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ON STRONG COMPARATIVE LOGIC

Francesco PAOLI

1. Introduction

Comparative logic is not at all a new area of research: on the contrary, it
dates back to Aristotle’s Topics and was subsequently cultivated by a num-
ber of authors throughout the historical development of ancient and medie-
val logic. However, a clear revival of interest for the subject has taken place
in Italy over the last 15 years, mostly due to the work of Ettore Casari (e.g.
1987; 1989; 1997), who introduced a series of logical calculi of increasing
complexity which serve as a broad and articulated frame for the formal
reconstruction of a theory of comparison. The reader is referred to Casari
(1997) for a clear and detailed account of the work done so far.

By “(propositional) strong comparative logic” (henceforth SCL) we mean
the propositional fragment of the calculus named “comparative logic of
rank 17 in Casari (1987), endowed with an axiom of linearity. It is a first
degree system, whereby no nesting of the connective = is permitted. Rela-
tively to it, Casari proved a completeness theorem using algebraic tech-
niques —he singled out the class of bifrontal chains as an adequate class of
models. Later, Pierluigi Minari (1988) introduced both a relational seman-
tics and a different algebraic semantics for comparative logic of rank 1, i.e.
SCL without linearity.

The present paper, although indebted to the basic ideas of Minari’s rela-
tional approach, takes a third standpoint: it basically consists in an Epstein-
style semantics (cp. Epstein, 1990). We shall show that SCL may be
semantically characterized by grading the “truth intensities” of zero degree
formulae by means of an appropriate relation. Furthermore, some additional
properties of SCL will be discussed.

2. Syntax

Let P be a standard propositional alphabet, enriched with the new connec-
tive =. The set ZDF of zero degree formulae is defined as the smallest set
containing the variables and closed under —, &, +/, = . The set FDF of first
degree formulae is inductively defined as follows:
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1) if A € ZDF, then A € FDF;

2) if A, B€ ZDF, then A = B € FDF,

3) ifA, BE FDF, then ~A,A& B,A\v B, A - B € FDF,
4) nothing else belongs to FDF.

Members of ZDF, resp. FDF, will be sometimes referred to as “zdfs” and
“fdfs”. A & B and A == B will be used as abbreviations, respectively, for
(A->B)& (B> A, A=B&B=A.

A possible intuitive reading for A < B is “A is at most as true as B”.

Let us now define a formal sysfem, SCL, formulated in the language £
thus obtained (we draw this system from Casari, 1987; by the way, we
adopt the same conventions about auxiliary symbols. Axioms C5 and C6.2
below are not independent but are nonetheless included for easier refer-
ence).

Axioms

Group A. A standard set of axiom schemata for classical propositional
logic, where metavariables stand for elements of FDF (most axioms may be
“coded” by replacing the letter “A” by “C” in the corresponding axioms of
Group C below).

Group C. For A, B, C € ZDF, the following formulae are axioms:

Cl. A=B&B=C-A=C
C21. (A&B=A4A

C22. (A&B)=BHB

C23. A=B&A=C-SA=(B&O
C31l. A=(AvVB

C32. B=(AvyB

C33. A=C&B=C->AvyB=C
Cil. A=A

C42. ——A=A

C43. A=B-> B=—A

CS. AvB&AVO) =Av(B&QD)
C6l. A=B->(A-> B

C6.2. —(A=B)-> (B> A)

Cll. —"A=A- B

C72. B=(A - B)

C73. (A- B)=(—AvVB)

L. A=ByB=A
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Rule of inference
MP. AJ/LA-B=18H

The notions of provability and derivability are as in classical logic. We
draw from Casari (1987) the following list of theorems of SCL:

TILA=AT2A==A,T3A=B&B=A->A==B;T4 A==<B
> B==AT5.A=z=B&B=2=C->A==<C.;T6.A==B > —A
2= BT A==B&C==D -5 A& C)=2=(B&D) & Ay O
=2==BYvD)&A->C)==(B->D);T8. A== —-—-A;T9.A=B
o B= 1A TIOLA&A)=Z=A;TIL.(AVA) =Z=A;TI2. (A &
By=z=B&A);TI3.(AvB)==BvA),TI4. (A& B&C) =<
(A&B)& C); TIS.(Ay By ) == (AvB) v C);TI6 (A & (A v
B)=z=AT1ITAvA&B)==A,TI. (A& Bv () == (A&
Byv (A& (), TI9. Ay (B&C) == ((A v B) & (A O)); T20.
(7(A & B) == (—Av 7B); T21. (—(A v B)) == (—A & —B),
T22A=B&A=Co A=(B&(C); T2 A=ByA=Ceo A<(B
VC); T2 A=C&B=Co(AyB)=C,T25.A=CyB=Ceo
(A&B) =CT26. A=A oA, T27T.A= 1A o —A.

