'" C I such that o; is not free in I’

and I

_aj

(.‘V‘
thenI" |— 8.
Cﬁ

Proof: it suffices to use theorem 3.12, the ninth proposition of theorem
2.12 and theorem 3.13.

Definition 3.15: A partial strong calculus C is said to be strong if it has the
following additional property:

B

* for each application BB, of a varying rule of C,

{a"')Bh--wa—)ﬁn}

E a- 3, where V' is the collection of varying

objects of the application and no element of V" is free in a.

Theorem 3.16: The following propositions are equivalent:
(i) Cis astrong calculus;
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rofall2p

forevery 0 € V', ois not free in

(ii) forany I' and a, if

]

then I”

e

Proof of (i) implies (ii):
Let us suppose that C is a strong calculus, I' U {a}
0o €V, ois not free in a.

If B is an axiom of C, then

‘z B and, for each
C

— £, and hence, according to clause (ii) of

definition 3.6,

— a - 3, and therefore I' |— a - B.

OV‘
IfBeT, thenT HE B, and hence, according to clause (ii) of definition
O‘/‘
36, [— a - B.
[ =
If B = a, then, according to clause (i) of definition 3.6, |E a - a, and

therefore I’

—C-—a—>B.

BB,

If there is an application of a rule of C such that

Fu{al I Bi.....T U {a}

‘—— B., we have, by induction hypothesis,

r

— a - B,....[
Ca B ‘

C a — B,.If there is a varying object of this
application that does not belong to V, then, according to theorem 2.10,

— B, and hence, once again by clause (ii) of definition 3.6, |— a - 8,

and therefore I

— a - B.If every varying object of this application

belongs to V', then, as C is strong, we conclude that T’ ‘

Ea—)ﬁ.

Proof of (ii) implies (i):
Let us suppose (ii).
As a

— «, we have [— a = «a.

As {B,a}

—(—jB,wegetBH%a—)B.
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Finally, let ~ be an application of a rule of C whose collection

BB
B

of varying objects is V', and « a formula of C where no element of V" is

f

ree. @

We have {a—>By,...,a~ B,a} [— Bus

Bla {a_)Blv a_)ﬁma} ‘

and hence, as {,,....3,} B, we have {a— 8,,...,a— B,,a)}

— [, and
’CBan

therefore {a— B,,...,a— B,}

E" C!-iﬁ.

Definition 3.17: A calculus is said to be strong stable if it is strong and
stable.

C is a strong stable calculus,

Theorem 3.18: If < T u{a)

Vv Vv

— B, thenI' |— a - B.
C C
forevery o € V', ois not free in a,

Proof: it suffices to use theorems 3.16 and 3.12,

Definition 3.19: We note by C[I'] the calculus obtained from C with the
addition of I" as a postulate. If " is a unitary conjunct of the form {a} , then
we also note C[I'] by C[a].

Theorem 3.20: The following assertions are valid for C[I']:

o I UF‘—aiffF’ |

cr ®
. Ul"‘—alffl" @
C[F]
e if " U an,thenl“’j—a
C Cln
e if I , then th istsW D VsuchthatI” UT [— a;
C[F]a n there exists W 2 V" such tha U c o
DV‘
o if I UF—athenl"’
[F]
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o if IV

a, then there exists W 2 V' suchthat " U T

'W
L.
Clr C

if C is partial stable, then C[I'] is partial stable;

if C is partial strong, then C[I'] is partial strong;

if C is partial strong stable, then C[I'] is partial strong stable;

if C is stable, then C[I'] is stable;

if C is strong, then C[I] is strong;

if C is strong stable, then C[I] is strong stable.

L] L Ll L] L L]

Theorem 3.21: C[I'] has the following properties for the introduction of
implication:

* if C is partial strong and I U {a) % 3, then I HC[QI‘] a-f3;

« if C is partial strong stable and I’ U {a} ‘% B, thenI™ ‘C[F] a-B;
I"U {a) L B,

* if C is strong and C[I']
for every o € V, o1is not free in a,

then I’ ||—=— a - B;
C[rj I U {a) v 8,
* if C is strong stable and { ClI']

for every 0o € V', o1is not free in a,

then I - B.

— a
C[r
4. Conclusions

We have found optimized formulations for the deduction theorem for a
broad class of open axiomatic calculi, which overcome all the problems
that we pointed out in the beginning, within every spectrum of possible re-
strictions in their deductive functioning —from the partial stable and par-
tial strong to the strong stable calculi.

The weakest formulation of the deduction theorem belongs among the
partial strong stable calculi. An example of a calculus of this type can be
seen in [2], pg. 133, which is a translation to a first order language of the
Logic of Skeptical Deduction, defined in the same work, in Chapter 5. This
calculus was essential for the proof of completeness of an axiomatic calcu-
lus with respect to the semantics of this logic.
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The strongest formulation of the same theorem belongs among the strong
stable calculi, which constitute the great majority of open axiomatic cal-
culi, concerning the material implication, found in the literature.

Our initial motivation was the search for a conceptual basis for an ab-
stract proof of completeness regarding generic calculi, which was done in
[2], pgs. 72-88. A concise exposition of this proof will be the subject of a
future paper.
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