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LINEAR ARITHMETIC DESECSED
John K. SLANEY, Robert K. MEYER and Greg RESTALL

Abstract

In classical and intuitionistic arithmetics, any formula implies a true
equation, and a false equation implies anything. In weaker logics fewer
implications hold. In this paper we rehearse known results about the
relevant arithmetic R, and we show that in linear arithmetic LL# by
contrast false equations never imply true ones. As a result, linear arith-
metic is desecsed. A formula A which entails 0 = 0 is a secondary
equation; one entailed by 0 # 0 is a secondary unequation. A system
of formal arithmetic is secsed if every extensional formula is either a
secondary equation or a secondary unequation. We are indebted to the
program MaGIC for the simple countermodel SZ7, on which 0 = 1 is
not a secondary formula. This is a small but significant success for
automated reasoning.

Question: when does one equation between natural numerals imply anoth-
er? Answer: it depends on your logic. Keeping the purely arithmetical part
of number theory fixed, it is part of the function of logic to confer a sense
upon ‘imply’, so that changes in logic may change the implication relation
between extensional propositions such as equations. In this paper we show
that for a range of substructural logics including all subsystems of the lin-
ear logic of [3] numerical equations never imply other equations unless the
two equations are rather trivially equivalent.

In order to fix the discussion, let us focus on first order theories of arith-
metic couched in a language L* which is built up as usual from numerals
including O (zero) and variables with term-forming operators ' (successor),
+ (plus) and . (times), one binary predicate symbol = to form equations be-
tween terms, universal and existential quantifiers V x; and 3 x, respectively
and the standard logical connectives A (and), \/ (or), — (implies) and o.
This last connective is the multiplicative (intensional) ‘and’ known in the
linear logic literature as tensor product and in the relevant logical literature
as fusion. An arithmetical theory S# is based on a logic S whose theorems
are at least closed under the rules of detachment for —, adjunction for A
and generalisation for V. In addition to the logical theorems, and to closure
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under the primitive logical rules of inference, arithmetic has the special
postulates:

(Id=) X=ix
(Sym=) X=y—>y=x

(Tr=) x=y—=2(=z—>>x=2
(Sfun) x=y—>x'=y

(Sinj) =y = x=y

(Succ) x#0
(0+) x+0=x

(S+) x+y'=x+y)
(0x) x0=0
(Sx) xy'=xy+x

(Rul-MI) from A(0) and Vx(A(x) — A(x)) to infer A(x)

These are just the normal Peano-Dedekind axioms and rules for first order
natural arithmetic, expressed in a form which allows some freedom to vary
the logical basis.

Classically and intuitionistically, of course, the answer to our opening
question is trivial: a = b — ¢ = d is a theorem of arithmetic if and only if
either a and b are distinct numerals or ¢ and d are not. In various substruc-
tural logics, however, matters are more interesting. It has long been known
that in the relevant arithmetic R¥ such an implication is provable iff |a — b|

divides |¢ — d|, though to the best of our knowledge no proof has been
published.
= Al~A o |F ¢+t T —S|F ¢+ T
F| T F|F F F F|\T T T
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F T| F TIFTT T|\F F T

Figure 1: RM3 matrix and Hasse diagram

In one direction it is obvious in virtue of the theorem x = y — k.x = k.y for
constant k. For the other direction, let the absolute difference between a and
b be m and let that between ¢ and d be n. Suppose m does not divide n.
Then consider the propositional structure characteristic of the logic RM3,
as given in Figure 1. We may interpret R¥ in this structure by letting the
domain consist of the integers modulo m, letting the true equations (modulo
m) take the value t and the false ones the value F. It is reasonably well
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known that this gives a model of R# (see for example [10]). Of course, the
model verifies some contradictions,. such as the assertion that 0 both is and
is not a successor, but the propositional structure provides a paradoxical
value t which is a fixed point for negation and so appropriate for such
assertions. Whatever we might make metaphysically of that, note that some
equations at least are not verified, among them ¢ =d since ¢ and d are not
congruent mod m. Since a = b gets the value t which does not imply F, the
implication a = b — ¢ = d is falsified.

Since relevant logic is a supertheory of linear logic, this divisibility con-
dition is also necessary for linear implication between equations. It is not
sufficient, however, as the following model demonstrates. Let %~ be the
integers together with an upper bound T and a lower bound L. The opera-
tions of addition and subtraction are easily extended to the infinite ele-
ments. Where x, a and b are elements of ¥ suchthata # and b # T:

x+1 = 1 1 +x
a+T = T = T+a
T-x = T = x-1
b-T L = 1l-a

This is a complete lattice under the usual (total) numerical order, and thus a
lattice ordered monoid under the extended addition. The logical connectives
may be interpreted very naturally in this structure: A and v/ as lattice meet
and join, ° as addition, and x — y as y — x. Taking the true propositions to
be those elements in the positive cone (0 or greater), this is a model of the
additive and multiplicative fragment of linear logic. For this purpose,
negation may be defined by selecting an arbitrary integer to interpret f and
defining ~x as x — f. Regardless of the value of f this makes negation a
dual automorphism of period 2 on the lattice, as required by the negation
postulates of linear logic. Canonically, f may be identified with t (that is,
with 0) but this is not mandatory.!