Now, let us extend somewhat the preceding list. If (A, B) is a shorthand for
(A v mA) = (B —B) (or, for that matter, for (B & —B) = (A & —A)),
for A, B, C € ZDF the following schemata are provable in SCL as well
(T29-T31, indeed, are special cases of T1, C1, and L respectively):

T28. A,B=A&B

T29. I(A, A)

T30. I(A, B) & I(B, C) - (A, ©)

T31. I(A, B) v I(B, A)

T32. I(A, = B) & I(A, B)

I(—A,B) & I(A, B)

T33. I(A,B-> C) & I(A, "B\ (O)

T34. A& B - (I(C,A&B) & I(C, A) &I(C, B))
A&B - (IIC,AvB) e IC,A) v IC, B))
A&B - (IA&B,C) o KA, C) v IB, C)
A&B - (IA\B,C) e A C) &I(B, C)

T35, mA& B - (I(C,A&B) & I(C,A) v IC, B))
A& B - ({(C,AvB) & IC,A) & I(C, B))
A& B> (IA&B,C) o I(A,C) & (B, C)
A& B - (IAvB,C) e IA, C)vyIB, ()

T36. A& =B - (I(C,A & B) & I{C, B))

A& =B - (I(C,A\ B) & I(C, A)
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A& —B- (I(A&B,C) o IB,C)
A& —B-> (I{AyvB,C) « [A, )
T37. mA&B - (I(C,A&B) o [(C, A)
—A&B - ({(C,A\v B) & I(C, B))
—A&B - (I{A&B,C) & I(A, C))
—A&B - (I{(AyvB,C) o I(B, ()
T38. A=Bo (A->B)&A&B - IA, B)
& (1A & —B - [B,A)

Proofs of T28-T37 are left as an exercise. We shall instead sketch, in an
informal natural deduction style, the proof of the very important T38, leav-
ing up to the reader the task of recasting this argument into a more accurate
formal one. Remember that a standard deduction theorem is available in
SCL (cp. Casari, 1987).

Proof sketch. Left to right. Assume A = B. Then (C6.1) A - B. Now, as-
sume A & B, whence (A2.1, A2.2) you get A, Band (T26) "A <A, "B <
B. By transitivity from —A = A and A = B, you have —A =< B, whence,
by T28, "A=B & A =B. Thus,by A3.1,("A<=B&A=B)y(A =
—B & —A = 1B),ie (T22-T25) (A\y "A) =By (Avy —A) = B,
i.e. (A —A) = (B —B). By the deduction theorem, then, A & B - I(A,
B) is established under the assumption A = B. A & —B - [(B, A) is
established similarly. An application of T28 and a further recourse to the
deduction theorem suffice for the left-to-right part of T38.

Right to left. Suppose (A =B),A - B,A & B - I(A, B), 7A & —B
— (B, A). Since (C6.2) =(A = B) > (B > A), by T28 we get A & B.
Now, we argue following a dylemmatic pattern (notice, also in the follow-
ing, that SCL has in its classical fragment the appropriate syntactic appara-
tus to match our “semantical” reasoning), and assume A, whence B. By
T26, 7A = A, =B = B. Moreover (T28), A & B, whence I(A, B), i.e. (A Vi
—A) = (B v 7 B). Rephrasing it via T22-T25, we get A<B & —A = B)
V(A =B & 1A = —B). In the first case, by A2.1, A =< B (contradic-
tion); in the second case, by A= —B, =B < B, via A2.1, T28, C1, we get
A = B (contradiction). Assuming now —A, argue as above to get the same
contradiction. By T28 and the deduction theorem, then, we obtain our con-
clusion.

Let A, B, C range over FDF and let the expression “A[B/C]” denote the
result of the replacement operation, i.e. the result of replacing in A zero or
more occurrences of B by C. Moreover, let CF = FDF/ZDF (in this expres-
sion, of course, “/” denotes set-theoretical difference). Given the way our
set FDF was built up, the replacement operation is not necessarily stable,
i.e., not always does it turn well-formed formulae (of either ZDF or FDF)
into well-formed formulae. However, it is easily seen that:
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1) IfA, B € ZDF and C € ZDF (CF), then A[B/C] € ZDF (FDF);

2) IfA, C € FDF and B € CF, then A[B/C] € FDF;

3) If B,C € ZDF and A € FDF, then A[B/C] € FDF;

4) If A € FDF, B € ZDF and C € CF, then A[B/C] € FDF provided
that none of the replaced occurrences of B lies in the scope of any occur-
rence of “<" in A.

Casari (1987) proved that i) if A, B, C € ZDFand + A =< B, then + C
== C[A/B]; i) if A, B€ ZDF, C€ FDFand FA =<B,then I C &
C[A/B]. Remark that, in such cases, the morphological condition according
to which the replacement operation must transform well-formed formulae
into well-formed formulae is satisfied by 1) and 3) above. Hence, in SCL
we have replaceability of comparatively equivalent zdfs (i.e., zero-degree
formulae A and B s.t. A == B). On the contrary, we do not generally
have replaceability of materially equivalent zdfs or fdfs (i.e., zero- or first-
degree formulae A and B s.t. F A & B), even when replacement is morpho-
logically permitted.

However, as long as a certain subclass of FDF is concerned, we are able
to demonstrate this property. Define a comparative formula as a first degree
formula having the form A = B, and a C-uncomparable formula (C €
FDF) as a first degree formula which is not a proper subformula of any
comparative subformula of C. Remark that every formula containing a
comparative formula is a C-uncomparable formula for every C € FDF. We
prove:

Theorem 1. Let A, B, C € FDF. If+ A & Band A is a C-uncomparable
formula, then + C & C[A/B].

Proof. Induction on the length of C. If C € ZDF, the theorem boils down to
the classical replacement theorem, since SCL has in its classical fragment
the required equivalences. Now, suppose that C has the form D < E (D, E
€ ZDF). Since A is a C-uncomparable formula, it cannot be a proper
subformula of D = E. Thus, either A does not occur in D < E (in this case,
FD =E o D =E),or A coincides with D < E (and then - A & B by our
hypothesis). The remainder of the proof is, like the first part, an induction
on the construction of FDF.
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3. Semantics

In all comparative logics, hence in SCL too, propositions are conceived of
as not merely being true or false, but also having a degree of truth (or falsi-
ty). In order to provide an Epstein-style semantics for SCL, we reshape this
concept splitting it up in the following 5 points:

1) Zdfs can be viewed as having not only a Boolean truth value, but
also an intensity, which can be numerically measured. Hence, intensities
can be compared to one another. Suppose you have an intuitive idea of
what a “degree of truth (falsity)” is, and of how to express it by a positive,
resp. negative numerical value. Then think of the intensity of a zdf as the
absolute value of its degree of truth.

2) The only properties of a zdf which matter to SCL are its logical form,
its (Boolean) truth value and its intensity.

3) The truth value and the intensity of a zdf are independent of each
other as far as atomic formulae are at issue.

4) The connective < is a “truth-and-intensity” function: it depends both
on the truth value and on the intensity of the two formulae under compari-
son.

5) Formulae containing at least an occurrence of the connective < have
a truth value, but no intensity. Comparisons of comparisons are not allow-
ed.