We may interpret arithmetic in the standard model on this propositional
structure, letting each numeral designate its proper number and interpreting
successor, addition and multiplication as what they should be. We assign
the value —|a — b| to the equation a = b. It is clear (subject to the usual
leap of faith concerning (Rul-MI)) that all postulates of linear arithmetic
are satisfied in this model, provided f = —1, and thata = b — ¢ =d is true
therein iff [a — b| = |c — d|. Put together with the earlier observation
concerning relevant logic, this entails that an implication between false
equations @ = b and ¢ = d holds only if |a — b| = |c —d|.

I'The use of the integers as a propositional structure is explored in detail in [11].
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The status of true equations, however, is still special. Since every number
divides zero, R¥ has the property that all equations imply all true equa-
tions, and in particular that they imply the paradigm true equation 0 = 0.
The model of linear arithmetic just exhibited also validates the implication
x =y — 0=0, prompting the question of how far into the weaker substruc-
tural logics this property extends.

A logic needs to have this property if arithmetics based on that logic are
to be “secsed”. That is, if their zero-degree formulas are secondary formu-
las. Recall that a zero-degree formula as defined in [1] is one in which —
and ¢ do not occur. Secondary formulas are defined as follows:

(SEQ) A is a secondary equation of S*IffSFrA 5 0=0

(SUQ) A is a secondary unequation of SHiffS*L0£0 — A

(SEC) Aisa secondarvformu!a of S# iff it is either a
secondary equation or a secondary unequation of S¥

Then we say that S# is secsed prowded that all zero-degree formulas of L#
are secondary formulas; otherwise S¥ is desecsed. Note that the Peano
arithmetic of any logic which allows weakening

(K) A— (B —A)
(K~) A—=>(~A —>B

is secsed, just because 0 = 0 is a theorem and 0 # 0 is the negation of a the-
orem.

The relevant Peano arithmetics R¥ and E#, and their “true” extensions
R# E# and TE¥ [4, 5, 7, 9] are also secsed. We show this by structural
induction on zero-degree formulas, noting first that all equations u = v en-
tail 0 = 0, satisfying (SEQ); whence by contraposition their negations (i.e.,
the unequations) satisfy (SUQ); by induction this result extends to all zero-
degree formulas.

But the base step of thls induction depends ineluctably on contraction.
Here is the argument for R¥:

(I) x=y > (x=y — x=x) Symmetry & transitivity of =

(2) x=y > x=x (1), Contraction, > E
3)x=x—>20=0 Subtraction
4) x=y—>0=0 (2), (3), Transitivity of provable —

2In the relevant arithmetics, unlike the classical and intuitionist cases, it does not extend
to all formulas. For instance, 0 =1 — 0 =1 is not a secondary formula in R*.
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The fact that R¥ in particular is secsed was used in [5,6] to obtain useful
results on the strength of relevant arithmetic. In particular, we can provide
an exact translation 7 from classical Peano arithmetic P¥ into R# by setting
T(u =v) to be (u =v) v (0 # 0) and by keeping the interpretation of the
extensional connectives fixed (so (A A B) is T(A) A 7(B) and so on). Then
it can be shown that T(A) is provable in R™ if and only if A is provable in
P#, essentially because 7(A) is equivalent either to (A A t) v/ forto (A f)
A t, and because the rule v of material detachment is admissible for formu-
las of these forms.

T

n f
I

n t
E

Figure 2: DeMorgan lattice underlying SZ7

Restall hastily conjectured that the argument could be fixed to work in con-
traction-free systems, such as those studied in [14, 12, 13]. Meyer doubted
that a contraction-free proof could be found to get from step (1) to step (2).
When he mentioned this to Slaney he was greeted with, “Let's find a coun-
termodel.”3 Here is the result of that conversation.

Consider the DeMorgan lattice shown in Figure 2. The partial order =
and the lattice connectives /\ and \/ are determined on this lattice by the
Hasse diagram just exhibited. We define the implication — and fusion © of
the associated propositional structure SZ7 by the tables shown in Figure 3,
taking negation ~x as x — f. SZ7 was found by the program MaGIC [15],

as a simplification of a 10 element matrix that Slaney and Meyer had found
by hand.