Let us now shift from these “conversational” hints to a more accurate for-
mal semantics. Let VAR be the set of variables of £. Moreover, let I be a
linear preordering of VAR, i.e. a reflexive, transitive, and connected rela-
tion on VAR. We extend J to the whole of ZDF through I11-19, listed
below:

I1. (A, A)

12. 3(A, B) and J(B, C) imply J(A, C)
I3. J(A, B) or J(B, A)

14. J(A, —B) iff J(4, B) iff J(—A, B)
I5. 3J(A, B - C)iff J(A, =By O

Furthermore, for every classical valuation v: ZDF - {T, F}:

I6. If v(A)=v(B)=T,
3(C, A &/\/ B) iff J(C, A) and/or 3(C, B)
3(A &/ B, C) iff I(A, C) or/and (B, C)
I7. If v(A)=v(B) =F,
3(C, A &/\/ B) iff J(C, A) or/and I(C, B)
J(A &N B, C) iff 3(A, C) and/or (B, C)
I8. If v(A)=T, w(B) =F,
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3(C, A & B) iff J(C, B)
3(C, A\ B) iff 3(C, A) .
J(A & B, C) iff I(B, C)
S(A v B, C)iff (A, C)
9. f w(A)=F,v(B) =T,
J(C, A & B) iff J(C, A)
3(C, A v B) iff J(C, B)
3(A & B, C) iff J(A, C)
I(A v B, C)iff I(B, C)

Any binary relation on ZDF satisfying the previous conditions is called an
intensity preordering of ZDF. Intuitively, read J(A, B) as: “A is at most as
intense as B”. Of course, every intensity preordering 3* of VAR, together
with a classical valuation v on the same set, determines a unique intensity
preordering 3 of ZDF. In such a case, we may speak of the intensity pre-
ordering I co-determined by v and J*.

Now, if v: VAR — (T, F}, 3* is an intensity preordering of VAR and
is the intensity preordering of ZDF co-determined by v and J*, a valuation
v on FDF is inductively defined as follows:

v3(p) =v(p);

vI(—A), v3(A & B), v3(A v B), v¥(A - B) are calculated by means
of classical truth tables;

V(A = B) is calculated by means of the following truth table (“J(A,
B) =T (F)” counts as an abbreviation for “J(A, B) holds (does not

hold)”):
A B J(A, B) J(B, A) A=B
T T T T T
T T T F T
T T F T F
T F any values F
F T any values T
F F T T T
F F T F F
F F F T T

Notice that, given the linearity of JI(A, B) (I3), the preceding table has no
entry corresponding to J(A, B) = J(B, A) = F.

We define, for every A in FDF:
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vy FE A (A true in vy) iff vY(A) = T;
= A (A logically valid) iff vy = A for every valuation v3y.

A valuation vy s.t. A is true in vy is also called a TI-model for A. If I' C
FDF, then v is said to be a TI-model for I'iff is a TI-model for every B in
I'. Lastly, A is a logical consequence of I’ (I'=A) iff every TI-model for
I'is also a TI-model for A.

Theorem 2. I'FAiffI'= A,

Proof. Left to right. Induction on the length of derivations. A tip to save
time and paper: since a tabular 2-valued semantics is at hand, standard
Beth-Hintikka-style analytic tableaux are feasible. Thus, e.g., to check any
of the axioms, suppose it is false and try to derive a contradiction relatively
to either any of its atomic subformulae (group A, group C) or an item of the
form JI(A, B) (group C: as you will see, the tableaux will split up several
times).

Right to left. We need some more definitions and a couple of interme-
diate lemmata.

I'C FDF is a C-theory iff 1) contains every axiom of SCL; 2) is closed
under modus ponens. I'"is a complete C-theory iff, for every A in FDF, at
least one of A, —A is in I; is a consistent C-theory iff, for every A in FDF,
at most one of A, = A is in I'; is a prime C-theory iff, for every A, B in
FDF, A v/ B is in I' iff either A or B is in I". Notice that, as for classical
logic, a consistent complete C-theory is always prime.

Lemma 1. I is a consistent complete C-theory iff there is a TI-model for I

Proof. The “if” part is left to the reader. For the other direction, suppose
that I' is a consistent complete C-theory. For every p in VAR, setc(p) = T
if p belongs to I', ¢(p) = F otherwise. By induction it is easily seen that ¢ is
a valuation and that ¢(A) = T iff A € I for A € ZDF. Moreover, for p, g in
VAR, let 3*(p, g) hold iff I(p, g) belongs to I". Now, take the intensity pre-
ordering J co-determined by ¢ and J*. By double induction on the com-
plexity of A, B we prove the following

Claim. J(A, B) holds iffI(A, B) € I’