3Meycr views such greetings with great respect. While still a student at Pitt, he conjec-
tured to Belnap that such-and-such a formula was a non-theorem of R. “Let's make up a
matrix to refute it,” continued Belnap. And he did (to Meyer's amazement, since it had not
occurred to him that even a graduate student could make up a matrix of his very own; these
days, even a computer can, again thanks in part to Belnap).
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>|F n t I f n T
F|r T T TTTT
n|F t n I n fT
xt|F n t I f n T
x[|F F F I I I T
xfIlF F F F t n T
sn|F F F F n t T
*T|F F F FFFT
c|Fn t I f n T
F|F F F F F F F
n|F ¢t n I n f T
st|F n t I f n T
«[|F I I I T T T
xf|F n f T TTT
sn|F f n T T T T
«xT|\F T T T T T T

Figure 3: Implication and fusion matrices for SZ7

The countermodel in SZ7 has as domain the integers mod 2, with atomic
sentences interpreted under the function [ as follows:

(It) [(0=0=41=1)
(In) I0=1)=K1=0)

t
n

I

I 1s then extended to all sentences on the obvious homomorphism. Note
that, mod 2, we can interpret the quantifiers by simple substitution; i.e.,

(IV) I(VxAx) = I(AQ) N I(A1)
(I13) 1(AxAx) = [(AO) v/ I(A1)

On this interpretation /, we refute the universal generalization of (2) be-
cause

(2I) I(0=1 —=0=0=n —>t=n,
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which fails because n is undesignated. On the other hand readers may
amuse themselves by verifying (Sym=) and (Tr=) for all values of x,y,z in

{0,1}.

Evidently contraction-free arithmetics S# are desecsed, provided that the
function / just defined in SZ7 provides a sound interpretation. Sufficient for
this is that axioms and rules of S# be taken from the arithmetical ones given
above and any among the following:4

(LL) Any theorems of linear logic.
(Ax/\) ANBYO) = ANBYvAND
(AXBWW) (A—> (A > (A > B)) > (A > B}
(Axy~) A ~A
(Axo/F) (AcA)yv(A = B)
(Axy/—~) (A= ~A) v (~A = A)
(Ax/\vy~) AN~A = By ~B
(AxA3T) AN AxB — Jx(A A B), if x is not free in A
(AxVv) Vx(A\ B) — A\ VYxB, if x is not free in A
(Rul-w) From AQ, Al ... An ... for all numerals n, to infer
VxAx
(Uneq) Any unequations of the form r # u.

We note that all universal closures of the suggested axioms take designated
values on /in SZ7, and that the suggested rules preserve this property.
Moreover, we can accomodate a Girard style necessity (‘of course’) opera-

tor ‘I’
follows:

Ih
(I7)

and possibility (‘why not’) operator ‘?’ on interpretation in SZ7 as

If t = I(A) then I(!A) =telse I[(!A) =F
If I(A) = fthen I(?7A) =felse [(7A) =T

Note that these schemes make the following axiom schemes and rules also

valid on /

(Ax!K)
(AxIW)

A= (B> A

(!A—=> (A >B)—>(A—>B

4Conventions for reading formulas are as follows: unary operators have minimal scope:
binary connectives are ranked A, =, \v, —, in order of increasing scope.

5(AxBWW) is as close to contraction as we can get while staying valid in SZ7. Iis

deductive equivalentin LLisA — A+ A - A. We note incidentally that the strong near-
contraction postulate A e B — A - A - B\y A - B - B which is not valid in SZ7 may
nonetheless be added to LL¥* without secsing the system.
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(AX'E) IA—> A
(Ax!I) 1A —> A
(Ax!—) (A = B)— (A = 'B)

(Rul'l) From A to infer !A

Of course (and indeed why not) many non-theorems of LL* are also vali-
dated by SZ7 and therefore do not resecs arithmetic. These include:

(AxIN) IANIB =S I(ANB)

(Ax\) NAv B) > 7Av "B

(Ax!Y) IVxA <& Vx!A

(Ax?3) 7dxA < dAx?A
(Ax?) 74

(Ax!~) 0=1)—> A

The result is the desecsing of all of linear arithmetic, in the sense that any
formal arithmetic got by adding axioms and rules from the above lists to
LL* will contain zero- degree formulas that are not secondary formulas.
Indeed, we may strengthen the logic far beyond LL, as noted above. Our
crucial matrix SZ7 was found by a computer program; MaGIC confirms
that there is no way to improve on 1t in the sense that there is no smaller
matrix satisfying the postulates of LL¥ while remaining desecsed.

We must add just a little book-keeping before resting from our labours.
Our countermodel showed that 0 = 1 — 0 = 0 fails in LL¥ and related sys-
tems. It also shows that n = m — 0 = 0 fails whenever n and m differ by an
odd number. But it is easy to check that n =m — 0 =0 is true when n and
m differ by an even number. However this was an artefact of how we con-
structed the model out of the integers mod 2. Consider instead, the integers
mod &, and define I/(m = n) =t when m = n, and I(/n = n) = n otherwise. The
rest of the evaluation is just as before: the universal quantifier is a long,
finite, conjunction, and each of the arithmetic axioms and rules holds under
this interpretation. And now, I[n=m — z=z)=n — t =n whenever m #
n mod k. As a result, no false equation implies any true equation. Linear
logic is therefore thoroughly desecsed, in that no false equation is a
secondary equation, and dually, no true unequation is a secondary unequa-
tion. The same goes for any weaker system. In all such arithmetics, a = b
implies ¢ = d iff |a — b| =|c —d|.9

6Thanks to many past and present colleagues in the ANU automated reasoning project,
and its predecessor the ANU logic group; we are especially indebted to Dunn, Belnap,
Martin, Mortensen, Priest, and Sylvan. Thanks too to Surendonk for help in preparing the
manuscript.
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