Proof. As an example, we prove the inductive step J(A, B & C) iff I(A, B &
C) € I'. Case 1: ¢(B) = ¢(C) = T. We have that B, C € I (def.), whence B
& C € I'(T28); thus, by T34,1(A,B& C) & I(A,B) & I(A,C)ET. As a
consequence, J(A, B & C) iff J(A, B) and J(A, C) (since J is co-deter-
mined by ¢ and J*) iff I(A, B), I(A, C) € I' (by induction) iff /(A, B) & I(A,
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C) € I'(T28, A2.1, A2.2) iff (A, B & C) € I (by MP from the formula
above). Cases 2—4, corresponding to different c-values, are handled simi-
larly. Notice that throughout the proof theorems T29-T37 are needed.

Now, consider the valuation ¢ accordingly defined, as on p. 277. Let us
show that, for every fdf A, c3F AiffAisin I

If p is a variable, such an equivalence is true by definition.

If Ais =B, then =B € I'iff B & I (consistency and completeness) iff
¢JY(B) =F (ind. hyp.) iff c3(—B) = T (def.).

IfAisB&C,thenB& C € I'iff B, C € I' (A2.1, A2.2, T28) iff cX(B) =
cI(C) =T (ind. hyp.) iff cJ(B & C) =T (def.).

IfAis By C,then B\ C € I'iff B € I'or C € I' (A3.1, A3.2, primality)
iff ¢3(B) =T or ¢3(C) =T (ind. hyp.) iff c3(B\/ C) = T (def.). The case A
- B obviously reduces to the previous ones.

Our claim is then inductively proved for ZDF. Let us now move to FDF.
Suppose Ais B= C.

If c3(B = C) =T, then ¢Y(B) =F or ¢3(B) = T i.e. (ind. hyp.) B & I'or
C €I'ie. (completeness) "B € I'or C € I''i.e. (A3.1 or A3.2) "By C
€ I'i.e. (classical thesis available in SCL) B » C € I'. Now, suppose I(B,
C) & I',i.e. J(B, C) does not hold. Since c¢X(B = C) =T, this entails either
¢¥(B) =F or¢3(C) = F i.e. (ind. hyp. and completeness) =B € I"or = C
€ I, whence (A3.1 or A3.2) =B\ —C € I, which by a classical thesis
available in SCL reduces to (B & C) € I'. Thus, either =(B & C) € I"or
I(B, C) € I'. By either A3.1 or A3.2, ~(B & C) \v I(B, C) € I', whence (B
& C) - I(B, C) € I'. Similarly, we obtain (—mB & —C) -» I(C,B) € I
Summing up by T28, (B - CO) & (B&C - I(B,C)) & (mB & —C - I(C,
B)) € I', which by T38 entailsB = C € I

Conversely, suppose B= C € I'. Then (T38) (B » C) & (B & C - I(B,
() & (1B & = C - I(C, B)) € I'. We dismember this conjunction via
A2.1-A2.2. From B - C, using our consistency and primality hypotheses,
we get B € I"or C € T, whence, by induction, ¢3(B) = F or ¢3(B) = T.
Now, suppose B & C € I'. Then I(B, C) € I, i.e. J(B, C) holds. Suppose
on the contrary B & C € I'. Then, using our consistency, completeness, and
primality assumptions, as well as classical negation theses, B & I"or C &
I', whence by induction ¢3(B) = F or ¢3(C) = F. Thus, if ¢3(B) = ¢3(C) =
T, then JI(B, C) holds. Carrying out the same reasoning with respect to — B
& —C, we reconstruct exactly the truth-and-intensity conditions needed for
B = C to be true.

The induction on FDF is then completed in a straightforward manner.
This ends the proof of Lemma 1.
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Lemma 2. If it is not the case that I' + A, then there is a consistent complete
C-theory X st. Tu {—A} C 3.

Proof. If we want to avoid recourse to the full power of Zorn’s Lemma, we
may stipulate that VAR be a denumerable set. With this minimal ontologi-
cal assumption, we can resort to a standard Lindenbaum-Henkin-style satu-
ration procedure, which is by no means affected by our additional stipula-
tions. Remark that, since a full deduction theorem is provable for SCL, we
need not introduce an auxiliary notion of &-consistency (unlike in most
modal and relatedness contexts).

Now, suppose it is not the case that I'+ A. Then, by Lemma 2, there is a
consistent complete C-theory 2 s.t. I'U {—A} C 3. By Lemma 1, there is
a TI-model for 3. Then, I'# A. This ends the proof of Theorem 2.

3.1. Constructive completeness

The completeness proof traced above is obviously nonconstructive. How-
ever, a more constructive completeness proof is likely to be feasible mov-
ing along the lines of the one carried out in Paoli (1996) for relatedness
logic. We shall not adapt the whole procedure to the present case, confining
ourselves to sketch the proof of a normal form theorem which would serve
as a basis for it.

Theorem 3. If A is in FDF, then there exists A*, containing exactly the
same variables as A, say p], ... ,pn, 5.t. 1) F A © A* 2) A* is a generalized
disjunction A] \/ ...\ Am, where fori = mAj=B] & ... & By and Bj (j =
q) is either a variable p) (k = n), or the negation of such, or a formula
having the form I(pk, p}), (k, | = n), or the negation of such.

Proof (heuristic hints). In the sequel, steps justified by “replacement of
comparative equivalents” are countersigned by “RCE”, whereas steps
justified by “replacement of material equivalents” are countersigned by
“RME”. In the latter case, we rest on the fact that the replaced formulae are
A-uncomparable formulae for every A in FDF (cp. Theorem 1).

Perform one after another the following steps:

1. Replace every instance of A - Bby mA\/B ((A - B) == (—Av
B), RCE).

2. In comparative formulae (see above), put A and B in disjunctive nor-
mal form (T8, T10-T21, RCE).

3. Replace every instance of A = (B\y C) by A =By A = C, and
every instance of (A\y B) = Cby A = C & B =C (T23, T24, RME).
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4. Replace every instance of A = (B & C)byA =< B & A = C, and
every instance of (A & B) = Cby A = C v/ B =C (T22, T25, RME).

5. Replace every instance of A = Bby (A - B) & (A& B - I(A, B)) &
(—A & =B - I(B, A)) (T38, RME).

6. Replace every instance of I(A, = B) and I(—A, B) by I(A, B) (T32,
RME).

7. Repeat steps 1. and 2., putting the whole formula in disjunctive nor-
mal form.

4. SCL as an “intermediate” logic

With respect to comparative logic —much in the same way as other logics
containing a linearity axiom analogous to L above, such as RM with
respect to relevant logic and Dummett’s LC with respect to intuitionistic
logic— SCL represents a long step towards a classical analysis of implica-
tion (cp. Anderson & Belnap, 1975, pp. 397-399). We shall hereafter prove
two striking features of SCL which are indeed shared by RM. Failure of
interpolation (Theorem 5), however, was proved by Minari (1988) for com-
parative logic without linearity.

Theorem 4. If - A < B, then either A and B share a variable, or else both -
—AandF B.

Proof. First, we prove that, if A and B share no variable, there is an inten-

sity preordering 3 s.t. J(A, B) fails. In fact, let p1, ... ,pp be the variables
in A, and g1, ... ,qm the variables in B. Consider the sequence < g1, ... ,gm,
Pls - sPns 11, 12, ... >, where r1, r2, ... are exactly the variables which
occur neither in A nor in B. Let J(p, ¢) hold iff p precedes, or coincides

with, ¢ in the above sequence. J is then an intensity preordering of VAR

s.t. for every i, j J(pj, gj) fails. It is readily seen, by induction on the length

of formulae, that J(A, B) fails given any classical valuation v.

Now, let A and B be formulae with no variable in common, s.t. FA < B
but either not - —A or not + B. By Theorem 2, then, we can construct a
classical valuation v* s.t. @) not both v¥(A) = T and v*(B) = F; b) either
v¥(A) = T or v¥(B) = F. This leaves two cases open: 1) v¥(A) = v*(B) = T;
2) v¥(A) =v*(B) =F.

Case 1): let v* be such that for every variable r v*X(r) = v*(r) and
such that J(A, B) fails as above. Then v*(A < B)=F, i.e. A < B, ie.
(Theorem 2) not F A < B, against our hypothesis.

Case 2):  similar (take J s.t. J(B, A) fails).
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Theorem 5. There are A, B belonging to ZDF s.t. 1) F A = B; 2) it is not the
case that + —A; 3) it is not the case that + B; 4) there is no C in ZDF s.t. b
A = C, + C = B and the variables in C are among the variables shared by
A and B.

Proof. We need two lemmata.

Lemma 3. F+ (A& —A)=(Bv —B)
FA=B=FA=(Bvyv(O
FA=B=F+FA&C)=<B

Proof. Exercise.

Lemma 4. Let I* be an intensity preordering of VAR s.t. 3*(p|, g) fails
and ... and JI*(py, g) fails. Consider the intensity preordering 3 of ZDF
co-determined by J* and any classical valuation v. Then J(A, g) fails if the
variables in A are among {p1, ..., Pn}.

Proof. Induction on the complexity of A. If A is a variable, A = p; fori = n,
and we're done. If A = =B, J(— B, q) holds iff J(B, g) does, and the latter
fails by IH. If A =B & C, J(B & C, q) iff J(B, q) and/or I(C, q) (depend-
ing on v); either way, it fails by IH. The case for disjunction is similar.

Let us now return to our theorem. Let A = B be Meyer’s formula (s \/ (p &
g& g)) =((svp) & (s\v rv —r), which is known to admit of no
interpolants in RM. We prove that A and B meet all of the conditions 1)—4)
above.

Ad1).ByC3 L, Fs=(syp)and ks = (s ryv —r), whence by T28,
C23ks=(svp)&(svry ). ByLemma3, F(p&g& —g) = (sv
rv —r).ByCl,C21,C32+F(p & g & —¢q) = (s v p). Finally, by C2.3,
C33,FA=B.

Ad 2), 3). Use classical truth tables and soundness of the system.

Ad 4). Suppose there were C containing no variable outside {p, s} and s.t.
FA=C,FC = B.Consider v s.t. v(p) = v(g) = v(r) =T, v(s) = F; more-
over, consider the following intensity preordering 3* of VAR:
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(g and r precede p and s which in turn precede all the other variables of £).
Let us take the intensity preordering I co-determined by 3J* and v, and the
valuation vy accordingly defined. Clearly, vX(A) = F and vX(B) = T. If
vI(O) =T vIC=(svp) &svry ) =Tiff J(C,(s\/p) & (s\yr
v ), iff I(C, s p) and J(C, s/ ryy ), iff J(C, p) and J(C, r). But,
since the latter fails by Lemma 4, vX(C = B) = F and thus not + C = B,
against our hypothesis. Similarly, if vI(C)=F, v3((s v (p & g & —g)) =
CO)=Tiff IC,s v (p & g & —q)), iff J(C, s)and JC, p & g & —q), iff
J(C, 5) and J(C, —q), iff J(C, 5) and I(C, g). But the latter fails by
Lemma 4 —and once again we contradict one of our hypotheses, namely
that- A= C.

Universita di Milano
REFERENCES

Anderson A. R, Belnap N. D. (1975), Entailment, vol. 1, Princeton Univ.
Press, Princeton.

Casari E. (1987), “Comparative logics”, Synthese, 73, 421-449.

Casari E. (1989), “Comparative logics and Abelian l-groups™, Logic Collo-
quium '88, North Holland, Amsterdam, 161-190.

Casari E. (1997), “Conjoining and disjoining on different levels”, in M. L.
Dalla Chiara et al. (Eds.), Logic and Scientific Methods, Kluwer, Dor-
drecht, 261-288.

Epstein R. L. (1990), The Semantic Foundations of Logic, Kluwer, Dor-
drecht.

Minari P. L. (1988), “On the semantics of comparative logic”, Zeitschrift
Siir mathematische Logik und Grundlagenforschung, 28, 433-448.

Paoli F. (1996), “S is constructively complete”, Reports on Mathematical
Logic, 30, 31-47.

ACKNOWLEDGEMENTS

The author is greatly indebted to Pierluigi Minari and Ettore Casari for their
suggestions concerning the topics covered by the present work. He also
wishes to thank an anonymous referee of L&A who pointed out some
inaccuracies in an earlier draft of this paper.



